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Abstract—Humans cast a substantial influence on their en-
vironments by interacting with it. Therefore, even though an
environment may physically contain only objects, it cannot be
modeled well without considering humans. In this paper, we
model environments not only through objects, but also through
latent human poses and human-object interactions. However, the
number of potential human poses is large and unknown, and
the human-object interactions vary not only in type but also in
which human pose relates to each object.

In order to handle such properties, we present Infinite Latent
Conditional Random Fields (ILCRFs) that model a scene as a
mixture of CRFs generated from Dirichlet processes. Each CRF
represents one possible explanation of the scene. In addition
to visible object nodes and edges, it generatively models the
distribution of different CRF structures over the latent human
nodes and corresponding edges. We apply the model to the chal-
lenging application of robotic scene arrangement. In extensive
experiments, we show that our model significantly outperforms
the state-of-the-art results. We further use our algorithm on a
robot for placing objects in a new scene.

I. INTRODUCTION

That the human environments and the objects in it are

designed for human usage, is so deeply ingrained in us that

when we think about a human environment, we think it

through the interplay between these elements. When a robot

is to perform tasks in an environment such as scene labeling

and scene arrangement, it also needs to model the environment

through humans. For example, when a robot is asked to find

the monitor in a room (Fig. 1), if it understands how human

interact with a monitor, it would scan the table top more

carefully than other places. Now, if it is asked to place a

mouse, considering how human interact with the mouse and

monitor, it would put it at accessible places such as the right

front of the monitor.

A human environment is constructed under two types of

relations: object-object and human-object relations. When

only considering object-object relations, Conditional random

fields (CRFs) are a natural choice, as each object can be

modeled as a node in a Markov network and the edges in the

graph can reflect the object-object relations. CRFs and their

variants have thus been applied to many scene modeling tasks

(e.g., [28, 1, 25], see more related work in § IV-C).

Modeling possible human poses and human-object interac-

tions (or object affordances) is not trivial because of several

reasons. First, humans are not always observable, but we still

want to model them as latent factors for making the scene as

it is. Second, there can be any number of possible humans in

(a) Label a scene through halluci-
nated humans.

(b) Detected objects used to refine
hallucinated human poses.

(c) Infer locations for placing a
mouse (shown in heat map).

(d) Execute the placing task.

Fig. 1: Robotic experiment: Given a RGB-D scene, our robot first
labels the segments in the point cloud using hallucinated humans (a).
Then, when asked to arrange a mouse in the scene, it infers possible
human poses (b), as well as proper placements (c) using our ILCRF-
based scene arrangement algorithm. Finally, it executes the placing
action (d).

a scene—e.g., some sitting on the couch/chair, some standing

by the shelf/table; Third, there can be various types of human-

object interactions in a scene, such as watching TV in distance,

eating from dishes, or working on a laptop, etc; Fourth, an

object can be used by different human poses, such as a book on

the table can be accessed by either a sitting pose on the couch

or a standing pose nearby; Last, there can be multiple possible

usage scenarios in a scene (e.g., see Figure 2-middle row).

Therefore, we need models that can incorporate latent factors,

latent structures, as well as different alternative possibilities.

In this work, we propose infinite latent conditional random

fields (ILCRFs) for modeling the aforementioned properties.

Intuitively, it is a mixture of CRFs where each CRF can have

two types of nodes: existing nodes (e.g., object nodes, which

are given in the graph and we only have to infer the value) and

latent nodes (e.g., human nodes, where an unknown number

of humans may be hallucinated in the room). The relations

between the nodes (object-object edges and human-object

edges) could also be of different types. Unlike traditional

CRFs, where the structure of the graph is given, the structure



Fig. 2: An example of instantiated ILCRF for scene arrangement. Top row shows learned object affordances in top-view heatmaps (it shows
the probability of the object’s location, given a human pose in the center facing to the right). Middle row shows a total of K CRFs sampled
from our ILCRF algorithm—each CRF models the scene differently. Bottom row shows the distribution of the objects and humans (in the
top view of the room) computed from the sampled CRFs.

of our ILCRF is sampled from Dirichlet Processes (DPs). DPs

are widely used as nonparametric Bayesian priors for mixture

models, the resulting DP mixture models can determine the

number of components from data, and therefore is also referred

as infinite mixture model. ILCRFs are inspired by this, and we

call it ‘infinite’ as it can sidestep the difficulty of finding the

correct number of latent nodes as well as latent edge types. Our

learning and inference methods are based on Gibbs sampling

that samples latent nodes, existing nodes, and edges from their

posterior distributions.

