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Abstract—Automation of robotic surgery has the potential to
improve the performance of surgeons and the quality of the
life of patients. However, the automation of surgical tasks has
challenging problems that must be resolved. One such problem
is adaptive online trajectory planning based on the state of the
surrounding dynamic environment. This study presents a frame-
work for online trajectory planning in a dynamic environment for
automatic assistance in robotic surgery. In the proposed system,
a demonstration under various states of the environment is used
for learning. The distribution of the demonstrated trajectory
over the environmental conditions is modeled using a statistical
model. The trajectory, under given environmental conditions,
is computed as a conditional expectation using the learned
model. Because of its low computational cost, the proposed
scheme is able to generalize and plan a trajectory online in a
dynamic environment. To design the motion of the system to
track the planned trajectory in a stable and smooth manner, the
concept of a sliding mode control was employed; its stability was
proved theoretically. The proposed scheme was implemented on a
robotic surgical system and the performance was verified through
experiments and simulations. These experiments and simulations
verified that the developed system successfully planned and
updated the trajectories of the learned tasks in response to the
changes in the dynamic environment.

I. INTRODUCTION

As the clinical performance of robotic surgery has demon-
strated, it will become a common procedure. For instance,
the da Vinci system (Intuitive Surgical Inc., CA, US) has
proved its performance in many clinical studies and is installed
in thousands of hospitals worldwide [5]. However, robotic
surgery still has significant potential to improve its clinical
performance. Many studies have been conducted to develop
more intelligent and sophisticated robotic surgical systems to
improve the quality of robotic surgery.

One of the research topics in this area is surgical task
automation. It is believed that automatic assistance by a robotic
system in a surgical operation would reduce a surgeon’s fatigue
and operation time. However, the automation of surgical tasks
has challenging problems that need to be resolved. One of
these is the adaptation of the trajectory according to the state
of the dynamic environment.

In surgical task automation, the robotic surgical system is
expected to cooperate with surgeons and work with flexible
and movable objects such as threads, needles, and soft tissues.
Therefore, the robotic system must adapt its motion according
to the motion of the surgeon, surgical instruments, and target
organ.

Fig. 1. Surgical knot tying involves making loops around a surgical
instrument. If the surgical instrument moves during the process, the trajectory
must be adapted online.

For example, surgical knot tying involves making loops
around a surgical instrument using a thread held by another
instrument. In this looping task, the trajectories for making
the loop must be adapted according to the position of the
surgical instrument, maintaining the topological feature of the
trajectory (Fig. 1). If the surgical instrument to be looped is
moving during the task, the trajectory must be recalculated and
adapted online according to the motion. This kind of adaptive
trajectory planning is required for automatic assistance in
many situations. However, this online planning and adaptation
of the trajectory is very challenging, and the solution for this
problem has not yet been established.

In this paper, we present a method for learning time-and
space-dependent trajectories from demonstrations, and plan-
ning and updating trajectories online adapting to changes in the
dynamic environment. In the proposed scheme, demonstration
trajectories, under various environmental conditions, are used
for learning the task trajectory process. The demonstrated
trajectories are normalized in a time domain, and their dis-
tribution over the environmental condition is modeled using
a statistical method. Using the learned models, the learned
tasks are generalized to the new state of the environment.
Because of its low computational cost, this method is able
to plan and update trajectories online adapting to changes
in the environment. On the other hand, the update of the
planned trajectories can also cause a discontinuous change of
the planned trajectory. If the planned trajectory is input to the
system directly, the discontinuous change could cause unstable
system behavior. Therefore, we present a scheme to design the



motion of the slave manipulator to track the planned trajectory
in a smooth and stable fashion using the concept of a sliding
mode control. The proposed scheme was implemented on a
robotic surgical system and the performance of the developed
system was verified through experiments and simulations.

This paper is structured as follows. The next section de-
scribes the previous studies related to trajectory planning by
learning from demonstrations. Section III describes the details
of the proposed method. Section IV provides the experiments
and simulations to evaluate the developed system. Section V
discusses the results presented in this study. The conclusions
and outline of future work can be found in Section VI.

