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Abstract—The design of efficient locomotion controllers for ar-
bitrary structures of reconfigurable modular robots is challenging
because the morphology of the structure can change dynamically
during the completion of a task. In this paper, we propose a
new method to automatically generate reduced Central Pattern
Generator (CPG) networks for locomotion control based on the
detection of bio-inspired sub-structures, like body and limbs, and
articulation joints inside the robotic structure. We demonstrate
how that information, coupled with the potential symmetries
in the structure, can be used to speed up the optimization of
the gaits and investigate its impact on the solution quality (i.e.
the velocity of the robotic structure and the potential internal
collisions between robotic modules). We tested our approach
on three simulated structures and observed that the reduced
network topologies in the first iterations of the optimization
process performed significantly better than the fully open ones.

I. INTRODUCTION

Self-Reconfigurable Modular Robots (SRMR) are robotic
units able to assemble and disassemble to form various struc-
tures depending on the task to be performed [23]. SRMR are
potentially well suited for unknown environments and explo-
ration tasks since they can adapt their structure autonomously
to changes in their surroundings. But this adaptation capability
brings additional challenges in terms of locomotion control
of the resulting structure, since the morphology of such a
structure might not be known beforehand. One successful
approach to control the locomotion of modular structures
are bio-inspired Central Pattern Generators (CPGs) [8], a
network of coupled oscillators that allows to generate complex
locomotion behaviors with a reduced set of control parameters.
The main difficulty when using CPGs is the design of the
best suited network for a given morphology. This step is
most of the time based on trial and error and can quickly
become time-consuming for large irregular structures. In order
to find the most suited set of control parameters for the CPG
network, optimization methods, such as Powell’s Method [17]]
or Particle Swarm Optimization [10, [15], can be used [16].
In these methods, the time required to optimize the gait of a
structure is highly correlated to the number of parameters to
optimize.

In this paper, we propose an automated method to generate
reduced control networks for the locomotion of arbitrary
structures made of modular robots, instead of considering a
fully connected network with many parameters. In this work
we consider structures that are neither fully linear (i.e. being
composed of modules connected only in a open chain) nor
fully cyclic (i.e. being composed of modules connected only
in closed chain). Our approach is based on the decomposition
of the robotic structure into morphologically relevant sub-
structures, like body and limbs, and on the automated identi-
fication of bio-inspired articulation joints inside the structure.
The number of optimization parameters is further reduced
using existing symmetries in the structure. This method can
be applied for self-recovery and fast re-optimization after
structural changes due to hardware failure or voluntary mor-
phological modifications, for example. A test situation could
be the deployment of self-reconfigurable modular robots in
an unknown environment where they would quickly need to
re-learn some efficient gaits after reconfiguring during a time-
critical task.

Our work is driven by the two following hypotheses:

o Hypothesis 1: the use of bio-inspired functional patterns
and symmetries to generate the architecture of a CPG
network controller for locomotion significantly increases
the speed of convergence towards an acceptablep_-] solution
in terms of forward velocity and collision, compared to
using a fully open CPG network.

o Hypothesis 2: the quality of the solution (in our case
the velocity after convergence and the potential internal
collisions between modules) is not significantly modified
in comparison to a fully open optimization.

This paper is organized as follows. In section [[I, we review
the existing approaches for controlling modular structures
with dynamically changing morphologies. We then introduce
in section the robotic test platform Roombots as well as
the basic control architecture used. Afterwards we describe

In our case, acceptable means capable of moving at a reasonable velocity
above some minimum threshold.



our method to find relevant sub-structures inside any modular
configuration (section and explain how a reduced control
network can be generated based on this differentiation and
on the concept of distance-based symmetry (section [V). We
validate our approach using three structures in simulation
(section and discuss our results (section before

concluding (section [VIII).

II. RELATED WORK

Modular robots offer the advantage of morphology that can
change depending on external factors (e.g. changes in the
environment) or internal ones (e.g. sudden hardware failure).
This flexibility brings an additional challenge in comparison
with monolithic robots in terms of design of efficient con-
trollers. Moreover the increase in the number of degrees of
freedom with each module added to the structure makes it
difficult to hand-design specific gaits. Monolithic robots can
also have to cope with a change in their morphology due
to hardware issues, requiring as a consequence a re-design
of their locomotion controller. The optimization of the set
of parameters to generate efficient locomotion is often time
consuming.