We apply our ILCRF to the task of scene arrangement

where the objective is to find proper placements (including

3D location and orientation) of given objects in a scene. For

this particular application, our ILCRF models each object

placement as an existing node, hallucinated human poses

as latent nodes and spatial relationships among objects or

between objects and humans as edges. We demonstrate in

the experiments that this model achieves the state-of-the-art

results on both synthetic and real datasets. More importantly,

we perform an exhaustive analysis on how our model captures

different aspects of human context in scenes, in comparisons

with numerous baselines. We further demonstrate that by

modeling through latent human context, a robot successfully

identified the class of objects in a new room, and placed

several objects correctly in it.

In summary, the contributions of this paper are as follows:

• We propose ILCRFs to capture both human-object and

object-object relations in a scene where humans are

hidden. Previous work [14] only admits modeling human-

object relations.

• Compared to classic CRFs, our ILCRFs admit: 1) un-

known number of latent variables, 2) unknown number

of potential functions, and 3) a mixture of different CRFs.

Its flexibility allows us to have minimum restrictions on

humans and affordances.

II. PRELIMINARIES: CONDITIONAL RANDOM FIELDS

Definition 1. CRF (X ,Y, EY ) is a conditional random field

if that, when conditioned on X , random variables Y follow the

Markov property with respect to the graph EY : The absence

of an edge between nodes yi and yj implies that they are

independent given other nodes. �

Thus, the likelihood of Y given X is given by: P (Y|X ) ∝
∏

c∈C
ψc(Xc, Yc), where C is all the maximum cliques,

and Yc ∈ Y and Xc ∈ X are in the same clique c.
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Fig. 3: CRF (top) and
hidden CRF (bottom)
in graphical represen-
tation.

Figure 3 (top) shows an example of a

chained CRF. When the graph structural

EY is unknown, structural learning is

required and the task is to select Yc for

each clique c. While it is known to be

hard in general [32], there are heuristic

methods and approximate inference for

tree-structured CRFs [31, 5].

A. Related Work: Variants of CRFs

Variants of Conditional Random

Fields (CRFs) ([22]) have emerged as a

popular way to model hidden states and

have been successfully applied to many

vision problems.

There are many models that enrich the structure of labels

in CRFs. For example, latent CRFs [26] assume that the

overall label Y depends on a sequence of hidden states



(s1, s2, . . . , sk) (see Fig. 3-bottom). This can be applied to

object recognition (an object label is determined by its part

labels) [29] and gesture recognition [36]. Further, factorial

(or dynamic) CRFs [33] substitute every label with a Markov

network structure to allow structured labeling, especially for

sequential data (such as labeling object and action simulta-

neously in video sequences [18, 21]). However, the labels

and hidden states are discrete and take only finite number of

values. In contemporary work, Bousmalis et al. [4] present a

model that shares a name similar to ours, but is quite different.

They estimate the correct number of values a latent node can

take using Dirichlet processes in a way similar to augmenting

hidden Markov models (HMM) to infinite HMM [3]. However,

the number of hidden nodes is fixed in their model. In our

model, we estimate the number of latent nodes, and even allow

the labels to be continuous.

Some works impose a non-parametric Bayesian prior to

the network’s structure so that it can potentially generate as

many nodes as needed. For example, Indian Buffet process [8]

assumes the latent nodes and links are generated through Beta

processes and the infinite factorial HMM [35] incorporates it to

HMM to allow any number of latent variables for each obser-

vation. However, they are limited to binary Markov chains and

do not consider different types of potential functions either.

Thus these models are complementary to ours. Jancsary et al.

[12] considers Gaussian CRFs on fixed number of nodes but

unknown number of potential functions and proposes a non-

parametric method to learn the number as well as parameters

of each potential function. Unlike this work, our model can

handle unknown number of nodes as well as types of edges.

Cast in the light of mixture models, mixtures of graphical

models have been proposed to overcome the limited represen-

tational power that a single graphs often suffers. For example,

Anandkumar et al. [2] propose a novel method to estimate

a mixture of a finite number of discrete graphs from data.

