
Kinodynamic Planning in the Configuration Space
via Admissible Velocity Propagation

Quang-Cuong Pham, Stéphane Caron, Yoshihiko Nakamura
Department of Mechano-Informatics, University of Tokyo, Japan

Abstract—We propose a method that enables kinodynamic
planning in the configuration space (of dimension n) instead of
the state space (of dimension 2n), thereby potentially cutting
down the complexity of usual kinodynamic planning algorithms
by an exponential factor. At the heart of this method is a
new technique – called Admissible Velocity Propagation (AVP) –
which, given a path in the configuration space and an interval
of reachable velocities at the beginning of that path, computes
exactly and efficiently the interval of all the velocities the system
can reach after traversing the path while respecting the system
kinodynamic constraints. Combining this technique with usual
sampling-based methods gives rise to a family of new motion
planners that can appropriately handle kinodynamic constraints
while avoiding the complexity explosion and, to some extent, the
conceptual difficulties associated with a move to the state space.

I. INTRODUCTION

For robots to move dynamically and safely in the real world,
it is essential to consider kinodynamic constraints, that is,
the constraints that stem from the physical laws the robots
are subject to [4, 10]. Such constraints include for instance
force and torque limits for robotic manipulators [1], dynamic
balance for humanoid robots [21], or nonholonomic constraints
for underactuated robots [11].

There are currently two main approaches to planning
collision-free trajectories for robots under kinodynamic con-
straints. The first approach decouples the problem: first, search
for a collision-free path in the robot configuration space C
(e.g. the joint angles of a manipulator, the pose of a mobile
robot, etc.) and second, find a time-parameterization of that
path that satisfies the kinodynamic constraints [1]. The obvious
drawback here is that the path found in the first step may have
no time-parameterization at all that respects the kinodynamic
constraints. A usual workaround is to include in the first
step some configuration-space constraints which guarantee that
the path is executable quasi-statically (i.e. at arbitrary low
velocities, a regime where the effects of dynamics vanish).
This idea is frequently used for humanoid robots: for instance,
in [8], the authors first search for a path that satisfies static
balance – by requiring that the projection of the center of
gravity lies in the support area – and then time-parameterize
this path using arbitrarily low velocities if necessary.

However, this workaround also suffers from a major lim-
itation: the quasi-static executability condition may be too
restrictive and one thus may overlook too many possible
solutions. For instance, humanoid robots walking with ZMP-
based control are dynamically balanced but rarely satisfy

the aforementioned quasi-static condition on the center of
gravity [21]. Another example is provided by an actuated
pendulum subject to severe torque limits, but which can still
be put into the upright position by swinging back and forth
several times. It is clear that such solutions make an essential
use of the system dynamics and can in no way be discovered
by quasi-static methods, nor by any method that considers only
configuration-space coordinates.

The second approach requires moving to the state space X ,
which is essentially the configuration space augmented with
velocity coordinates [10, 5]. While this approach has been
proved to be probabilistically complete (i.e., if a solution
exists, it can be found with probability 1 after a long
enough execution [10, 5]), it results in a two-fold increase
in dimension. Since the complexity of planning algorithms
usually scales exponentially with the dimension of the search
space [5], state-space kinodynamic planning may be imprac-
tical even for relatively small values of the dimension n of
C [17]. Additional conceptual difficulties include: the design
of suitable metric and extension methods [10, 12] in a larger
and less intuitive space, the choice of the appropriate ranges
of velocities to explore, the numerical errors associated with
forward dynamics computations when sampling the control
inputs, etc.

In the present paper, we propose a method to plan tra-
jectories under kinodynamic constraints while staying in the
configuration space. A fundamental requirement for this is
the ability to efficiently assess whether a given path in C
can be executed, or traversed, while respecting kinodynamic
constraints. Furthermore, if one wishes to adopt an incremental
approach (such as in RRT [7] or PRM [5]), this requirement
alone is not sufficient: the concatenation of two traversable
paths may not be traversable, since there may exist no common
valid velocity at the junction point. Thus, one needs to be able
to propagate velocity intervals1: given an interval of reachable
velocities at the beginning of a path, determine the interval of
all velocities that the system can reach after traversing that
path while respecting the kinodynamic constraints.

We developed a new algorithm, called Admissible Velocity
Propagation (AVP), to precisely solve this velocity propagation
problem. The algorithm is based on the classical Time-Optimal
Path Parameterization (TOPP) algorithm [1, 19, 20, 18] which,

1 In theory, the set of valid velocities may not be an interval if we authorize
multiple-valued Maximum Velocity Curves (cf. [16]). While there are no
fundamental difficulties in handling multiple-valued MVCs, the practical
implementation is complex and is left out in the present paper.

given a robotic manipulator and a path in its configuration
space (the space of the manipulator joint angles), efficiently
computes a time-parameterization of the path which minimizes
the traversal time while respecting actuator torque limits.
Besides robotic manipulators with torque limits, the TOPP
algorithm has been extended to a large spectrum of dynamical
systems and kinodynamic constraints such as manipulators
with gripper and payload constraints, vehicles with friction
constraints, humanoid robots with joint velocity and accel-
eration limits [9] or ZMP constraints [14], or certain types
of nonholonomic systems [2]. All these extensions can be
incorporated effortlessly into the AVP algorithm. Note finally
that the idea of using the TOPP algorithm to halve the
dimension of the search space was first suggested in [17], but
in a non-incremental set-up.

In Section II, we summarize and reformulate the TOPP
algorithm before presenting, in Section III, the AVP algorithm
itself. We then show in Section IV how to combine this AVP
algorithm with existing sampling-based planning methods to
yield a family of new configuration-space planners that can
appropriately handle kinodynamic constraints. To illustrate, we
consider in Section V two motion planning problems where
dynamics play a critical role: a fully actuated double pendulum
with severe torque limits, and a bottle on a tray subject to
static friction. We show that quasi-static planning methods are
inherently unable to solve these problems, while our approach
can address them in a very general and efficient way. Finally,
we briefly discuss in Section VI the advantages and limitations
of the proposed approach, its theoretical implications, and
future developments.