II. RELATED STUDIES

Many studies related to the automation of surgical tasks
have been published [19, 9, 10, 11]. However, to the best
of our knowledge, no existing surgical robotic system plans
and updates a trajectory online to adapt to changes in the
environment. Van der Berg et al. developed a system that
learns surgical knot tying from demonstrations and executes
the learned task faster than the demonstrations [19]. However,
the system cannot adapt the planned trajectory if the initial
conditions change. Mayer et al. proposed approaches to learn
surgical tasks from demonstrations [9, 10, 11]. Although a
scheme for generalizing the learned task to a new situation
is presented in [10], the scheme cannot be applied to online
trajectory planning because of its computational costs and
limitations in modeling the situation for simulations. Schul-
man et al. [16, 17] presented the most related works. They
proposed a scheme to generalize demonstrated trajectories to
a new situation, and they achieved automatic suturing in new
situations in a simplified setup [16]. However, it is expected
that the computational cost will be considerably high for online
trajectory planning in a dynamic environment.

In the field of motion planning, the programming by
demonstration (PbD) approach has been investigated by many
researchers [1]. One notable scheme is the movement primitive
approach proposed by Schaal et al. [15, 12]. They achieved
generalizing task trajectories to various start and end-points by
learning from demonstrations. However, this is not applicable
to tasks where the topological features of the trajectory must
be adapted according to the state of the environment. Another
important previous work is presented by Billard et al. [7, 6, 4].
They developed a scheme of learning tasks as a time-invariant
dynamic system and adapting the motion trajectory in real-
time for obstacle avoidance [6]. However, this scheme is
not applicable to time-dependent trajectories that are often
necessary for surgical task automation.

In this paper, we present a system that learns time-and
space-dependent trajectories from demonstrations in various
environmental conditions and plans a trajectory online in the
dynamic environment. In addition, this study presents a control
scheme to allow the system to track the planned and updated
trajectories online, in a stable manner. The combination of the
proposed trajectory-planning and trajectory-tracking schemes

(a) (b)

Fig. 2. Robotic telesurgery system: (a) slave and (b) master sites

Fig. 3. System architecture.

enables us to develop a system that can adapt its motion online
according to a change in the environment.

III. METHOD

A. Overview of the proposed method

We designed a method for the automatic execution of
learned tasks in a robotic tele-surgical system. The config-
uration, shown in Fig. 2, consists of a master and slave
manipulator. This is a standard robotic surgical system setup.
The designed system architecture is summarized in Fig. 3.

Let us define ξ as the state of the system. Here, ξ can be
task space variables or configuration space variables. To avoid
the loss of generality, we do not specify a clear definition
of ξ. When a human operator at the master site controls the
slave manipulator, a motion at the master manipulator,ξ̇m, is
transmitted to the slave system using socket communication.
The slave motion planner scales the received motion signal
and converts it into a motion of the slave manipulator, ξ̇s as
follows:

ξ̇s = Kmsξ̇m (1)

where Kms is a positive diagonal matrix that represents the
scaling relationship between the master manipulator and the
slave manipulator. Then, ξ̇s is sent to the slave velocity
controller. This resolves the inverse kinematics and controls
the servomotors of the slave manipulator. The slave velocity
controller controls the individual joint velocity of the slave
manipulator, q̇s, to track the motion input ξ̇s.

When the robotic system executes the learned automated
task, the trajectory planner plans trajectories for the automated
tasks, Ξ∗

s = [ξ∗s (0), . . . , ξ∗s (T )] where T is the length of the



Fig. 4. Overview of the proposed scheme.

planned task. The values measured at the slave site, ξc, are
constantly sent to the trajectory planner as variables represent-
ing the environmental condition. The trajectory planner plans
the trajectory for the automated tasks online according to ξc.
The motion planner determines the motion input to the slave
velocity controller, ξ̇s, such that the system tracks the planned
trajectory Ξ∗

s in stable manner.
An overview of the proposed scheme for the online trajec-

tory planning that is implemented in the trajectory planner is
shown in Fig. 4. The goal of the online trajectory planning
in this study is to plan a trajectory Ξ∗

s(t) in the dynamic
environment condition ξ∗c , in real time. The environment
condition, ξ∗c , refers to the state of the environment, such as the
position of a surgical instrument, and the position and posture
of a surgical needle.