Since the early work by Yim [25] on the caterpillar lo-
comotion of Polypod robots, several approaches have been
proposed for the control of the locomotion of structures made
of modular robots. For example, Shen et al. [[18] proposed a
hormone based method to control the locomotion of CONRO
robots, Stoy et al. [22] used role-based control and cellular
automata, and Yu et al. [26] described a consensus based
approach for the locomotion control of 2D modular robots.
CPGs, implemented as systems of coupled oscillators, , have
been applied for locomotion control by several researchers
for distributed locomotion control and various techniques have
been investigated [8, [12][13}[7, 20]. The main drawbacks of the
presented approaches is that they consider a fixed morphology
and require the manual design of the CPG network, which
might prove to be a tedious task for large structures. Some
authors [19, 1} [11] used evolutionary methods and co-evolution
to make the robot discover its own morphology, or used genetic
algorithms to evolve possible gaits for given structures [9].
Those methods are often computationally demanding and time
consuming, making them difficult to transfer on-board and on-
line. More recently, accelerated learning methods have been
investigated [3l 4} 5] based on a distributed and morphology
independent learning process. The main difference with our
approach is that we propose to optimize beforehand the
control network itself instead of approximating the learning
reward for the different possible actions. Christensen et al. [2]
described a control framework to generate full body behavior
based on the decomposition of the structure into bio-inspired
parts (like muscle or bones) with pre-defined function (e.g.
muscles can contract). The control is then done at the level of
those sub-parts, abstracting away their individual components.
Although this approach is similar in essence to our method,
the main difference is that we propose an automatic detection

of bio-inspired joints and symmetries in any arbitrary structure
instead of considering predefined structures built from known
sub-parts.

III. PLATFORM AND CONTROL
FRAMEWORK

A. Roombots

We test our techniques on a simulated model of our self-
reconfigurable modular robot Roombots (RB) [21]]. Compared
to other SRMR, we chose to use RB because of the large
variety of gaits that can be obtained with few modules,
thanks to their three degrees of freedom capable of both
oscillation and continuous rotation. A RB module is composed
of four half-spheres linked together using revolute joints with
continuous rotation capabilities. Using four-way symmetric
compact Active Connection Mechanisms (ACMs, up to 10
per module) each RB module can autonomously connect to
and disconnect from another module or a passive connector
embedded in the environment. A single RB module weighs
around 1.4kg and any of its joints can provide sufficient torque
to lift at least one additional RB module.

B. Control architecture

We considered as locomotion controller a network of
coupled non-linear oscillators mimicking the Central Pattern
Generators found in many vertebrates [8]. The control inputs
for this CPG are the amplitude A;, the offset X;, and the
phase lags +;; of each oscillator 4 connected to oscillator j.
We use one common frequency for all oscillators (v = 0.2
Hz, according to [14]), bi-directional couplings follow the
rule such that v;; = -1;; and all coupling weights are set
to 2. We set the CPG output to produce oscillatory joint angle
signals. The coupled phase oscillators are implemented by the
following coupled differential equations:

Gi=2m-v- > wijeriesin(g;—di—vy) (1)
J

i =a; (4; —r;) )

0; = r; - sin (¢;) + X; (3)

where ¢ and j are the indexes of the oscillator, 6; is the
oscillator output controlling the position set point of the degree
of freedom (dof) number ¢, r; is the signal amplitude, and ¢;
the phase. Each oscillator ¢ has a maximum of three parameters
that are subject to optimization: the desired amplitude A;,
offset X; and the phase lag v;; to the following neighbor
7. More information about CPGs can be found in [g].

In order to find the most efficient gait for each structure,
we use a population-based algorithm based on Particle Swarm
Optimization (PSO) [10} 6] to generate the set of CPG control
input parameters. In this work, we used simulated (off-line)
gait optimization in the simulation software Webots [24].



IV. BobY/LIMB FINDER

In many vertebrates, the body and limbs are clearly dif-
ferentiated and play different roles in the chosen locomotion
strategy. In order to benefit from this definition of specific sub-
structures, we developed an automatic centralized algorithm,
called Body/Limb Finder (BLF), to automatically identify body
and limbs in an arbitrary modular structure. This structure
is represented as an undirected graph in which each node
represents a module and each edge represents a connection
between two modules (as illustrated in Fig. 2] top right).
The main idea of our approach is that the removal of the
body from a given structure will lead to several disconnected
elements that represent the limbs. Additionally, the body can
be further decomposed into a linear part (or chain part) and/or
a cyclic part. A cyclic part is defined as a closed loop of
connected modules. The actuation strategy will vary depending
on the type of body part considered. In the scope of our
bio-inspired control approach, we have introduced a set of
rules to identify relevant articulations within the structure:
we are able to differentiate between spines, hips, knees and
ankles. A special control pattern for each of those units will
be introduced in section [V} We first present the theoretical
aspects related to the detection of those different elements
inside a given structure and then describe the validation of
our method using a statistical approach.