Conventions and notations
• We make a distinction between a path, which is a

geometric object devoid of any timing information, and
a trajectory, which is a path endowed with a time-
parameterization (velocity profile). Often, we may refer
to a path as the underlying path of a given trajectory.

• A quasi-static trajectory is associated with arbitrary low
velocities, which cancel the effects of dynamics.

• For convenience, we denote by D2 the class of functions
that are C1-continuous and piecewise C2-continuous.

II. BACKGROUND ON THE TOPP ALGORITHM

A. Time-parameterization of a path

Consider an n-dof manipulator with dynamics equation

M(q)q̈+ q̇>C(q)q̇+ g(q) = τ, (1)

where q is a n × 1 vector of joint values, M the n × n
manipulator inertia matrix, C the n × n × n Coriolis tensor,
g the n × 1 vector of gravity forces and τ the n × 1 vector
of actuator torques. Assume that this manipulator is subject
to torque limits expressed as: for each joint i ∈ J1, nK and
time u,

τmin
i ≤ τi(u) ≤ τmax

i . (2)

Consider now a D2 path P – represented as the underlying
path of a trajectory q(u)u∈[0,T] – in the manipulator configu-

ration space. The Time-Optimal Path Parameterization (TOPP)
algorithm, which we summarize and reformulate below, finds
the fastest time-parameterization of that path starting from
a given velocity vbeg and ending at a given velocity vend
while staying under the torque limits. For details, proofs and
extensions to different kinds of dynamical systems, the reader
is referred to [1, 19, 20, 16, 18, 9, 13, 14].

More precisely, a time-parameterization of P is a D2 in-
creasing function s : [0, T ′]→ [0, T]. A time-parameterization
can be seen alternatively as a velocity profile, i.e., the
curve ṡ(s)s∈[0,T] in the (s, ṡ) plane. We say that a time-
parameterization or, equivalently, a velocity profile, is valid
if ṡ is always strictly positive and if the re-timed trajectory
q(s(t))t∈[0,T ′] satisfies the torque constraints (2) of the system.

Differentiating q(s(t)) with respect to t yields

q̇ = qsṡ, q̈ = qss̈+ qssṡ
2, (3)

where qs =
dq
ds and qss =

d2q
ds2 . Substituting (3) into (1) yields

M(q)(qss̈+ qssṡ
2) + q>

s C(q)qsṡ
2 + g(q) = τ(s). (4)

The above equation can be rewritten in the following form

a(s)s̈+ b(s)ṡ2 + c(s) = τ(s), where

a(s) = M(q(s))qs(s),

b(s) = M(q(s))qss(s) + qs(s)
>C(q(s))qs(s),

c(s) = g(q(s)).

The torque limits of (2) can now be expressed by the following
2n inequalities: for each i ∈ [1, n]

τmin
i ≤ ai(s)s̈+ bi(s)ṡ

2 + ci(s) ≤ τmax
i .

Next, if ai(s) 6= 0 (the case ai = 0 corresponds to a “zero-
inertia” point, which must be dealt with specifically [18, 9]),
one can write

αi(s, ṡ) ≤ s̈ ≤ βi(s, ṡ), with

αi(s, ṡ) = (τα
i − bi(s)ṡ

2 − ci(s))/ai(s),

βi(s, ṡ) = (τβ
i − bi(s)ṡ

2 − ci(s))/ai(s),

where ταi and τβi are defined by{
ταi = τmin

i ; τβi = τmax
i if ai(s) > 0,

ταi = τmax
i ; τβi = τmin

i if ai(s) < 0.

Thus the bounds on s̈ are defined by

α(s, ṡ) ≤ s̈ ≤ β(s, ṡ), (5)

where α(s, ṡ) = maxi αi(s, ṡ) and β(s, ṡ) = mini βi(s, ṡ).

B. Maximum Velocity Curve (MVC) and Concatenated Limit-
ing Curve (CLC)

Remark that (ṡ, α(s, ṡ)) and (ṡ, β(s, ṡ)) can be seen as two
vector fields in the (s, ṡ) plane. One can integrate velocity
profiles following the field (ṡ, α(s, ṡ)) (from now on, α, in
short) to obtain minimum acceleration profiles (or α-profiles),

or following the field β to obtain maximum acceleration
profiles (or β-profiles), see Figure 1.

0 send

s
.

Max Vel Curve
(MVC)

Limiting Curves (LC)
Concat. Limit. Curve (CLC)

switch point
α→β

send

sbeg

.
.

α
α

α
β

β
β

switch point
β→α

Fig. 1. Illustration for the TOPP algorithm.

Next, observe that if α(s, ṡ) > β(s, ṡ), then from (5) there is
no possible value for s̈. Thus, to be valid, any velocity profile
must stay below the MVC defined by (see also footnote 1)

MVC(s) =

{
min{ṡ ≥ 0 : α(s, ṡ) = β(s, ṡ)} if α(s, 0) < β(s, 0),

0 if α(s, 0) ≥ β(s, 0).

More precisely, it was shown (see e.g. [18]) that the time-
minimal velocity profile is obtained by a bang-bang-type
control, i.e., whereby the optimal profile follows alternatively
the β and α fields while always staying below the MVC (see
Figure 1). Next, it was shown that possible switch points from
α to β are to be found on the MVC. More precisely, it was
proposed to:

• find all the possible α→ β switch points on the MVC;
• from each of these switch points, integrate backward fol-

lowing α and forward following β to obtain the Limiting
Curves (LC);

• construct the Concatenated Limiting Curve (CLC) by
considering, for each s, the value of the lowest LC at s.

