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Abstract—Synthesis of correct-by-construction robot con-
trollers from high-level specifications has the advantage of pro-
viding guaranteed robot behavior under different environments.
Typically, when such controllers are synthesized, assumptions
that the user makes about the behavior of the environment, if
any, are incorporated into the resulting controller. In practice,
however, the environment assumptions may be unknown to
the user, thus preventing the application of synthesis. Even
if environment assumptions are available, they may not hold
during the robot’s execution due to modeling errors or unforeseen
anomalous operating conditions.

In this paper, we address both of these problems. We present an
approach for synthesizing controllers that include built-in recov-
ery transitions, enabling the robot to make progress towards its
goals in the event of environment assumption violation, whenever
possible. Furthermore, we present a process for automatically
augmenting a specification with environment assumptions that
are computed from the robot’s observations at runtime. We start
with a set of candidate assumptions that is updated whenever
violated at runtime.

I. INTRODUCTION

Recent work on synthesizing robot controllers from high-
level specifications (e.g. [2], [3], [9], [12], [13], [15], [25])
advocates for applying the approach to create correct-by-
construction controllers. In this context, the specification is
usually expressed using temporal logic, and the synthesized
controllers, which are finite-state machines, are guaranteed to
cause the robot to fulfill its tasks. When considering reactive
tasks in which the robot’s behavior depends on what the
environment does during runtime, the synthesized controller
is able to react to every possible environment behavior in a
way that is compliant with the specification.

When users write specifications, they may make assump-
tions about the environment behavior. For example:

Example 1: Consider Specification 1 with the workspace
in Fig. 1 in which the robot is asked to patrol mailroom and
office (lines 3,4) while making sure that it is not in door
when the door is closed (line 2). In addition, the user made
an assumption that the door is never closed (line 1). The dark
gray regions in Fig. 1 are obstacles.
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Fig. 1: Workspace for Example 1 and 2

Without the assumption on the behavior of the door as in
line 1 of Specification 1, the desired robot behavior cannot be
guaranteed, since the environment controlling the door could
keep the door closed indefinitely. In this case here with the
assumption in line 1, Specification 1 is realizable and a correct-
by-construction controller can be synthesized.

In previous work [15], [25], the synthesized controllers were
allowed to crucially rely on the environment assumptions to
hold. Thus, these controllers typically do not have a suitable
course of action if the environment assumptions are violated.
Yet, assumption violations can occur in practice due to im-
proper modeling or lack of prior information. In Example 1,
if at runtime the door closes, the user’s assumption about the
environment is violated and the robot will not know what to
do, i.e. the controller will not have a next state.

In this paper, we approach the problem of ensuring cor-
rect robot behavior in environments with unexpected events
or unknown environments using the following recovery and
environment characterization schemes. Our proposed recovery
scheme modifies the strategy extraction process of the synthe-
sis procedure to synthesize an automaton that contains (i) the
correct robot actions when the environmental assumptions are
satisfied (as in [4], [15], [25]) and (ii) robot actions, if any
exist, that preserve the robot’s safety requirements and make
sure that the robot can make progress towards its goals when
the environment resumes the expected behavior. In particular,
we add transitions during the synthesis process that are used
as fall-back transitions when environment safety assumptions,
i.e., assumptions about the environment’s admissible transi-
tions, are violated.

Our environment characterization scheme is inspired by
previous work [16], [17] in the runtime verification com-
munity. We monitor the behavior of the environment and
check for violations of the environment safety assumptions
during execution. Every time a violation is detected, we note
the violation and continue to make progress towards the
robot’s goals with the recovery scheme if possible; otherwise,



we reconstruct the environment safety assumption based on
the observed environment behavior and synthesize a new
controller. This way, we tailor the environment assumptions
to the actual environment behavior but avoid an expensive
resynthesis step whenever it is not crucially necessary. If the
resulting assumptions render the specification unsynthesizable,
this implies that some environment liveness assumption is
still missing. We then employ specification analysis tools (e.g.
[14], [22], [23]) and provide feedback to the user. Based on
the feedback that pinpoints the group of formulae responsible
for the specification being unsynthesizable, the user can add
an additional environment liveness assumption. An advantage
of the environment characterization scheme is that it can be
applied to scenarios in which a reasonable set of environment
assumptions is completely unknown by simply starting with
an unsatisfiable safety assumption (i.e., ϕte = �(false). See
Def. 2.3.).