A. Theory

1) Body/Limbs differentiation: The BLF algorithm is pri-
marily based on the notion of bi-connected components (bcc).
A bi-connected component of a graph is a graph with no
articulation vertices, meaning no vertices that, if removed,
would lead to a disconnected graph. The BFL algorithm is
composed of three main steps (illustrated in Fig. [T):

a) Step 1: decomposition into bi-connected components:
We first obtain the different components of the graph. This
gives us the linear parts (i.e. bcc composed of less than 2
nodes) and the cycles (i.e. bcc composed of strictly more than
2 nodes), if any.

b) Step 2: finding the cyclic parts of the body: We use
the following rule to find the cyclic parts of the body. The
cyclic parts of the body correspond to groups of modules that
are fully linked together, meaning that at least two paths exist
between any pair of the group. For each cycle found at step
1, we check the connectivity of the graph resulting from the
removal of this cycle: if the remaining graph is still connected
then the cycle is not part of the body.

c) Step 3: finding the linear parts of the body: For this
step we consider the different nodes which compose the 2-
nodes bcc found at step 1. We select the nodes using the
following rules (the 2 conditions have to be validated):

i Clustering power: if the removal of the node leads to a
number of components for the remaining graph strictly

greater than 2 then the node is a linear part of the bodyﬂ

ii Articulation: the node must be an articulation of the graph.

After that, we calculate the shortest path between the

selected nodes and we include it in the linear part of the body

(minus the intersection with the nodes found at step 2). The

limbs are the disconnected components remaining after the
removal of the previously found body.

(d)

becZ becz
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Fig. 1: The different steps of the body limbs finder illustrated
on structl0 a structure with 10 modules used later in
our experimental validation. [(b)] We start by converting the
robot structure into an undirected graph in which each node
represents a module and each edge represents a physical con-
nection. At step 1, we detect the bi-connected components
(bee) in the graph and sort them depending on the number
of nodes they contain. [(d)] At step 2, we detect whether the
previously found cycles (i.e. the bcc containing more than 3
nodes) are part of the body by testing if their removal leads to
a disconnected graph: since we obtain 4 sub-graphs after the
removal of bee4, it is part of the body. [(€)] At step 3, we detect
in the remaining bcc the articulation nodes, indicated with an
A, and check whether they lead to more than two sub-graphs
or not (fland [g): since the removal of those articulations leads
to only two sub-graphs, they are not part of the body.

2) Articulation rules:

a) Spine: Every joint inside the linear part of the body is
part of the spine, except for hip joints. We chose to consider
the cyclic parts of the body as unactuated.

b) Hip:

« A hip joint can belong either to a limb or to the body.

e A hip is a joint at the frontier between a limb and
the body. This joint must therefore have at least one
neighboring joint being part of the body.

« We want a hip joint to be as proximal as possible, which
means that a hip joint defined as part of the body will be
preferred over a hip joint belonging to a limb.

c) Knee:

o A knee joint must be part of a limb. There is only one
knee per limb.

2We need to impose this condition because of the case of “long” linear
limbs: in a linear limb composed of strictly more than 2 nodes, the central
node has a clustering power of 2 and is an articulation, but it is not part of
the body.



o A knee joint is at the center of the limb, between the pod
and the hip (we define the pod as the most distal joint of
the limb).

e If a hip joint and a foot joint are connected to each
other with only one additional joint, no knee joint can
be defined in the limb.

« If possible, a knee joint should be at equal distance from
a foot joint and a hip joint. If such a joint cannot be
found, we would choose the more proximal joint situated
at the center of the limb as the knee joint.

d) Ankle: The rules to define an ankle joint are the
same as the one describing a knee joint but considering the
limb is starting at the knee joint. There is only one ankle per
limb.

This set of rules, as well as the result from the BLF
algorithm, is illustrated on Fig. 2] on a test structure with 9
modules shaped as a quadruped. The unclassified degrees of
freedom are considered as locked.