In the proposed method, we model the spatial distribution
of the trajectory over the environmental condition at time
t as P (ξs(t) | ξ∗c ). Then, the optimal trajectory under the
condition ξ∗c , Ξ∗

s , can be estimated as a conditional expectation
as follows:

Ξ∗
s = [ξ∗s (0), . . . , ξ∗s (T )] (2)

where
ξ∗s (t) = argmaxP (ξs(t) | ξ∗c ) (3)

In a learning task phase, the system normalizes the demon-
strated trajectories in the time domain and estimates the
reference trajectory. In this step, Dynamic Time Warping

(DTW) is employed to normalize the demonstrated trajectories
in the time domain, and the Kalman smoother is employed
to estimate the reference trajectory [14, 19]. Then, the spatial
distribution of the demonstrated trajectories over the condition
ξc is modeled using Gaussian Process Regression (GPR) [13].

During the execution of the learned task, the trajectory
is planned and updated online according to ξc using the
learned models. When the planned trajectory is updated, the
planned trajectory changes discontinuously because of the
computation time even though the computational cost is very
small. Because of such discontinuous change of the planned
trajectory, the planned trajectory cannot be input to the slave
velocity controller directly. This would cause unstable system
behavior. Therefore, we employ the concept of a sliding mode
control to determine the motion of the slave manipulator ξ̇s
such that the system tracks the planned trajectory in a smooth
and stable manner.

B. Learning and Planning a Trajectory

1) Normalization in the Time domain and Estimation of a
Reference Trajectory: Before modeling the spatial distribution
of the trajectory over the environment condition, we must
normalize the demonstrated trajectories in the time domain.
We do this because the execution speed of the trajectory
varies for each demonstration. To normalize the demonstrated
trajectories in the time domain and estimate the reference
trajectory, we use the method described in [19]. As in [19], we
regard the demonstrated trajectory as a noisy “observation” of
the “reference ” trajectory.

We express the state of the discrete system at time t as
follows:

z(t) =

[
ξ(t)

ξ̇(t)

]
(4)

where ξ(t) is the state of the robotic system at the t th time
step. The system can be expressed as a linear system with
process noise and measurement noise, and we assume that
the process noise and measurement noise are distributed as a
Gaussian distribution. Therefore, we can express the system
as follows:

z(t+ 1) =

[
A B
0 I

]
z(t) + w(t) (5)

where w(t) ∼ N

(
0,
[
P 0
0 Q

])
, and P and Q represent

the process noise and measurement noise, respectively.
Then, we can write the relationship between the reference

trajectory z and demonstrated trajectories y1, . . . , yM as fol-
lows: y1(τ1t )

...
yM (τMt )

 =

 I
...
I

 z(t) + v(t), v(t) ∼ N

0,

 R1 0 0

0
. . . 0

0 0 RM


 (6)

where τ j is the time mapping from the reference trajectory z
to the demonstrated trajectory yj and Rj is the variance of
the j th trajectory from the reference trajectory. Thus, we can
use the Kalman smoother to estimate the reference trajectory



z. In (6), we set Rj = I for t = 0, . . . ,M so that all of
the demonstrations contribute equally to the estimation of the
reference trajectory.

To estimate the reference trajectory at the initial step, we
initialized the time alignment τ as follows:

τ jt =
t

N
T j (7)

where τ jt is the time alignment of the tth step of the jth
demonstration, N is the total number of time steps of the
reference trajectory, and T j is the length of the jth demon-
stration.

Then, the time alignment τ jt is updated for t = 0, . . . , N
and j = 0, . . . ,M with DTW using the reference trajectory
as the norm in the time domain [14]. In DTW, we employ the
following constraint for the time alignment:

1

2

(
τoldt+1 − τoldt

)
≤ τupdatet+1 − τupdatet ≤ 2

(
τoldt+1 − τoldt

)
(8)

where τoldt is the time alignment before the update and τupdatet

is the updated time alignment. This constraint means that the
DTW changes the speed of the motion between half-speed
and double-speed compared with the speed before the DTW
process. This constraint avoids computing an unnatural time
alignment.

After the time alignment is updated, the reference trajectory
is also updated using the updated time alignment. In this
processing loop, the updating of the time alignment and
reference trajectory is repeated until the reference trajectory
converges. In our cases, this loop was repeated once or twice
until convergence.