Both Rodriguez et al. [27] and Ickstadt et al. [10] consider

a Dirichlet process mixture model over graphs so that the

number of different graphical models is determined by the

data. However, they are limited to Gaussian graphical models

and do not consider latent variables.

III. INFINITE LATENT CONDITION RANDOM FIELDS

In this paper, we propose a type of mixture CRFs—infinite

latent conditional random fields (ILCRFs), which can capture

the following properties:

1. Unknown number of latent nodes. This is essential for

applications of finding hidden causes, such as scene modeling

where the number of possible human poses in a scene is

unknown and changes across different scenes.

2. Unknown number of types of potential functions. Poten-

tial function measures the relationship between nodes, and

therefore, having variety in them can help us model complex

relations. For example, in the task of image segmentation,

different types of context can be modeled as different edges

in a CRF [12]. In this paper, we use them to capture different

object affordances.

3. Mixture CRFs. The complexity of real-world data may not

always be explained by a single CRF. Therefore having a

mixture of CRFs, with each one modeling one particular con-

ditional independency in the data, can increase the expressive

power of the model.

4. Ability to place informative priors on the structure of CRFs.

This can help producing more plausible CRFs as well as

reducing the computational complexity.

We achieve this by imposing Bayesian nonparametric

priors—Dirichlet processes (DPs)—to the latent variables,

potential functions and graph structures.

A. Background: Dirichlet Process Mixture Model

Dirichlet process is a stochastic process to generate distri-

butions that is used to model clustering effects in the data.

It has been widely applied to modeling unknown number of

components in mixture models, which are often called infinite

mixture models. (Formal definition can be found in [34].)

Definition 2. A DP mixture model, DP (α,B), defines the

following generative process (also called the stick-breaking

process), with a concentration parameter α and a base distri-

bution B:

1) Generate infinite number of mixture components, pa-

rameterized by Θ = {θ1, . . . , θ∞}, and their mixture

weights π:

θk ∼ B, bk ∼ Beta(1, α), πk = bk
∏k−1
i=1 (1−bi). (1)

2) Assign the zthi component to each data point xi and

draw from it:

zi ∼ π, xi ∼ F (θzi). (2)

The process can be represented in a plate notation as below:

α Bixπ
iz kθ

ni 1= ∞= 1k
�

B. ILCRF

ILCRF uses DPs to admit an arbitrary number of latent

variables and potential functions to obtain a mixture of latent

CRFs. In brief, it generates latent variables and potential

functions from two DPs respectively, and each data point

builds a link, associated with one potential function, to one

latent variable. Different samples thus form different CRFs.

Definition 3. A ILCRF(X ,Y, EY , αh, Bh, αψ, Bψ) is a mix-

ture of CRFs, where the edges in Y are defined in graph EY
and latent variables H as well as the edges between H and

Y are generated through the following process:

1) Generate infinite number of latent nodes H =
{h1, h2, . . . , h∞} and a distribution πh from a DP

process DP (αh, Bh) following Eq. (1); Assign one edge

to each label yi that links to hzi , where zi ∼ πh

following Eq. (2).

2) Generate infinite number of potential functions (‘types’

of edges) Ψ = {ψ1, . . . , ψ∞} and a distribution πψ from

a DP process DP (αψ, Bψ) following Eq. (1); Assign



Fig. 4: Graphical representations of our infinite latent CRF (ILCRF).

one potential function ψωi to each edge (yi, hzi), where

ωi ∼ πψ following Eq. (2). �

We will illustrate the process using Figure 4. Consider first

sampled CRF (‘CRF-1’ in the figure) with four visible nodes

yi (i = 1 . . . 4). In the first step, y1 is connected to h1, y2 to h3,

y3 to h7 and y4 to h1 again. This is because zi’s (i = 1 . . . 4)

are sampled as (1, 3, 7, 1) from DP (αh, Bh). Since only h1,

h3 and h7 are active, we draw their values from DP (αh, Bh).
Thus, we get a CRF with three latent nodes {h1, h3, h7}. In the

second step, the potential function of edge (y1, h1) is assigned

to ψ1, (y2, h3) to ψ2, (y3, h7) to ψ5 and (y4, h1) to ψ1. This

is because ωi’s are sampled as (1, 2, 5, 1) from DP (αψ, Bψ).
Since, only (ψ1, ψ2, ψ5) are active, we have three edge types

in this CRF. We draw their parameters from DP (αψ, Bψ).
Repeating this procedure may generate different latent CRFs

such as ‘CRF-K’ which has two different latent nodes and

three different edge types. In the end, their mixture forms the

ILCRF.