The time-optimal velocity profile can be found by integrat-
ing forward from (0, ṡbeg) following β and backward from
(send, ṡend) following α, and by considering the intersection of
these profiles with each other or with the CLC (see Figure 1).
Note that ṡbeg and ṡend are computed from the absolute
velocities vbeg and vend by

ṡbeg = vbeg/‖qs(0)‖, ṡend = vbeg/‖qs(send)‖. (6)

Before going further, let us state two lemmata that we will
use later on.

Lemma 1 Assume that a forward β-profile hits the MVC
at s = s1 and a backward α-profile hits the MVC at s = s2,
with s1 < s2, then there exists at least one α → β switch
point on the MVC at some position s3 ∈ [s1, s2].

Lemma 2 Either one of the LCs reaches ṡ = 0, or the CLC
is continuous.

Proofs of these lemmata can be found in Appendix A in the
Supplementary Material [15] of the present paper.

III. ADMISSIBLE VELOCITY PROPAGATION (AVP)
The objective in this section is to provide an algorithm

AVP(P, ṡ−beg, ṡ
+
beg), which takes as inputs:

• a path P in the configuration space, and
• an interval [ṡ−beg, ṡ

+
beg] of initial velocities;

and returns the interval (cf. Theorem 1) [ṡ−end, ṡ
+
end] of veloci-

ties that the system can reach at the end of P after traversing

P while respecting the system constraints 2. This algorithm is
the building block that will enable kinodynamic planning in
the configuration space. It comprises the following three steps:

A. Compute the limiting curves;
B. Determine the maximum final velocity ṡ+end by integrating

forward from s = 0;
C. Determine the minimum final velocity ṡ−end by bisection

search and by integrating backward from s = send.

These three steps are detailed in the next three sections.

A. Computing the limiting curves

Under the conventions and notations introduced previously,
we say that a valid final velocity is a velocity ṡend such that
there exists a valid profile that starts at (0, ṡ0) for some ṡ0 ∈
[ṡ−beg, ṡ

+
beg] and ends at (send, ṡend).

As in Section II-B, we compute the Concatenated Limiting
Curve (CLC) by integrating, from each switch point, forward
following β and backward following α, and by concatenat-
ing the resulting profiles. Since the CLC is continuous (cf.
Lemma 2 in Section II-B) and bounded by s = 0 from the
left, s = send from the right, ṡ = 0 from the bottom and
the MVC from the top (see Figure 2A), there are only five
exclusive and exhaustive cases listed below. In the four of
them where a solution exists, we define the maximum initial
velocity ṡ∗beg from the velocity curves (either MVC or CLC).

A1 One of the limiting curves hits the line ṡ = 0. In this
case, the path cannot be traversed by the system with-
out violating the kinodynamic constraints: AVP returns
Failure. Indeed, assume for instance that a backward
(α) profile hits ṡ = 0. Then any profile that goes from
s = 0 to s = send must cross that profile somewhere and
from above, which violates the α bound (see Figure 2A).
Similarly, if it is a forward (β) profile that hits ṡ = 0, then
this profile must be crossed somewhere and from below,
which violates the β bound (see also Figure 2A). Thus,
no valid profile can go from s = 0 to s = send;

A2 The concatenated limiting curve hits the MVC while
integrating backward and while integrating forward. In
this case, let ṡ∗beg = MVC(0) and go to Section III-B.
The situation where there is no switch point is assimilated
to this case;

A3 The concatenated limiting curve hits s = 0 while integrat-
ing backward, and the MVC while integrating forward. In
this case, let ṡ∗beg = CLC(0) and go to Section III-B;

A4 The concatenated limiting curve hits the MVC while
integrating backward, and s = send while integrating
forward. In this case, let ṡ∗beg = MVC(0) and go to
Section III-B;

A5 The concatenated limiting curve hits s = 0 while integrat-
ing backward, and s = send while integrating forward. In
this case, let ṡ∗beg = CLC(0) and go to Section III-B.

2Note that [6] also introduced a velocity interval propagation algorithm
along a path but for kinematic constraints and dynamic obstacles.

α

β

0 send

s
.

LC

A B

sbeg
+

sbeg

_

.

.
B1

B2

B3

C

C4

C1C2

C3 stest

.
sbeg

+

sbeg

_

.

.

B'

sbeg
+

sbeg

_

.

.

MVC(s)end

MVC

Φ
Ψ

Φ

Φ

Ψ

(case B2)

Fig. 2. Illustrations for the AVP algorithm. See the legends of Figure 1.

B. Finding the maximum final velocity

Note that, in any of the cases A2-4, ṡ∗beg was chosen so that
no valid profile can start above it. Thus, if ṡ−beg > ṡ∗beg, the
path is not traversable and AVP returns Failure. Otherwise,
the interval of valid initial velocities is [ṡ−beg, ṡ

+∗
beg] where

ṡ+∗
beg = min(ṡ+beg, ṡ

∗
beg).