2) Modeling the distribution of the trajectories over the
environmental condition: Using the trajectories normalized
in the time domain, we model the spatial distribution of the
trajectory over the environment condition. For this purpose,
we employ GPR [13]. GPR is a non-parametric method for
regression. It models a joint distribution of the data without
directly modeling a regression function. Although there are
other options for regression, such as Gaussian Mixture Re-
gression [2, 7] and Locally Weighted Regression [3], we chose
GPR because it can regress the nonlinear relationship globally
using relatively little training data. We express the dataset of
the demonstrations and the given environmental conditions as
follows:

X =


(
ξ1c
)T

...(
ξMc
)T

 , Y =


(
ξ1s (τ1i )− z(i)

)T
...(

ξMs (τMi )− z(i)
)T

 ,
X∗ =

[
(ξ∗c )

T
]
, Y ∗ =

[
(ξ∗s (i)− z(i))T

]
(9)

where X is the set of the environmental conditions in the
demonstrations, Y is the set of deviations of the demonstrated
trajectories from the reference trajectory at the tth step, X∗

is the new environmental condition given for a trajectory esti-
mation, and Y ∗ is the estimated deviation from the reference
trajectory under the environmental condition X∗ as the tth

step. In GPR, the distribution of Y can be modeled as a multi-
variate as follows:

P

(
yj
y∗j

)
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗) + σ2

nI

])
(10)

where Y = [y1, . . . , yn] and K is the kernel matrix defined as
follows:

K(X,X) ∈ RM×M , (K(X,X))i,j = k(ξic, ξ
j
c)

K(X∗, X) ∈ R1×M , (K(X∗, X))1,j = k(ξ∗c , ξ
j
c)

K(X,X∗) ∈ RM×1, (K(X,X∗))i,1 = k(ξic, ξ
∗
c )

K(X∗, X∗) ∈ R, K(X∗, X∗) = k(ξ∗c , ξ
∗
c ) (11)

In (11), k(xi, xj) represents the kernel function. In the de-
veloped system, we employ the squared exponential kernel
function defined as [13]:

k(xi, xj) = σf exp

(
− 1

2l2
(xi − xj)T (xi − xj)

)
(12)

The performance of the GPR depends on the selection of
the hyperparameters [σf , σn, l]. These hyperparameters can be
obtained by maximizing the marginal likelihood defined as
follows:

log p = −1

2
yTKy − log det |K| − n log 2π (13)

The optimization problem of maximizing the marginal likeli-
hood can be solved using gradient-based optimization meth-
ods. This optimization problem often falls into local optima,
and therefore, we perform the optimization from randomly
chosen initial conditions to find the optimal hyperparameters.
The hyperparameters are dependent on the training dataset,
namely, X and Y , and are not dependent on the new en-
vironmental condition X∗. Thus, the optimization of the
hyperparameters is performed only before the execution of
the task.

The joint distribution of the trajectory under the given envi-
ronmental condition can be modeled as a Gaussian distribution
as follows:

y∗j |yj , X,X∗ ∼ N (µ∗,Σ∗) (14)

where

µ∗ = K(X∗, X)(K(X,X) + σ2
nI)−1yj (15)

Σ∗ = K(X∗, X∗) + σ2
nI

− K(X∗, X)(K(X,X) + σ2
nI)−1K(X,X∗) (16)

Therefore, the trajectory under the given environmental con-
dition can be estimated as follows:

ξ∗s (t) = z(t) + argmaxP (Y ∗|Y,X,X∗)

= z(t) +
(
K(X∗, X)(K(X,X) + σ2

nI)
−1Y

)T
(17)

where ξ∗s (t) is the state of the system at the tth step in the
estimated trajectory for the given environmental condition. The
complete trajectory Ξ∗ = [ξ∗s (0), . . . , ξ∗s (N)] can be obtained
by computing (17) for i = 0, . . . , N .

In this scheme, once K(X,X) and σn are obtained in
the offline phase, the only computation required for online



trajectory planning is computing (17) for i = 0, . . . , N , which
is a matrix calculation with relatively small computational
cost. This feature enables a trajectory planning in a dynamic
environment with sufficiently short computation time.

C. Motion Control Scheme

When the planned trajectory is updated during the automa-
tion task, it changes discontinuously. However, if the motion
input to the slave manipulator changes discontinuously, it
could cause unstable system behavior. Therefore, the motion
input to the slave manipulator must be designed to be smooth
to ensure that the system tracks the updated trajectory in stable
manner.