The structure of labels (edges between yi’s) is defined

by EY and is shared across all the sampled CRFs, but the

process above generates different structures between the latent

variables and nodes Y . We use Gℓ to donate the graph structure

of ℓth sampled CRF. The overall likelihood of a ILCRF is

given by,

P (Y|X ) =

∫ ∫
∑

Gℓ

P (Y, Gℓ,H,Ψ|X ) dHdΨ (3)

=

∫ ∫

P (H|αh, Bh)
︸ ︷︷ ︸

DP prior for H

P (Ψ|αψ, Bψ)
︸ ︷︷ ︸

DP prior for Ψ

×

(∑

Gℓ

P (Gℓ)
︸ ︷︷ ︸

prob. of the
CRF’s structure

P (Y|X , Gℓ,H,Ψ)
︸ ︷︷ ︸

conditional prob.
of the CRF

)

dHdΨ,

where,

P (Gℓ) =

(
n∏

i=1

π
(zi)
h

)(
n∏

i=1

π
(ωi)
ψ

)

,

P (Y|X , Gℓ,H,Ψ) ∝

(
n∏

i=1

ψωi(yi, hzi)

)


∏

(yi,yj)∈E

ψ(yi, yj)



 .

Exact computation on this likelihood is prohibitive in practice.

We therefore present learning and inference methods based on

Gibbs sampling in the following.

C. Gibbs Sampling for Learning and Inference

Gibbs sampling states that, if we sample latent CRFs,

including the edge/structure G, the value of latent nodes H
and the edge types Ψ, from their posterior distributions, then

the samples approach the joint distribution P (Y, Gℓ,H,Ψ|X ).
And this can be further used to estimate P (Y|X ) in (3) and

to infer the most likely values of Y .

We present the posterior distributions below, modified from

the Chinese restaurant process [23, 34] for classic DP mixture

models.

• Sample the graph structure, i.e., one edge for each yi to

one latent node:1

zi = z ∝

{
nh
−i,z

n+m−1+αh
ψωi(yi, hz) nh−i,z ≥ 0,

αh/m
n+m−1+αh

ψωi(yi, hz) otherwise
(4)

• Sample values for each latent node in the graph:

hk = h ∝ Bh(h)×
∏

i:zi=k

ψωi(yi, h) (5)

• Assign the type of potential functions to each edge:2

ωi = ω ∝







nψ
−i,ω

n+m−1+αψ
ψω(yi, hzi) n

ψ
−i,ω ≥ 0,

αψ/m
n+m−1+αψ

ψωi(yi, hzi) otherwise
(6)

• Sample the parameters of each selected potential func-

tion:

ψk = ψ ∝ Bψ(ψ)×
∏

i:ωi=k

ψω(yi, hzi) (7)

• Sample labels:

yi = y ∝ ψωi(y, hzi)×
∏

(yi,yj)∈E

ψ(yi, yj) (8)

As for learning the EY , when labels are given in the training

data, EY is independent with latent variables H (if the partition

function is ignored), and therefore can be learned separately.

In the next section, we will first describe how we model the

humans as latent variables, and then specify the details of the

different terms in ILCRF for our two applications.

IV. ILCRF FOR SCENE ARRANGEMENT

In this section, we apply ILCRFs to the application of

arranging objects in 3D scenes. The goal is to find the

appropriate locations and orientations for placing given objects

in a 3D scene (see Figure 2). In the following, we describe how

to model hidden humans in a scene using ILCRF as well as

learning and inference for this particular application, followed

by related work in scene modeling.

1 The posterior distribution of an variable is proportional to its prior and
to its likelihood. In the case of zi, it means that the probability of linking an
edge from yi to hz is determined by: 1) the likelihood of this edge, given by
ψωi (yi, hz); 2) the number of other subjects choosing the same latent node,

i.e., nh
−i,z where nh

−i,z = I{zj = z, j 6= i}. In addition, the chance of

selecting a new latent node is given by αh/m out of m latent nodes sampled
from Bh. (See [23] for more details).