We argue that the maximum valid final velocity can be
obtained by integrating forward from ṡ+∗

beg following β. Let’s
call Φ the velocity profile obtained by doing so. Since Φ is
continuous and bounded by s = send from the right, ṡ = 0
from the bottom, and either the MVC or the CLC from the
top, there are four exclusive and exhaustive cases:

B1 Φ hits ṡ = 0 (see Figure 2-B, profile B1). Here, as in
the case A1 of Section III-A, the path is not traversable
and AVP returns Failure. Indeed, any profile that starts
below ṡ+∗

beg and tries to reach s = send must cross Φ
somewhere and from below, thus violating the β bound;

B2 Φ hits s = send (see Figure 2-B, profile B2). Then
Φ(send) corresponds to the ṡ+end we are looking for.
Indeed, Φ(send) is reachable – precisely by Φ –, and to
reach any value above Φ(send), the corresponding profile
would have to cross Φ somewhere and from below;

B3 Φ hits the CLC. There are two sub-cases:
B3a If we proceed from cases A4 and A5 (in which

the CLC reaches s = send, see Figure 2B, profile
B3), then CLC(send) corresponds to the ṡ+end we
are looking for. Indeed, CLC(send) is reachable –
precisely by the concatenation of Φ and the CLC –,
and no value above CLC(send) can be valid by the
definition of the CLC;

B3b If we proceed from cases A2 and A3, then the
CLC hits the MVC while integrating forward (see
Figure 2-B’), say at s = s1; we then proceed as in
case B4 below;

B4 Φ hits the MVC, say at s = s1. It is clear that MVC(send)
is an upper bound of the valid final velocities, but we have
to ascertain whether this value is reachable. For this, we
use the predicate IS VALID defined in Box 1.

• If IS VALID(MVC(send)), then MVC(send) is the
ṡ+end we are looking for;

• Else, the path is not traversable: AVP returns

Failure. Indeed, as we shall see, if ¬ IS VALID(ṡ),
then furthermore no value below ṡ is reachable.

C. Finding the minimum final velocity

Assume that we proceed from cases B2, B3a, B3b or B4
of Section III-B. Consider a final velocity ṡtest where ṡtest <
Φ(send) if we proceed from case B2, ṡtest < CLC(send) from
case B3a, ṡtest ≤ MVC(send) from cases B3b and B4. Let us
integrate backward from (send, ṡtest) following α and call the
resulting profile Ψ. Remark first that Ψ cannot hit the MVC
before hitting either Φ or the CLC. Indeed, if we proceed from
cases B2 or B3a, then it is clear that Ψ must first hit Φ (case
B2) or the CLC (case B3a) before hitting the MVC. If we
proceed from cases B3b or B4, assume by contradiction that
Ψ hits the MVC first at a position s = s2. Then by Lemma 1
(cf. Section II-B), there must exist a switch point between s2
and the end of the CLC (in case B3b) or the end of Φ (in
case B4). In both cases, there is a contradiction with the fact
that the CLC must be continuous (cf. Section II-B). We can
now detail in Box 1 the predicate IS VALID which assesses
whether a final velocity ṡtest is valid.

Box 1 IS VALID(ṡtest)

Input: candidate final velocity ṡtest
Output: True iff there exists a valid velocity profile with
final velocity ṡtest
Consider the profile Ψ constructed above. Since it must hit Φ
or the CLC before hitting the MVC, the following five cases
are exclusive and exhaustive:
C1 Ψ hits ṡ = 0 (see Figure 2-C, profile C1). Here, as in A1

of Section III-A or B1 of Section III-B, no velocity profile
can reach stest: return False;

C2 Ψ hits s = 0 for some ṡ0 < ṡ−beg (see Figure 2-C, profile
C2): here, any profile that ends at ṡtest would have to hit
Ψ from above, which is contradictory: return False;

C3 Ψ hits s = 0 at a point ṡ0 ∈ [ṡ−beg, ṡ
+∗
beg] (see Figure 2-C,

profile C3): then, ṡtest can be reached following the valid
velocity profile Ψ: return True. (Note that, if ṡ0 > ṡ+∗

beg

then Ψ must have crossed Φ somewhere before arriving
at s = 0, which is covered by case C4 below.)

C4 Ψ hits Φ (see Figure 2-C, profile C4): then, ṡtest can be
reached, precisely by the concatenation of a part of Φ and
Ψ: return True.

C5 Ψ hits the CLC: then, ṡtest can be reached, precisely by
the concatenation of Φ, a part of the CLC and Ψ: return
True.

At this point, we have that, either the path is not traversable,
or we have determined ṡ+end in Section III-B. Remark from
conditions C3, C4 and C5 that, if some ṡ0 is a valid final
velocity, then any ṡ ∈ [ṡ0, ṡ

+
end] is also valid. Similarly, from

conditions C1 and C2, if some ṡ0 is not a valid final velocity,
then no ṡ ≤ s0 can be valid. We have thus established the
following result:

Theorem 1: Under the assumption of footnote 1, the set of
valid final velocities is an interval.

This interval property enables us to efficiently search for the
minimum final velocity as follows. First, we test whether 0 is
a valid final velocity: if IS VALID(0), then the sought-after
ṡ−end is 0. Else, we run a standard bisection search with initial
bounds (0, ṡ+end] where 0 is not valid and ṡ+end is valid. Thus,
after executing log2(1/ε) times the routine IS VALID, we can
determine ṡ−end with an error smaller than ε.

In terms of complexity, if n is the dimension of the
configuration space and N the number of discretization points
in the integration schemes, then the AVP algorithm has a
complexity of O(log(1/ε)Nn2).

IV. KINODYNAMIC PLANNING IN THE
CONFIGURATION SPACE USING AVP

A. General algorithm

The AVP algorithm presented in Section III is general and
can be combined with iterative planning methods such as
RRT [7], PRM [5] or dynamic programming [17]. To illustrate
this, we choose here to combine it with a variant of RRT
called “K nearest neighbors RRT” (KNN-RRT). The resulting
algorithm, which we call AVP-RRT, is detailed in Box 2 and
illustrated in Figure 3.