For this purpose, we employ the concept of sliding mode
control [18]. In this case, the control input to the system is the
velocity of the system. Therefore, the system can be expressed
by a linear system as follows:

ξ̇s = u (18)

In the framework of the sliding mode control, the desired
system behavior is expressed as a sliding surface as follows:

s(t) = ξs(t)− ξ∗s (t) = 0 (19)

where ξs(t) is the state of the system at time t and ξ∗s (t) is
the desired state at time t obtained from the updated planned
trajectory.

We must design the motion input, u, so that the system
robustly slides on the sliding surface. In this system, we
employ the following control law:

u(t) = û−K · sat (s(t))

= ξ̇∗s −K · sat (ξs(t)− ξ∗s (t)) (20)

where K =

 k1 0 0

0
. . . 0

0 0 kn

 and ki > 0 for i = 1, . . . , n.

The saturation function sat(s) is expressed as follows:

sat(s) =

 sat(s1)
. . .

sat(sn)

 (21)

where

sat(si) =

 1 (si > ci)
si/ci (|s| < |ci|)
−1 (si < −ci)

(22)

where ci is a positive constant value. In (20 ), the first term
represents the control input to make the system slide on the
sliding surface; the second term represents the control input
to make the system converge on the sliding surface. The use
of the saturation function sat (x) is a common solution to
avoid a “chattering” problem common to the sliding mode
control. Furthermore, the control input defined as (20) is
upper-bounded; it avoids excessive change of the control
inputs that could cause unstable system behavior.

In the framework of the sliding mode control, it is known
that the system converges to the sliding surface in a finite

time if the following inequality is satisfied for a certain η =
[η0, . . . , ηn]:

1

2

d

dt
s2i < −ηi |si| (23)

where s = [s0, . . . , sn]T = [ξ0 − ξ∗0 , . . . , ξn − ξ∗n]T and n is
the dimension of the system [18].

For the range of |si| > ci, the condition in (23) can be
briefly proved as described below. From (19) - (20), we can
obtain the following equations.

1

2

d

dt
s2i = ṡi · si

=
(
ξ̇s,i(t)− ξ̇∗s,i(t)

)
si

=
(
u(t)− ξ̇∗s,i(t)

)
ss,i

= −ki
(
ξs,i(t)− ξ∗s,i(t)

)
si

= −ki |si| (24)

From line 3 to line 5, we use (20). Therefore, using the control
law in (20), the condition in (23) is satisfied, and the system
converges to the neighbor of the updated trajectory in a finite
time.

Meanwhile, in the range of |si| > ci, the following condi-
tion is satisfied:

ṡi = ξ̇s,i − ξ̇∗s,i
= u− ξ̇∗s,i (25)
= −kisat(si) (26)
= −kisi (27)

Thus, the system exponentially converges to the sliding surface
in the neighborhood of the sliding surface. Therefore, it
converges from any state to the desired trajectory in a finite
time and tracks in stable manner using the control law in (20).

IV. EXPERIMENTS AND SIMULATIONS

The proposed scheme was implemented on the robotic sys-
tem for remote surgery shown in Fig. 2. In the robotic system,
two robotic surgical instruments are attached to two robotic
arms; one laparoscope is attached to another robotic arm. We
performed the experiments and simulations to evaluate the pro-
posed scheme. In the experiments and simulations, the system
learned two tasks, namely, a DOUBLE LOOP task and a PICK
AND PULL task. Seven demonstrations were performed for
each of the tasks under various environmental conditions. The
environmental conditions were static during a demonstration.
In the simulation, the demonstrated trajectories were separated
into six demonstrations as a training dataset and one demon-
stration for the validation data. The demonstration used for
the validation data had a different environmental condition
from that of the training dataset, and trajectories demonstrated
and planned in the same environmental condition were com-
pared. To quantify the correctness and smoothness of the
planned trajectories, the RMS error between the demonstrated
trajectory and the planned trajectory, 1/T

∑∥∥ξds − ξ∗s∥∥, and
the norm of jerk, 1/T

∑T
t=0

∥∥...
ξ s(t)

∥∥, were computed. After



Fig. 5. Dataset of demonstrated trajectory for the DOUBLE LOOP task.

the simulation, experiments were performed to evaluate the
developed system’s ability to plan trajectories in a dynamic
environment, where the environmental condition changed dur-
ing the automated motions.