Fig. 2: Top left: A quadruped structure composed of 9 RB
modules. Top right: the corresponding graph representation,
used in the BLF. Bottom left: the detected body and limbs.
Bottom right: the articulations detected using the set of rules

described in subsection

B. Results

Since the notion of body is difficult to define and to
characterize, we manually evaluated the “recognition rate” of
our algorithm applied to twenty randomly generated structures.
The number of modules per structure varies from 12 to 32. We
considered the RB modules presented in section [III] as a test
platform, but our method could be applied to other modular
robots. Given that the goal of our method is to improve
the locomotion control of a structure, we discarded unusable
structures, for example, the ones with no limbs at all. The
results matched our manual tagging for all the tested structures
(see Fig. 2] for an example).

V. AUTOMATIC GENERATION OF
REDUCED CPG NETWORKS

In this section, we describe the rules applied to design the
control network of a modular structure using the coupled oscil-
lators introduced in section [[TI] depending on the results from
the BLF. Additionally, we introduce the notion of distance-
based symmetry using a labeling function for the connection
between modules and show how those symmetries can be
used to further reduce the number of parameters in the control
network.

A. Articulation network

The CPG network we derive from the articulations found
using the BLF is inspired by the typical bone connection
network present in many vertebrates (for example, the knees
are usually connected to the hips and the hips to the spine).
Each spine, hip, knee and ankle joint is driven by a single
oscillator. The other degrees of freedom are considered as
locked. We also assume that only the linear parts of the body
are actuated (the cyclic parts being blocked) and that each
spine is composed of a single joint (the most central one of
the linear part, tie being solved at random) driven by a single
oscillator. If more than one linear part is present in the body,
each is controlled using a single oscillator. The parameter
boundaries for the amplitude of an oscillator depend on the
type of articulation. The coupling rules between the oscillators
are the following (illustrated in Table [[V):

o The spine oscillators are fully coupled together.

o The hip oscillators are fully coupled together. They are
further coupled to the closest spine oscillator in the
structure.

o The knee oscillators are only coupled to the correspond-
ing hip oscillator (the one located in the same limb). If
no hip is present in the limbs, the knee oscillator will act
as a substitute and the same hip coupling rules will apply
to it.

« The ankle oscillators are only coupled to the correspond-
ing knee oscillator (the one located in the same limb).

Using this technique, the maximum number of parameters
depends only on the number of limbs in the structure and is
independent from the number of modules per limb. We con-
sider only three parameters for each oscillator: the amplitude,
the offset and the phase shift between the different oscillators.
In this formula, we also consider bi-connected connection
between the oscillators. If n represent the number of limbs,
ns the number of spine oscillators, and n; the number of
hip oscillators, the number of parameters Pjcguceq can be
computed as follows:

n np
Preduced = 22(63 + 65 + 61}]’) +2X Z(éheBody) + 27’7/3

n Nh
+ ) 268 4 6F) + nn(nn — 1) +na(ng — 1) + > 2(57)

l @)

where 6%, 0¥, and 6! equal 0 or 1 depending if the limb i
contains an ankle, a knee or a hip, respectively, d5.c Body €quals
0 or 1 depending if the hip is inside the body or not, and §;
is equal to 0 or 1 if the hip is connected to a spine or not.

For a fully open network controlling a structure with m
joints, each of them represented by one oscillator coupled to
its closest neighbor, the total number of parameters P, is
equal to

Popen =2xm+ Y (5) 5)



where 65 is the number of connections between oscillator 4
and its neighbors.

B. Distance-based symmetry

In order to further reduce the number of parameters re-
quired in our control network, we use geometrical symme-
tries between the limbs in the structure. If two limbs are
considered symmetric, the corresponding oscillators share the
same amplitude and the same offset (the phase shift remaining
open to avoid restricting the possible gait patterns). To capture
the geometrical organization of a given structure, a label
for the connection between modules has to be defined. The
label expresses the physical relationship between modules by
encoding the source connector, the destination connector and
the rotation between the 2 modules. We propose to use Cantor
polynomials as a labeling function. Cantor polynomials are the
only polynomials of degree 2 bijective from N2 to N. They
are defined by the following formulas:

N? +— N
[ @b — [(a+b)22+3a+b] (6)
and
N2 — N
g: (@b - [(a+b)22+3b+a] ) (N
where  V(a,b) € N*  f(a,b) = g(b,a).