Box 2 AVP RRT(qinit, vinit,qgoal, vgoal)

Uinit ← NEW VERTEX()
Uinit.config← qinit; Uinit.inpath← Null
Uinit.vmin← vinit; Uinit.vmax← vinit
T .INITIALIZE(Uinit)
for rep = 1 to Nmaxrep do
qrand ← RANDOM CONFIG()
Unew ← EXTEND(T ,qrand)
if EXTEND succeeds then

if CONNECT(Unew,qgoal, vgoal) succeeds then
return COMPUTE TRAJ(T ,qgoal)

end if
end if

end for
return Failure

qrand

qinit

(b)

(a) P

U .inpathnear

U .confignear

Fig. 3. Illustration for the AVP-RRT algorithm. (a) indicates a straight path
and (b) indicates a path that preserves the continuity of the tangent vector, cf.
Section IV-B2.

The algorithm iteratively constructs a tree T in the con-
figuration space. Here, by contrast with the usual RRT, a
vertex U consists of a quadruple (U .config, U .inpath, U .vmin,
U .vmax) where U .config is a configuration in C , U .inpath is
a path P ⊂ C that connects the configuration of U ’s parent to
U .config, and [U .vmin, U .vmax] is the interval of reachable
velocities at U .config (the end of P := U .inpath).

At each step, a random configuration qrand is generated.
The EXTEND routine (see Box 3) then tries to add qrand to
the tree by connecting it to its closest – in a configuration-
space metric d – vertex in T . If this attempt fails, EXTEND
tries with the second closest vertex, and so on up to the K-th
closest vertex.

Box 3 EXTEND(T ,qrand)
1: for i = 1 to K do
2: Unear ← ITH NEAREST NEIGHBOR(T ,qrand, i)
3: P ← INTERPOLATE(Unear,qrand)
4: if P is collision-free then
5: (v−, v+)← AVP(P,Unear.vmin, Unear.vmax)
6: if AVP succeeds then
7: Unew ← NEW VERTEX()
8: Unew.config← qrand; Unew.inpath← P
9: Unew.vmin← v−; Unew.vmax← v+

10: T .ADD VERTEX(Unew)
11: return Unew

12: end if
13: end if
14: end for
15: return Failure

Box 4 gives more details about the routines mentioned in
Boxes 2 and 3 that are not self-evident.

Box 4 Explanation of the other routines in Boxes 2 and 3
• ITH NEAREST NEIGHBOR(T ,q, i) returns the ith

nearest-neighbor of configuration q in the tree T ; for
more details, see Section IV-B1;

• INTERPOLATE(U,q) returns a path P between U .config
and q; for more details, see Section IV-B2;

• AVP(P, v−0 , v
+
0) runs the AVP algorithm from Section III

to find the valid velocity interval [v−, v+] at the end of
path P starting from the initial velocity interval [v−0 , v

+
0];

• CONNECT(U,qgoal, vgoal) attempts at connecting di-
rectly U to the goal configuration qgoal, using the same
algorithm as in (lines 3 to 13 of) EXTEND, but with
the further requirement that vgoal is included in the final
velocity interval;

• COMPUTE TRAJ(T ,qgoal) constructs the entire path
from qinit to qgoal and computes the optimal time-
parameterization of that path by applying the TOPP
algorithm one last time.

B. Implementation choices

As in the case of the original kinodynamic RRT [10], some
implementation choices are crucial to the performance of the
algorithm.

1) Distance metric: Perhaps the most critical choice is that
of the metric d which determines the nearest neighbors in
ITH NEAREST NEIGHBOR. For the original RRT, it was
remarked that finding the best metric is actually equivalent to
solving the entire planning problem. Here it is also clear that

the metric has a strong impact on the overall performance of
AVP-RRT. In addition to configuration space parameters, the
design of a suitable metric in our setting may also include
the velocity intervals and the orientation of the incoming
path associated with each vertex in the tree. However, in
an effort to introduce as few heuristics as possible, we only
considered in our experiments the simple Euclidean distance
in the configuration space (see Section V).

2) Interpolating path: In most configuration-space
sampling-based algorithms, the path between two vertices is
a straight line. Here, if 0 is not a valid velocity at a given
vertex, any outgoing path from that vertex must ensure that
the tangent vector is continuous at the junction point with the
incoming path. Thus, we introduce the following heuristics
for INTERPOLATE(U,q):

(a) If U.vmin = 0, return the path P which is the straight line
in C connecting U.config and q. Then, in the subsequent
call to AVP, start with vbeg = 0 (i.e., call AVP(P, 0, 0)).

(b) If U.vmin > 0 or if the AVP call in (a) has failed,
return a path P made up of third-degree polynomials that
ensure that the tangent vector is continuous at the junction
between U.inpath and P . The subsequent call to AVP is
done normally (i.e., AVP(P,Unear.vmin, Unear.vmax)).

The two types of paths, (a) and (b), are illustrated in Figure 3.
In general, good heuristics for choosing the interpolating

path may significantly improve the performance of the algo-
rithm. However, in an effort to introduce as few heuristics
as possible, we only considered the two above choices in our
experiments. Note also that the choice of the interpolating path
is even more crucial and difficult in the case of nonholonomic
systems (but it is still possible, cf. [2]).

V. APPLICATIONS TO PROBLEMS WHERE
DYNAMICS PLAY A CRITICAL ROLE

A. A double pendulum with severe torque limits

1) System equations: We consider a fully actuated double
pendulum (see Figure 4-A), subject to the torque limits

|τ1| ≤ τmax
1 , |τ2| ≤ τmax

2 .

Such a pendulum can be seen as a 2-link manipulator, so one
can apply the development of Section II-A as is.

(x,z)
θ

Bottle

Tray

x

z

fF

fN

mg

θ2

θ1

BA
τ1

2τ

Fig. 4. A: A fully actuated double pendulum. B: A bottle on a tray. The
vectors fN and fF represent respectively the normal reaction force and the
friction force. For the bottle not to move with respect to the tray, one must
ensure that ‖fF ‖ ≤ µ‖fN‖, where µ is the coefficient of static friction.