A. DOUBLE LOOP task

The DOUBLE LOOP task involves making a loop around
the left robotic surgical instrument with a thread held by the
right robotic surgical instrument. This task was designed to
demonstrate the trajectory generation for a time- and space-
dependent task in which the topological shape of the trajectory
had to adapt to the environmental conditions.

In this task, the environment condition ξc was the position
of the tip of the left instrument as follows:

ξc = ξl = [xl, yl, zl]
T (28)

The position of the tip of the left instrument ξl is expressed
in the coordinates of the base of the left robotic arm. The
transformation from the coordinates of the left robotic instru-
ment to the coordinates of the right robotic instrument was
unknown.

The demonstration trajectory data set in this experiment is
shown in Fig. 5. The demonstration trajectories and trajectories
planned in the same environmental conditions are shown in
Fig. 6. The average of the RMS errors between the demon-
strated trajectories and planned trajectories was 27.9 mm. As
shown in Fig. 6, the learned task trajectories were successfully
generalized to the new environmental conditions. In the simu-
lation, the average of the jerk of the demonstrated trajectories
was 1.58, and the average of the planned trajectories was
1.21 1. Because of the statistical model of the task, small
deviations seen in the demonstrations were not observed in the
planned trajectories, and the planned trajectories are smoother
than demonstrated trajectories. The computation time for the
planning trajectory was 85-90 ms using a 64-bit machine with
an Intel Core i7-4600U CPU 2.1 GHz.

Next, the proposed scheme was implemented in the robotic
manipulator, and the performance of the developed system was
tested by performing the DOUBLE LOOP task in a dynamic
environment. In the experiment, the left robotic instrument

1The unit of jerk is omitted because it was computed in the normalized
time domain.

(a) (b)

Fig. 6. Planned trajectories for DOUBLE LOOP task. (a) and (b) are
pictures from the same viewpoint. Red and green trajectories represent the
demonstrated trajectories and planned trajectories, respectively. Diameter of
the surgical instrument is 10mm.

Fig. 8. Visualization of planned trajectories and an executed trajectory of
the LOOPING task. Blue, orange, and yellow dots represent the trajectory
planned at the beginning of the task, the middle of the task, and the end of
the task, respectively. The green and red dots represent the trajectory executed
by the right and left hands, respectively.

was controlled by a human operator from the master site. The
position of the tip of the left robotic instrument was moved
to intentionally disrupt the automatic task execution while the
right robotic instrument was moving automatically to perform
the task.

Figure 7 shows the procedure and results of the experiment.
In the experiment, the system adapted the motion of the right
robotic instrument and successfully performed the DOUBLE
LOOP task. The system planned and updated trajectories
156 times in 18 seconds during the task. The trajectories
planned during the task are visualized in Fig. 8. As shown,
the trajectory was adapted according to the position of the
left surgical instrument. In addition, the system tracked the
planned and updated trajectories in a stable manner during
the task.

B. PICK AND PULL task

The PICK AND PULL task involves picking and pulling
surgical needles held by another surgical instrument. This
task was designed to demonstrate the adaptation of a time-
dependent trajectory, where the surgical instrument passes the



Fig. 7. Execution of DOUBLE LOOP task. The task was executed from the left-hand side to the right-hand side. To disrupt the task, the left robotic
instrument was moved to the left at the third figure, and moved upward at the fourth figure. Thereafter, the trajectory was adapted to the new position of the
left robotic instrument, and the thread was wound around the left robotic instrument successfully.

Fig. 9. Dataset of demonstrated trajectory for the PICK AND PULL task.

same area in different directions. In the PICK AND PULL
task, the position of the tip of the surgical instrument that held
the surgical needle was measured using 3D reconstruction with
a stereo web camera. The environment condition ξc was the
position of the tip of the instrument in the image coordinates
as follows:

ξc = pimage
ins = [ximage

ins , yimage
ins , zimage

ins ]T (29)

The tip of the surgical instrument that held the surgical needle
was tracked with a KLT tracker implemented using OpenCV
2[8]. Although stereo calibration was performed for the stereo
web camera, the transformation from the image coordinates to
the coordinates of the robotic instrument was unknown.