In order to obtain a bijection from N™ to N we only need to
compose f or g by itself. In the case of the RB platform, we
need to associate a unique integer to any given set of 3 values
representing respectively the source connector (we called it
a), the destination connector (we called it b) and the type of
connection (we called it ¢). Thus, the labeling function that
we are going to use is defined as follows:

] N} — N
: (f(a.b)+¢)*+3f(a,b)+c
(a,b,c) — [ 5 ]
We can now associate any tuple

(source, destination, type) with a unique positive integer.
The only issue with this labeling system is that we have to
take into account the orientation of the connection (a bijective
function cannot be symmetrical and, as a consequence, if we
switch the source connector and the destination connector,
the computed label will be different).

The RB platform is equipped with 10 connection ports.
Nevertheless the connectors placed on one outer hemisphere
are equivalent considering a rotation of 7/3. Similarly those
two hemispheres can also be flipped (which corresponds to
flipping the module) without modifying the functional char-
acteristics of the connection. As a consequence the range for
the connection ports is reduced to [0..4] instead of [0..9].

The distance-based symmetries in a structure are determined
using the information provided by the body/limb finder applied
to the graph representing the structure and labeled using the

previously mentioned labeling function. Only limbs of the
same length are compared. The use of symmetries inside the
structure is coupled with the information about the localization
of the joint with respect to the body. The connections between
modules are sorted into different groups depending on their
distance from the body. The labels of the connection inside
each limb are iteratively compared among groups: only fully
identical limbs are considered symmetric.

VI. EXPERIMENTAL RESULTS

We considered three RB structures as test cases to evaluate
our method. The first structure is a quadruped made of
5 modules with all limbs symmetrical (called quad5-sym,
shown in Fig. [3] on the left). The second structure is the
same quadruped but with a limb connected to the spine
with a different orientation, so that only 3 limbs are now
symmetric (called quad5-unsym, depicted in Fig. [3 on the
right). The last structure is a pseudo random asymmetric
structure made of 10 modules (called structl0, shown in Fig.
subfig:structlOwebots). The first two structures were chosen to
represent bio-inspired structures, with the distinction between
fully symmetric and partially symmetric one. We decided to
use structl0 to test our method on a much larger structure in
which no intuitive gait could be engineered and also for which
a fully open optimization requires a significant amount of time
to converge.

Fig. 3: Two of the three test structures: quad5-sym (left)
and quad5-unsym (right). The difference between the two
structures is that one of the modules (the one at the bottom
right of the picture) is connected using a different orientation.

We compare an optimization of the parameters of the
corresponding CPG network for each structure in the following
four conditions:

1) Fully open optimization (FO): all the parameters of the
network are considered open. One oscillator per dof is
used. For each oscillator the amplitude is only constrained
to [0; 7).

2) Body Limbs Finder reduced network (BLF): we use
the technique described in subsection to generate a
reduced network for the structure. The amplitude param-
eter is constrained depending on the type of articulation
considered (see Table [I).

3) BLF network and symmetry finder (BLF-SYM): addition-
ally to using the reduced network generated by the BLF,
we consider symmetries as described in subsection
to further decrease the number of parameters to optimize.
The amplitude parameter is constrained depending on the
type of articulation considered (see Table [I).



4) Symmetry finder (SYM): we applied distance-based sym-
metries between the limbs to reduce the number of
parameters in the fully open CPG network controlling
the structure. This step requires the use of the BLF to
determine body and limbs in the structure, but, contrary to
the previous case, no specific network structure is derived
from this detection.

In terms of search space, the BLF, BLF-SYM, and SYM
cases are sub-sets of the FO case. The number of parameters
for each structure in the different cases are summarized in
Table The parameters used for the PSO optimization for
each case can be found in Table The corresponding CPG
networks are depicted in Table

TABLE I: The boundaries for the amplitude parameter de-
pending on the type of articulation considered.

Spine | Hip | Knee | Ankle
Min 0 0 0 0
Max %7‘( /2 /6 /6

TABLE II: The number of optimized network parameters for
the three case structures in the four different conditions. The
number in parenthesis indicates that the network is the same
as one previously defined, and as a consequence, that it was
not used.

quad5-sym | quadS-unsym | structlO
FO 44 44 90
BLF 21 21 26
BLF-SYM 15 17 (26)
SYM 26 30 (90)

TABLE III: The fixed parameters for the PSO optimizations
for the different structures.