2 Similar to (4), the probability of choosing ψω is proportional to the

number of other edges choosing the same function (nψ
−i,ω) and the likelihood

of this edge using this function.



A. Modeling Humans in a Scene

We model possible human poses as latent nodes H. A

human pose is specified by its pose, location and orientation.

Following [14], we use six types covering different sitting and

standing poses.

We model object affordances as the potential functions Ψ.

We use the spatial relationship between a human pose and the

object to represents its affordance. It is defined as a product

of several terms, each of which captures one type of spatial

relation: Euclidean distance, relative angle, orientation differ-

ence,3 and height (vertical) distance. (See [14] for details.)

Thus, an affordance is defined by the parameters used in these

terms. Sampling an affordance, such as ψk in (7), is actually

sampling the parameters. See Figure 2 for the top-view of the

affordances of some objects.

B. Learning and Inference

Following Defn. 3, we define yi ∈ Y as the placement

(location and orientation) of an object and xi ∈ X as its given

object class. The edges between the visible nodes Y model

the object-object spatial relationships.4

During training, our goal is to learn the object affordances

(i.e., a set of potential functions ψ in the ILCRF). We perform

sampling on the human-object edges, human poses and object

affordances, given placements Y and edge types ωi, according

to Eq. (4), (5) and (7). (Here, since xi as the object class

label is given, we set ωi = xi in this application.) The object-

object structure, EY is learned based on object co-occurence,

as computed from the training data.

During testing on a new scene, our goal is to predict place-

ments yi, given objects X . We perform inference by sampling

the human-object edges, human poses and placements, using

the learned object affordances (see Eq. (4), (5) and (8)).

In order to predict the most likely placement for object i,

we choose the placement area sampled most because that

represents the highest probability.

C. Related Work: Scene Modeling

To our best knowledge, there is little work about arrang-

ing/placing objects in robotics (e.g., [7, 30, 11, 16, 15]),

and none of these works consider reasonable arrangements

for human usage. In recent work, Jiang et al. [14], Jiang

and Saxena [13] considered hallucinating humans for object

placements and later applied similar idea to the task of scene

labeling [17]. However, their method did not model human-

object and object-object relationships in a joint model. They

first computed a distribution of arrangements using human

context only, and another using object context only. Then they

linearly combined the two as the final distribution. Unlike this

heuristic approach, we propose a unified model that infer the

arrangement based on joint distribution of the two (see (8)).

We compare our ILCRF algorithm to their approach in our

experiments.

There are other recent works applying object affordances in

tasks of predicting human workspaces [9]. When humans are

3Only when the orientation of the object is defined and accessible.
4It is defined as a multi-variate Gaussian distribution of the location and

orientation difference between the two objects.

TABLE I: Results of arranging partially-filled scenes and arranging
empty scenes in synthetic dataset, evaluated by the location and height
difference to the labeled arrangements.

Algorithms
partially-filled scenes empty scenes

location (m) height (m) location (m) height (m)

Chance 2.35±0.23 0.41±0.04 2.31±0.23 0.42±0.05
Obj. [14] 1.71±0.23 0.13±0.02 2.33±0.17 0.44±0.04
CRF 1.69±0.05 0.12±0.01 2.17±0.07 0.39±0.01
ILCRF-H [14] 1.48±0.18 0.11±0.01 1.65±0.20 0.12±0.01
Human+obj [14] 1.44±0.18 0.09 ±0.01 1.63±0.19 0.11±0.01
ILCRF-Aff. 1.59±0.06 0.14±0.01 1.60±0.06 0.15±0.01
ILCRF-NSH 1.64±0.05 0.15±0.01 1.77±0.06 0.16±0.01
FLCRF 1.55±0.06 0.12±0.01 1.63±0.06 0.14±0.01
ILCRF 1.33±0.19 0.09±0.01 1.52±0.06 0.10±0.01

Obj. (+furniture) 1.63±0.05 0.15±0.01 1.80±0.05 0.20±0.01
CRF (+furniture) 1.62±0.05 0.15±0.01 1.78±0.05 0.16±0.01
Human+obj (+furniture) 1.46±0.06 0.11±0.01 1.57±0.06 0.15±0.01
ILCRF (+furniture) 1.28±0.06 0.10±0.01 1.43±0.06 0.10±0.01