The demonstrated trajectory dataset is shown in Fig. 9. The
demonstration trajectories and trajectories planned in the same
environmental conditions are shown in Fig. 10. The average
of the RMS errors between the demonstrated trajectories and
planned trajectories was 11.4 mm. As shown in Fig. 10, the
learned task trajectories were generalized successfully to the
new environmental condition. In the simulation, the average
of the norm of jerk of the demonstrated trajectories was 2.01,
and the average of the norm of jerk of the planned trajectories

2http://docs.opencv.org/

(a) (b)

Fig. 10. Trajectories planned for PICK AND PULL task. (a) and (b)
are pictures from the same view point. Red and green trajectories represent
demonstrated trajectories and planned trajectories, respectively.

was 1.80 3. The computation time for the planning trajectory
was 50-80 ms when using a 64-bit machine with an Intel Core
i7-4600U CPU 2.1 GHz.

Next, the proposed scheme was implemented in the robotic
manipulator, and the performance of the developed system was
tested by performing the PICK AND PULL task in a dynamic
environment. To disrupt the task, the surgical instrument was
bent by hand, and the position of the surgical needle was
moved intentionally during the task.

Figure 11 shows the procedure and results of the ex-
periment. As shown, although the position of the surgical
instrument was moved immediately before picking the sur-
gical needle, the motion was adapted to the new position of
the surgical instrument, and the robotic surgical instrument
successfully picked the surgical needle. The system planned
and updated trajectories 168 times in 15 seconds during the
task. The trajectories planned in the experiment are visualized
in Fig. 12 along with the trajectory that was actually executed
by the robotic manipulator in the experiment. Figure 12 shows

3The unit of jerk is omitted because it was computed in the normalized
time domain.



Fig. 11. Execution of PICK AND PULL task. The task was executed from left to right. At the third figure, the surgical instrument was bent and the position
of the surgical instrument and the needle was moved. Thereafter, the trajectory was adapted to the new position of the needle, and the robotic instrument
successfully picked the needle.

Fig. 12. Visualization of planned trajectories and an executed trajectory
of the PICK AND PULL task. Blue, orange, and yellow dots represent the
trajectory planned at the beginning of the task, the middle of the task, and the
end of the task, respectively. The green dots represent the trajectory executed
by the left hands.

that the trajectories are updated online and that the system
tracked the updated trajectory in a stable manner during the
execution of the learned task.

V. DISCUSSION

In the proposed scheme, the trajectory is planned based
on the modeled distribution of the demonstrated trajectory.
Therefore, the planned trajectory is valid only in the range
where the modeled distribution is appropriate. Thus, to obtain
a satisfactory performance in a given area, the demonstrations
have to be performed under sufficiently various conditions.

In the experiments, the dimension of environmental condi-
tion ξc was set to three. Owing to this low dimensionality,
the distribution over the environmental condition could be
modeled using a relatively small number of demonstrations.
However, if the dimension of the environmental condition is
high, the number of demonstrations that the system requires
for learning the task will increase. In addition, since the
environmental condition is defined in Cartesian space, the
relationship between the environmental condition and the

deviation of the trajectory is expected to be almost linear
in this study. If the relationship between the environmental
condition and the deviation of the trajectory is nonlinear, for
example, in the case where the environmental condition is
defined in configuration space, more demonstrations will be
required for learning the task.

VI. CONCLUSION

This study presented a framework for online trajectory plan-
ning in a dynamic environment and showed the performance
of the proposed scheme through preliminary experiments and
simulations. In the proposed scheme, demonstrations in vari-
ous environmental conditions were used for learning task tra-
jectories. The demonstrated trajectories were normalized in the
time domain using DTW, and the distribution of the trajectory
over the environmental condition was modeled statistically
using GPR. The trajectory under the given environmental
condition was estimated as a conditional expectation using
the trained GPR model. Because of its low computational
cost, the proposed scheme of planning trajectories was able
to plan and update the trajectory in a dynamic environment.
To ensure that the system tracked the updated trajectories in
a stable manner, we presented a scheme for designing the
motion of the slave manipulator using a concept of the sliding
mode control. The proposed scheme was implemented in a
robotic surgical system, and the performance of the developed
system was tested through experiments and simulations. These
experiments and simulations verified that the system planned
and adapted the task trajectory online in response to a change
in the dynamic environment.
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