2) Obstruction to quasi-static planning: The task is to bring
the pendulum from its initial state (θ1, θ2, θ̇1, θ̇2) = (0, 0, 0, 0)
towards the upright state (θ1, θ2, θ̇1, θ̇2) = (π, 0, 0, 0), while
respecting torque limits. For simplicity, we do not consider
self-collision issues.

Any trajectory that achieves the task must pass through a
configuration where θ1 = π/2. Note that the configuration
with θ1 = π/2 that requires the smallest torque at the first
joint to stay still is (θ1, θ2) = (π/2, π). Let then τqs1 be this
smallest torque. It is clear that, if τmax

1 < τqs1 , then no quasi-
static trajectory can achieve the task.

In our simulations, we used the following lengths and
masses for the links: l = 0.2m and m = 8 kg, yielding
τqs1 = 15.68N·m. For information, the smallest torque at the
second joint to keep the configuration (θ1, θ2) = (0, π/2) sta-
tionary was 7.84N·m. We carried experiments in the following
scenarii: (τmax

1 , τmax
2) ∈ {(11, 7), (13, 5), (11, 5)} (N·m).

3) Implementation and results: We implemented the algo-
rithm exactly as described in Section IV in Python. For the
number of nearest neighbors to consider, we chose K = 10.
The maximum number of repetitions was set to Nmaxrep =
2000. Random configurations were sampled uniformly in
[−π, π]2. Inverse Dynamics computations (required by the
TOPP algorithm) were performed using OpenRAVE [3]. We
ran 40 simulations for each value of (τmax

1 , τmax
2) on a 2 GHz

Intel Core Duo computer with 2 GB RAM. The results are
given in Table I and Figure 5. Note that only successful trials
were taken into account in the subsequent statistics.

TABLE I
RESULTS FOR THE PENDULUM SIMULATIONS

τmax Success Configs Vertices Search time
(N·m) rate tested added (min)
(11,7) 100% 64±44 31±23 4.2±2.7
(13,5) 100% 92±106 29±30 5.9±6.3
(11,5) 92.5% 212±327 56±81 12.1±15.0

We compared our implementation of AVP-RRT with the
usual state-space RRT [10]. To ensure that the comparison
is fair, we also considered the variants of state-space RRT
with K nearest neighbors, for K ∈ {1, 10, 40, 100}. A
complete description of the experimental methods is given
in Appendix B (Supplementary Material [15]). Figure 6 and
Table II summarize the results.

TABLE II
COMPARISON OF AVP-RRT AND KNN-RRT

τmax = (11, 7) τmax = (11, 5)
Planner Success Search time Success Search time

rate (min) rate (min)
AVP-RRT 100% 3.3±2.6 100% 9.8±12.1

RRT-1 40% 70.0±34.1 47.5% 63.8±36.6
RRT-10 82.5% 53.1±59.5 85% 56.3±60.1
RRT-40 92.5% 44.6±42.6 87.5% 54.6±52.2
RRT-100 82.5% 88.4±54.0 92.5% 81.2±46.7

In the two problem instances, AVP-RRT was respectively
13.4 and 5.6 times faster than the best KNN-RRT in terms of

A B

�3 �2 �1 0 1 2 3
Theta 1

�3

�2

�1

0

1

2

3

Th
et

a
2

C D

0 1 2 3 4 5 6 7
s

0

5

10

15

20

ṡ

0.0 0.5 1.0 1.5
Time (s)

�15

�10

�5

0

5

10

15

To
rq

ue
 (N

.m
)

Fig. 5. A typical solution for the case (τmax
1 , τmax

2) = (11, 5) N·m, with
trajectory duration 1.88 s (see also the attached video). A: The tree in the
(θ1, θ2) space. The final path is highlighted in magenta. B: snapshots of
the trajectory, taken every 0.1 s. Snapshots taken near the beginning of the
trajectory are lighter. C: Velocity profiles in the (s, ṡ) space. The MVC is
in in cyan. The various velocity profiles (CLC, Φ, Ψ, cf. Section III) are
in black. The final, optimal, velocity profile is in dashed blue. The vertical
dashed red lines correspond to vertices with discontinuous tangent vector,
where the velocity must be 0 (cf. Section IV-B2). D: Torques profiles. The
torques for joint 1 and 2 are respectively in red and in blue. The torque limits
are in dotted line. Note that, in agreement with time-optimal control theory, at
each time instant, at least one torque limit was saturated (the small overshoots
were caused by discretization errors).

2000 4000 6000 8000 10000
Computat ion t ime (s)

0

20

40

60

80

100

P
e
rc
e
n
ta
g
e
o
f
s
u
c
c
e
s
s
(%

)

AVP-RRT

RRT with 1 NN

RRT with 10 NN

RRT with 40 NN

RRT with 100 NN

(11,7)

2000 4000 6000 8000 10000
Computat ion t ime (s)

0.00

0.05

0.10

0.15

0.20

D
is
ta
n
c
e
to
ta
rg
e
t
(d
im
e
n
s
io
n
le
s
s
) AVP-RRT

RRT with 40 NN

2000 4000 6000 8000 10000
Computat ion t ime (s)

0

20

40

60

80

100

P
e
rc
e
n
ta
g
e
o
f
s
u
c
c
e
s
s
(%

)

AVP-RRT

RRT with 1 NN

RRT with 10 NN

RRT with 40 NN

RRT with 100 NN

(11,5)

2000 4000 6000 8000 10000
Computat ion t ime (s)