Parameters quad5-(un)sym | structl0
No. particles 80 160
No. iterations 800

maximum velocity 0.6

social factor 2.05

cognitive factor 2.05
constriction factor 0.729

exp. duration ¢, 30s

We ran the PSO optimization twenty times with different
initial random populations for the three structures quad5-sym,
quad5-unsym, and structl0. For the latter, only the FO and
BLF networks were tested, since no apparent symmetries are
present in the structure. The fitness function f chosen for the
optimization process takes into account the displacement of
the structure and penalizes collisions between modules:

d
f=—"xec )
ttotal

where d corresponds to the displacement of the robot during
the total experiment time t4,,; and c is a penalization factor
used in case of self-collision equal to 0.001 if there is a
collision and 1 otherwise. ¢ was determined experimentally.
At each iteration and for each of the twenty optimization
runs, we only consider the solution with the highest fitness.

We then computed the mean value of these sets of twenty
best solutions and repeated the process for the three structures
considered. The results are depicted on Fig.
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Fig. 4: The mean value of the fitness function over twenty
runs for (from top to bottom) the quad5-sym, the quadS-unsym
structure, and the structl0 structure. The results are displayed
in semi-log scale.

In order to compare the results of the best particles obtained
at each iteration using the different network topologies, we
performed single factor ANOVA tests (we tested the ho-
moscedasticity of the residuals using the Levene’s test and
we assumed they were normally distributed). The results are
summarized in Table [V]

VII. DISCUSSION

Our first hypothesis was that the fact of using a reduced
CPG network generated using bio-inspired rules would sig-
nificantly reduce the number of iterations needed to obtain an
acceptable gait for a given structure. As we can see in Table[V]
the solutions generated using the reduced CPG network dom-
inated the fully open population at least to the 30th iteration
for the quad5-sym and quad5-unsym structures. For the bigger
structure, we can clearly notice that restricting the search space
by introducing automatically generated prior knowledge and
boundaries to the parameters positively impacts the results: the
fitness values are significantly better up to the 200th iterations
and the convergence is significantly faster. We also observed
that out of twenty runs of the struct/0 FO cases, we only
obtain four valid solutions that converge to a set of parameters



TABLE IV: The different CPG networks for the three tested structures. In the fully open case, the circles represent the generic
oscillators. For the BLF and BLF-SYM cases, the limbs are represented in green, the body in orange, and the shape coding
is as follows: the spine oscillator are circles, the hip oscillators are squares, the knee oscillators are hexagons, and the ankle
oscillators are crosses. For the BLF-SYM and SYM cases, the symmetric oscillators are indicated with the same stripe type.

Structures

BLF-SYM SYM

quad5-sym

e

quad5-
unsym

BLF

struct10

TABLE V: Iteration number after which no significant dif-
ference (with a p — value < 0.05) can be found between
the samples of best individuals corresponding to the four
network topologies. The values marked with a star indicate
the iteration number before which no significant difference
(with a p —value < 0.05) can be found between the samples
of best individuals. The three numbers correspond to the three
structures, respectively, from left to right, quad5-sym, quad5-
unsym, and struct10. Before this iteration number, the ordering
between the different network topologies can be seen on Fig. 4]
None means that the two samples tested were not significantly
different. X means that the test was not performed because the
networks were not tested.

BLF BLF-SYM SYM
FO 32/96/202 30/88/X 80/224/X
BLF - 92/None/X | 57/84*/X
BLF-SYM - - 35/82*/X

that did not induce self-collisions, emphasizing the need for a
more robust method. If we select those solutions and compare
them to four randomly chosen solutions from the BLF set,
we observed that the BLF solutions are significantly better at
the beginning of the optimization process (until iteration 71)
before being dominated by the FO solutions (as illustrated in

Fig. [3), which remains consistent with our first hypothesis.
Similarly, we observed in all cases that no significant differ-
ences could be found between our three proposed methods and
the standard FO case at convergence, which remains consistent
with our second hypothesis.

11|+ FO
1| + BLF
-
- e
rd

T T
5 10

0.12

0.08
T

Mean fitness
0.04
|

L

4
4+t

0.00
L

+ ¥ 4+

T T T y
50 100 500 1000

Iteration
Fig. 5: In black, the mean value of the fitness function for
the four optimization runs of the structl0 structure in the FO
cases in which no collisions were observed in the optimization
best solution. In red, the mean fitness value of four randomly
chosen optimization solutions in the BLF case.