TABLE II: Results on arranging five real point-cloud scenes (3 offices
& 2 apartments). Co: % of semantically correct placements, Sc:
average score (0-5).

office1 office2 office3 apt1 apt2 AVG
Co Sc Co Sc Co Sc Co Sc Co Sc Co Sc

Obj. 100 4.5 100 3.0 45.0 1.0 20.0 1.8 75.0 3.3 68.0 2.7
ILCRF-H 100 5.0 100 4.3 91.0 4.0 74.0 3.5 88.0 4.3 90.0 4.2
Human+obj 100 4.8 100 4.5 92.0 4.5 89.0 4.1 81.0 3.5 92.0 4.3
ILCRF 100 5.0 100 4.6 94.0 4.6 90.0 4.1 90.0 4.4 94.8 4.5

observed, affordances can be used to predict 3D geometry [6],

improve human robot interactions [24], detect and anticipate

human activity [21, 19, 20]. While these works focus on

different problems and require the presence of humans, they all

demonstrate the advantages of considering object affordances.

V. EXPERIMENTS

In our application, the scenes (including objects/furnitures)

are perceived as point-clouds (Fig. 11), either generated from

3D models in synthetic datasets or obtained using Microsoft

Kinect camera in real datasets.

Dataset. We use the same two datasets as in [14, 15]: 1)

a synthetic dataset consisting of 20 rooms (living rooms,

kitchens and offices) and 47 objects from 19 categories

(book, clean tool, laptop, monitor, keyboard, mouse, pen,

decoration, dishware, pan, cushion, TV, desk light, floor light,

utensil, food, shoe, remote control, and phone); 2) five real

offices/apartments each of which is asked to arrange 4, 18,

18, 21 and 18 number of objects.

Experimental setup. For the synthetic dataset, we conduct

5-fold cross validation on 20 rooms so that the test rooms are

new to the algorithms. We also consider two different testing

scenarios, same as in [14]: 1) arranging partially-filled rooms

by placing only one type of objects; 2) arranging empty rooms

(with only furnitures) by placing multiple types of objects. For

the real dataset, we test on the five empty rooms using learned

object affordances from the synthetic dataset.

Algorithms. We compare all the following methods:

1) Chance. Objects are placed randomly in the room.

2) Obj. It uses heuristic object-object spatial relations to infer

placements in sequence (not jointly), same as [14].

3) CRF, a ILCRF with only object-object edges, without latent

human nodes.

4) ILCRF-H, a ILCRF with only human-object edges, without

considering object relations (referred as ‘DP’ in [14]).

5) Human+obj. After getting the inferred distributions of

arrangements Y from Obj. and ILCRF-H separately, it linearly
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Fig. 6: Results of arranging a remote control (left), a desklight
(middle) and a mouse (right), in partially-filled rooms by Alg2 (top
row) and by ILCRFs (second row), We also show the top view of
distribution of sampled human poses (third row) and object locations
(last row) in heatmaps.

combines the two and find the maximum [14]. Our ILCRF, on

the other hand, incorporate the two relationships during the

inference, not after.

6) ILCRF-Aff, a ILCRF with only one type of edge, i.e.,

one shared affordance across all object classes. Having a

universal potential function is often assumed in many CRF

applications. However, it may not be appropriate for modeling

object affordances.

7) ILCRF-NSH, a ILCRF with with non-sharing latent human

node. It assigns one human node to each object. This model

resembles hidden CRFs (Fig. 3). While the arrangement of an

object can still be affected by its relation to possible human

poses, it cannot capture phenomena of objects sharing the

same human pose, such as a monitor and a keyboard. Sharing

latent nodes is achieved in ILCRF by the clustering effect

inherited from DPs.

8) FLCRF, a ILCRF with fixed number of latent nodes, shared

across all scenes. It requires a good estimate on the number

of human poses, and the optimal number may vary for rooms

of different types or sizes.

9) ILCRF, our full ILCRF model.