0.00

0.05

0.10

0.15

0.20

D
is
ta
n
c
e
to
ta
rg
e
t
(d
im
e
n
s
io
n
le
s
s
) AVP-RRT

RRT with 40 NN

Fig. 6. Comparison of AVP-RRT and KNN-RRT for τmax = (11, 7) N·m
(top) and τmax = (11, 5) N·m (bottom). Left plots: Percentage of trials that
have reached the goal area at given time instants. Right plots: Individual plots
for each trial. Each curve shows the distance to the goal as a function of time
for a given instance (red: AVP-RRT, blue: RRT-40). Dots indicate the time
instants when a trial successfully terminated. Stars show the mean values of
termination times.

search time. We noted however that the search time of AVP-
RRT increased significantly from instance (τmax

1 , τmax
2) =

(11, 5) to instance (τmax
1 , τmax

2) = (11, 7), while that of
RRT only marginally increased. This may be caused by the
“superposition” phenomenon: as torque constraints become
tighter, more “pumping” swings are necessary to reach the
upright configuration. However, since we plan in the configura-
tion space, configurations with different speeds (corresponding
to different pumping cycles) can become indistinguishable.

While this problem could easily be addressed by including
the reachable velocity interval associated with each vertex
in the metric computation, we chose not to do so in the
present paper to preserve generality. Nevertheless, AVP-RRT
still significantly over-performed KNN-RRT.

B. Moving a bottle on a tray with static friction
1) System equations and reduction to the TOPP form: A

bottle is placed upon a tray, which is in turn firmly held by a waiter.
The waiter can move the tray in a vertical plane (x, z) and tilt it, in
the same vertical plane, by an angle θ (see Figure 4B). However, he
is not allowed to touch the bottle. The task is to move the system
{bottle + tray} from an initial configuration (x0, z0, θ0) to a goal
configuration while avoiding obstacles and in such a way that the
bottle never moves with respect to the tray. To ensure the latter, the
following two constraints must be satisfied (see Figure 4B):

• the normal reaction force fN should be non-negative;
• the friction force should be bounded by ‖fF ‖ ≤ µ‖fN‖, where

µ is the static friction coefficient (cf. Coulomb’s law for static
friction).

Appendix C in the Supplementary Material [15] shows how to reduce
the system equations to the TOPP form.

2) Obstruction to quasi-static planning: We designed an
environment that precludes quasi-static planning as follows. The
initial and goal configurations are respectively (x, z, θ) = (0, 0, 0)
and (2, 0, 0), both with zero velocity. At x = 0.5 stands a high wall
with a vertical opening (see Figure 7B). The height of the opening
is smaller than that of the compound, so that, in order to go through
the opening, the compound must be tilted by at least an angle θqs.
Thus, if the static friction coefficient µ is such that µ < tan(θqs),
then no quasi-static trajectory can achieve the task.

In our simulations, the height of the opening was chosen such that
θqs = 0.5, i.e. tan(θqs) = 0.55. We tested two different values of
µ < 0.55: µ = 0.5 and µ = 0.4.

3) Implementation and results: Here we used the same im-
plementation as for the double-pendulum of Section V-A3), the only
changes consisting in the computation of the kinodynamic constraints
(static friction, versus torque limits for the pendulum) in the AVP
routine. We ran 40 simulations for each value of µ. Results are given
in Table III and Figure 7. Note that only successful trials were taken
into account in the subsequent statistics.

TABLE III
RESULTS FOR THE BOTTLE + TRAY SIMULATIONS

µ Success Configs Vertices Search time
rate tested added (min)

0.5 97.5% 309±416 82±108 7.2±10.0
0.4 85% 288±295 76±71 7.4±7.7

VI. DISCUSSION

We have presented a new approach, based on a combination
of usual sampling-based planners with a new Admissible
Velocity Propagation algorithm, which together enable kinody-
namic planning in the configuration space. As shown theoreti-
cally and through simulations, this approach can appropriately
handle kinodynamic constraints while avoiding the complexity
explosion and, to some extent, the conceptual difficulties
associated with a move to the state space.

This approach is general and can be applied to a wide
spectrum of dynamical systems. To illustrate this point, we
addressed two challenging problems involving completely

A B

�1.0 �0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
X-axis (m)

�0.5

0.0

0.5

1.0

1.5

2.0
Z-

ax
is

 (m
)

C D

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
s

0

1

2

3

4

5

6

7

8

ṡ

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

�20

�10

0

10

20

30

40

Co
nt

ac
t f

or
ce

s
(N

)

Fig. 7. A typical solution for the case µ = 0.4, with trajectory duration
2.70 s (see also the attached video). A: The tree in the (x, z) space. The final
path is highlighted in magenta. B: snapshots of the trajectory, taken every
0.1 s. C: Velocity profiles in the (s, ṡ) space, same legends as in Figure 5C.
D: Contact forces. The norm of the reaction force (N = ‖fN‖) is in red
and that of the friction force (F = ‖fF ‖) is in green. Note that N is always
positive and F is always bounded between −µN and µN (dotted magenta
lines). Furthermore, in agreement with time-optimal control theory, at each
time instant, at least one bound is saturated.

different types of kinodynamic constraints (torque limits and
static friction, respectively). We successfully applied the same
search algorithm to both cases, relying on a minimum number
of problem-specific heuristics. Using such heuristics or other
heuristics found in the literature (e.g. bidirectional search [10],
biased sampling, retraction-based sampling, LQR-based met-
ric [12], etc.) would further improve the algorithm perfor-
mance.

A considerable amount of work remains to be carried out
to achieve a better understanding of the complexity of our
approach. As the potential gain from planning in the config-
uration space versus planning in the state space is expected
to increase with the dimension of the system under study, we
believe that the improvements shown in Section V-A3 will
scale up and make possible the resolutions of dynamical sys-
tems of higher dimensions (e.g. triple, quadruple pendulums,
etc., or humanoid robots – which are inaccessible to existing
kinodynamic planners). Another advantage of planning in
configuration space, which we have to understand better and
experimentally evaluate, lies in the space/time decoupling
effect [2]: since all possible trajectories corresponding to
a given collision-free path are “exploited” by a single run
of AVP, our approach may be particularly relevant when
collision-checking is expensive.