The reduced networks seems to be less sensitive to local
minima resulting from the complex optimization landscape, as
illustrated on Fig. The results we obtained are as expected,
since reducing the search space is known to have a positive
effect on the speed of convergence, but through our study, we



managed to validate our hypothesis and to quantify for how
many iterations it is still valid.

One typical test situation for our method would be some
hardware failure of a self-modular robot during a time critical
mission: the robot is then forced to reconfigure into a new
shape and to re-learn how to move. It can, for example,
connect to a remote cluster service to ask for new possible
gaits but it cannot wait until the full convergence (meaning
hours of computation for large structures). A similar scenario
could involve a monolithic robot having to deal with a change
in its morphology after some hardware issue. Our approach
could be used in those two cases to characterize the new con-
figuration of the robot and to propose corresponding reduced
CPG networks to speed-up the optimization of the gait. With
our proposed technique, after only five iterations (around one
minute of optimization on average on our computer clusteﬂ)
we manage to provide a gait with a fitness value of 0.017,
0.024, and 0.016 (BLF, BLFSYM, and SYM) against only
0.005 in the FO case for quad5-sym (at least 3 times less
on average, as depicted on Fig. [). Similarly, for the quad5-
unsym, the fitness after five iterations is almost an order of
magnitude bigger with the reduced network (minimum 0.017)
in comparison with the fully open case (0.002), as illustrated
on Fig. [/| Similar trends are can be observed at iterations
25, 50 and 100 (5, 10 and 20 minutes of computation,
respectively), as shown on Fig. [6] and Fig. [7] The solutions
found in the FO case in the early exploration phase were often
heavily penalized because of the self-collision induced by the
large boundaries set for the CPG parameters.

Network topologies

% o M ro
= < | |l BLF
=
o) [ BLF-sYM
> g4\ @sym
7}
4

=
=R
+
=1
= 8 j’—}‘

< 5 25 50 100

Iterations
Fig. 6: The mean fitness values and standard deviation at
iteration 5, 25, 50, and 100 for the different network topologies
applied to the quad5-sym structure.
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Fig. 7: The mean fitness values and standard deviation at
iteration 5, 25, 50, and 100 for the different network topologies
applied to the quad5-unsym structure.

We can also observe on Fig. [fa] and [b] that the reduced

30ur cluster is composed of forty 2.00GHz quad-core Intel Xeon E5504
processors.

networks generated using the distance-based symmetry tech-
nique (SYM) obtain better results relatively to the two other
reduced networks (BLF and BLF-SYM). This can be explained
by the fact that the amplitude for the oscillators has larger
boundaries than in the two other cases. A qualitative analysis
of the resulting gait showed that in the SYM case, as well as on
the FO case, the structure tends to rely much on almost rolling
movement of some joints to increase its momentum. On the
contrary, in the BLF and BLF-SYM cases, the structure tends
to have a smaller amplitude of oscillation and favor animal-
like displacement of the limb, making the obtained gaits more
hardware friendly. The different solutions are illustrated in the
video attachment.

Regarding the portability of the solutions to the hardware
platform, we set the parameters of the simulation environment
according to the results of a work that used meta-optimization
on the RB robot in order to reduce the reality gap between
simulation and hardware [14]. This should ensure that the gaits
we obtained in this study remained consistent when transferred
to a hardware platform.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an automated method to generate
a reduced CPG control network for the locomotion control of
modular robots. We based our approach on the recognition
of bio-inspired patterns in the structure playing the role of
spine, hip, knee or ankle. Each of them are driven by a
single oscillator with particular boundaries for the optimization
parameters and specific coupling rules with the neighboring
oscillators, with the goal of reducing the optimization time
needed to find acceptable gait. We further reduced the number
of parameters required in the optimization by automatically
considering the existing symmetries in the structure.

By comparing the results obtained with three different
structures, two quadrupeds and one pseudo-random structure
composed of 10 modules, we noticed that our method leads
to significantly better results during the first iterations, making
the goal of re-optimizing a locomotion strategy (for example
to cope with an unexpected change in the morphology of
the robot due to a hardware failure) online and on-board a
reachable goal.

Despite our method being generic, our preliminary study
involved a restricted number of structures and was focused on
a particular robotic platform. We are planning in the future
to further extend our work to different types of modular
robots and to increase the number of modules per structure
to emphasize the gain induced when using our method.
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