Results. Table I presents the results on the synthetic dataset,

where the predicted arrangements are evaluated by two met-

rics, same as in [14]: location difference and height difference

(in meters) to the labeled arrangements. We also experiment

using furniture information to improve arrangements. More

details, including results for each object category can be found

in the supplementary material. Results on the real dataset are

presented in Table II, evaluated by the percentage of predicted

locations are semantically correct and a score of the overall

arrangement between 0 and 5, labeled by two human subjects

that are not associated with this project.

In the following, we analyze the results in order to study

our approach conceptually and algorithmically in that whether:

1) human-object and object-object relations are beneficial,

and 2) being able to handle changeable numbers of human

poses/object affordances and having a mixture of CRFs is

necessary for capturing those relations.

Q1: How beneficial are the latent human poses and object

affordances? From Table I we can see the performance gain

quantitatively in the comparison of our full ILCRF model

against ILCRF with only object edges (CRF) (and also against

Obj. using the heuristic object context reported in [14]). On

average, the location and height difference are reduced from

1.69m (2.17m) and .12m (.39m) to 1.33m (1.52m) and .09m

(.10m), in arranging partially filled (empty) scenes. Even

methods that use non-sharing skeletons (ILCRF-NSH) and

finite skeletons (FLCRF) achieve better results than CRF.

We now compare some predicted arrangements visually.

When arranging empty rooms (Fig. 5), only using object

relationships (CRF) performs extremely poor in terms of

objects crowded together and being located randomly in a

scenes. This is because reasonable arrangements cannot be

thoroughly explained by the object-object spatial relationships

alone. For example, in the first scene, the floorlight often

appears near the TV does not mean a TV should be next

to it when the light is in the back of a room. In the second

scene, although CRF captures that office supplies are always

close to each other, it cannot capture that they should be on

the table facing chairs. On the other hand, our ILCRF is able

to successfully identify reasonable human workspace and use

it to arrangement the objects accordingly.

When arranging one object in a scene with other objects

(Fig. 6), the overcrowding of objects in CRF is alleviated, but

some placements are inconvenient for human to access, such

as the desk light is too close to the chair (second scene) and the

mouse is far away from the chair (third scene). ILCRFs address

this issue by using proper object affordance with respect to

imaginary human poses. For example, most sampled human

poses are on the couch/chair, and therefore most samples of the

desklight are on the other end of the table and most samples

of the mouse are close to the chair.

Q2: Why do we need handle unknown number of human

poses? The advantage of using DP mixture models in ILCRF

is being able to determine the number of human poses from

the data instead of guessing manually. We investigate this in

in Fig. 7. We compare ILCRF with the FLCRF where the



Fig. 7: Results of FLCRF with different number of human poses versus ILCRF. We also show examplar sampled CRFs and learned object
affordances (in top-view heatmaps) by different methods.

number of human poses varyies from 1 to 20.

While having five poses in FLCRF gives the best result,

it is still outperformed by ILCRF. This is because scenes

of different sizes and functions prefer different number of

skeletons. If we force all scenes using only one human

pose, the learned object affordances will have large variances

because all objects in the scene attempting to relate to one

human, e.g., in Fig. 7-(b). If we force all scenes using a large

number of human poses, say 20 per scene, the model will

overfit in each scene and leading to meaningless affordances,

e.g., Fig. 7-(c). Therefore, having the correct number of latent

human nodes in CRFs is crucial for learning good object

affordances as well as for inferring reasonable arrangements

across diverse scenes (Fig. 7-a).
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Fig. 8: The average perfor-
mance of ILCRF with dif-
ferent hyper-parameter αh.

Q3: How sensitive is ILCRF to

the number of human poses?

The parameter αh in ILCRF con-

trols the probability of selecting a

new human pose and thus can be

viewed as a counterpart of K (the

fixed number of human poses) in

FLCRF. However, unlike FLCRF,

ILCRF is much less sensitive to

this parameter, as shown in Fig. 8 where its performance does

not vary much for αh from 0.1 to 104. Therefore, ILCRF does

not rely on either informative prior knowledge or a careful

hand-picked value of αh to achieve high performance.

Q4: Why do we need model different object affordances?

Fig. 9: Single af-
fordance learned by
ILCRF-Aff.

Allowing diversity in object affordances

is as important as that in human poses.