Finally, regarding the “completeness” properties, the “su-
perposition” phenomenon mentioned in Section V-A3 is an
indication that AVP-RRT in its current form might not be
probabilistically complete. Taking into account the velocity
interval and/or the orientation of the incoming path for the
metric design (cf. Section IV-B1) should overcome this issue.
How to do so without compromising the performance of our

approach on problem instances arising in practice is the focus
of our current investigations.

Acknowledgments: This work was supported by a JSPS post-
doctoral fellowship. We are grateful to Prof. Z. Shiller for inspiring
discussions about the TOPP algorithm and kinodynamic planning.
We thank the Reviewers and the Area Chair for their extensive and
insightful comments.

REFERENCES
[1] J.E. Bobrow, S. Dubowsky, and J.S. Gibson. Time-optimal control of

robotic manipulators along specified paths. The International Journal
of Robotics Research, 4(3):3–17, 1985.

[2] F. Bullo and K. Lynch. Kinematic controllability for decoupled trajectory
planning in underactuated mechanical systems. IEEE Transactions on
Robotics and Automation, 17(4):402–412, 2001.

[3] R. Diankov. Automated Construction of Robotic Manipulation Pro-
grams. PhD thesis, Carnegie Mellon University, Robotics Institute,
August 2010. URL http://www.programmingvision.com/rosen diankov
thesis.pdf.

[4] B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion
planning. Journal of the ACM (JACM), 40(5):1048–1066, 1993.

[5] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock. Randomized kino-
dynamic motion planning with moving obstacles. The International
Journal of Robotics Research, 21(3):233–255, 2002.

[6] J. Johnson and K. Hauser. Optimal acceleration-bounded trajectory
planning in dynamic environments along a specified path. In IEEE
International Conference on Robotics and Automation, pages 2035–
2041, 2012.

[7] J.J. Kuffner and S.M. LaValle. RRT-connect: An efficient approach
to single-query path planning. In IEEE International Conference on
Robotics and Automation, 2000.

[8] J.J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue.
Dynamically-stable motion planning for humanoid robots. Autonomous
Robots, 12(1):105–118, 2002.

[9] T. Kunz and M. Stilman. Time-optimal trajectory generation for path
following with bounded acceleration and velocity. In Robotics: Science
and Systems, volume 8, pages 09–13, 2012.

[10] S.M. LaValle and J.J. Kuffner. Randomized kinodynamic planning. The
International Journal of Robotics Research, 20(5):378–400, 2001.

[11] Y. Nakamura and R. Mukherjee. Nonholonomic path planning of space
robots via a bidirectional approach. IEEE Transactions on Robotics and
Automation, 7(4):500–514, 1991.

[12] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez.
LQR-RRT*: Optimal sampling-based motion planning with automati-
cally derived extension heuristics. In IEEE International Conference on
Robotics and Automation, 2012.

[13] Q.-C. Pham. Planning manipulator trajectories under dynamics con-
straints using minimum-time shortcuts. In Second IFToMM ASIAN
Conference on Mechanism and Machine Science, 2012.

[14] Q.-C. Pham and Y. Nakamura. Time-optimal path parameterization
for critically dynamic motions of humanoid robots. In IEEE-RAS
International Conference on Humanoid Robots, 2012.

[15] Q.-C. Pham, S. Caron, and Y. Nakamura. Supplementary material, 2013.
URL http://www.normalesup.org/%7Epham/docs/kinodynamic-sup.pdf.

[16] Z. Shiller and S. Dubowsky. Robot path planning with obstacles,
actuator, gripper, and payload constraints. The International Journal
of Robotics Research, 8(6):3–18, 1989.

[17] Z. Shiller and S. Dubowsky. On computing the global time-optimal
motions of robotic manipulators in the presence of obstacles. IEEE
Transactions on Robotics and Automation, 7(6):785–797, 1991.

[18] Z. Shiller and H.H. Lu. Computation of path constrained time optimal
motions with dynamic singularities. Journal of dynamic systems,
measurement, and control, 114:34, 1992.

[19] K. Shin and N. McKay. Minimum-time control of robotic manipulators
with geometric path constraints. IEEE Transactions on Automatic
Control, 30(6):531–541, 1985.

[20] J.J.E. Slotine and H.S. Yang. Improving the efficiency of time-
optimal path-following algorithms. IEEE Transactions on Robotics and
Automation, 5(1):118–124, 1989.

[21] M. Vukobratovic, B. Borovac, and D. Surdilovic. Zero-moment point–
proper interpretation and new applications. In IEEE/RAS International
Conference on Humanoid Robots, 2001.

http://www.programmingvision.com/rosen_diankov_thesis.pdf
http://www.programmingvision.com/rosen_diankov_thesis.pdf
http://www.normalesup.org/%7Epham/docs/kinodynamic-sup.pdf

	Introduction
	Background on the TOPP algorithm
	Time-parameterization of a path
	Maximum Velocity Curve (MVC) and Concatenated Limiting Curve (CLC)

	Admissible Velocity Propagation (AVP)
	Computing the limiting curves
	Finding the maximum final velocity
	Finding the minimum final velocity

	Kinodynamic planning in theconfiguration space using AVP
	General algorithm
	Implementation choices
	Distance metric
	Interpolating path

	Applications to problems wheredynamics play a critical role
	A double pendulum with severe torque limits
	System equations
	Obstruction to quasi-static planning
	Implementation and results

	Moving a bottle on a tray with static friction
	System equations and reduction to the TOPP form
	Obstruction to quasi-static planning
	Implementation and results

	Discussion