We verify it by forcing all objects shar-

ing the same affordance (ILCRF-Aff),

shown in Fig. 9. In comparison to IL-

CRF, the performance drops more for

partially-filled scenes than for empty

scenes. This is because, in partially-filled

scenes, sampled human poses are more

accurate so that the performance largely depends on the

correct human-object relationships. However, ILCRF-Aff still

performs better than not using affordance at all, since the

learned affordance still fits some objects.

Q5: Why do we need a mixture of CRFs? ILCRFs is a

mixture of unknown number of latent CRFs. However, we

can control the number in the sampling to approximately

investigate the effect of having multiple CRFs for modeling a

scene.5 Results are shown in Fig. 10. We can see that using
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Fig. 10: Results of ILCRFs
with different fixed number
of latent CRFs, for empty
scenes.

multiple CRFs perform much bet-

ter than a single CRF. However,

they are all beat by ILCRFs where

the number of CRFs is determined

from data.

Q6: Why do we need to model

object- and human-context

jointly? Table I shows that

combining the two types of

context (Human+obj. and ILCRF)

performs significantly better than

individuals (CRF and ILCRF-H). While in Human+obj., the

arrangements are inferred by the two context separately and

then combined, ILCRFs combine the two during sampling

(see (8)). This can make objects that have strong correlations

more likely to be assigned to same human poses and thus

are more likely arranged together. For example, in 77.4% of

samples by ILCRF assign the keyboard and monitor to the

same human pose, while only 65.8% of samples do so in

Human+obj.

Q7: Can we exploit more environment knowledge? In

practice, furniture in a room is often a strong cue for locating

objects. To utilize the information of furniture, we model

each piece of furniture as an existing object node so that

when learning the object-object structure, the furniture-object

relationships are also learned. We compare algorithms that use

object context: Obj., CRF, Human+obj. and ILCRF (Table I).

We found that the performance gain of using furniture

on empty scenes are more significant than that on partially-

filled scenes. This is because in partially-filled scenes, existing

objects may already provide enough object-context. In empty

scenes, using furniture is especially helpful for objects such as

TV, cushion and remote controls (see the category-wise results

in the supplementary material). However, adding furniture

sometimes even hurts the result, such as for food and phone.

We conjecture this may due to some imperfectly learned

object-object relationships, and this is an area of future work.

Robotic Experiment. We apply the ILCRF to our Kodiak

PR2 robot to perform the scene arrangement in practice. As

an example, Fig. 1 shows: Given a room (perceived in point-

clouds), our robot first hallucinates human poses and labels

objects in the scene [17]. After it detects the monitor and the

5We do so by updating the CRF structure in (4) for a limited number of
times while sampling other variables regularly. The samples from the last L
updates, estimate the result of having a mixture of L CRFs.



Fig. 11: From the point-clouds of given scenes (top), our robot
uses ILCRF to infer possible human poses (bottom, shown in red
heatmaps) and possible placements for a cushion, mouse and mug
(bottom, from left, shown in blue heatmaps).

ground (Fig. 1-a), it uses our scene arrangement algorithm

to infer possible human poses and possible locations for the

mouse (Fig. 1-b,c). It finally places the mouse at the most

likely location (Fig. 1-d).

We test our system on a small set of objects (a cushion,

mouse and mug) in a given scene (Fig. 11). We visualize

the sampled human poses and object locations in red and

blue heatmaps. We can see that most sampled humans are

sitting on the couch, bean bag or chair, and the most likely

location for the cushion is on the couch and the desk. To

see PR2 arranging the scene in action (along with code

and data), please visit: http://pr.cs.cornell.edu/

hallucinatinghumans

VI. CONCLUSION

In this paper, we considered a challenging problem of

robotic scene arrangement, which requires an algorithm that

can handle: 1) unknown number of latent nodes (for potential

human poses), 2) unknown number of edge types (for human-

object interactions), and 3) a mixture of different CRFs (for

the whole scene). We therefore presented a new algorithm,

called Infinite Latent Conditional Random Fields (ILCRFs),

together with learning and inference algorithms. Through

extensive experiments and thorough analyses, we not only

showed that our ILCRF algorithm outperforms the state-of-

the-art results, but we also verified that modeling latent human

poses and their relationships to objects are crucial to reason

our environment. Finally, we also implemented our algorithm

on a robot. It correctly inferred potential human poses and

object arrangements in real scenes.
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