This paper proposes an approach to creating provably
correct task executions for robots that operate in environ-
ments that display unexpected/unmodeled behaviors. Instead
of silently failing, the robots attempt to recover from sporadic
environment safety assumption violations when possible, and
relax these assumptions based on the observed behavior, when
not possible. If relaxing the assumptions leads to unrealizable
specifications, the robot alerts the user and allows them to
modify the assumptions. The work in this paper is novel in
that it (i) allows the robot to make progress towards its goals,
when it can, even if the assumptions are violated and (ii) it
automatically redefines the assumed environment behavior that
the robot must react to, based on the robot observation.

The outline of this paper is as follows: After discussing
related work, we define the necessary preliminaries in Sec-
tion II. In Section III, we motivate and explain the problem
being solved in this paper and in Sections IV, V and VI we
describe our approach. Section VII illustrates and discusses
the performance of our approach using an example.
Related work: Topology change and motion planning: [19],
[20] consider a similar problem of having the robot’s
workspace topology further constrained during execution. To
address this change, they propose online syntheses of local
strategies at the affected workspace area and patch these
local controllers onto the original robot controller. [11] revises
and verifies a motion plan based on real-time information
while keeping the original specification unchanged in partially
known workspaces. In this paper, we address the occurrence
of unexpected environment behavior at runtime; this is not
related to the workspace topology, which is part of the system
guarantees and not the environment assumptions.

Unrealizable specification: Work by Li et al. [18] generates
realizable specifications from unrealizable ones through the
analysis of counter-strategies returned by the synthesis proce-
dure and mines environment assumptions with LTL formula
templates. Their approach, which is an offline process, returns
realizable specifications but those may not capture the actual
behavior of the environment as observed at runtime.

Learning: [10] uses grammatical inference to iteratively

refine symbolic controllers during execution in an unknown
adversarial environment. [5] uses automata learning methods
to develop a provably correct control strategy for a robot
moving in an environment with unknown dynamics. In our
work, we do not learn an exact/probabilistic model of the
environment but rather we relax assumptions based on ob-
servations. This way, we only resynthesize and change the
assumptions when needed and we do not need to collect data
for quantitative learning of transition probabilities.

Response to disturbances: [21] defines metric automata and
strategies on which it guarantees that the system behavior
remains close to the nominal-case behavior under the in-
fluence of unmodeled disturbances. In our work we either
have guaranteed correct behavior or we resynthesize a new
“nominal” behavior if one exists. We do not consider closeness
metrics. [24] generates a robust control strategy for an open
finite transition system with modeling uncertainties. Users
are required to provide uncertainty models, in the form of
transitions in addition to those in the original finite transition
system, in order to compute control strategies. Our approach
does not require user input to deal with the violations other
than of liveness assumptions when the specification becomes
unsynthesizable. In [1] the authors synthesize controllers from
a Continuous Stochastic Logic (CSL) specification that aim
to complete as many tasks as possible during a given time
constraint with a-priori knowledge about the probabilistic
nature of the environment and its changing topology. Our
work considers a different problem where we require (non
probabilistic) guarantees for robots operating in environments
with unmodeled behaviors.

Tolerating assumption violations: [7] proposes a qualitative
error-resilient system synthesis approach in which the system
is allowed to temporarily violate its guarantees in case of
environment assumption violations. In our work, we ensure
that no system guarantees is ever violated. [8] describes an
approach to synthesize a controller that can tolerate short
sequences of up to k environment assumption violations for
some k. The approach comes at a high computational cost, and
does not include an additional best-effort approach to tolerate
more assumption violations whenever possible, as our recovery
approach does. However, the technique is orthogonal to ours
in the sense that they can be combined to yield both benefits.

II. PRELIMINARIES

Definition 2.1: (Linear Temporal Logic (LTL)) Linear
Temporal Logic formulas are defined recursively with a set
of atomic proposition AP as:

ϕ ::= π ∈ AP | ¬ϕ | ϕ ∨ ϕ′ | ©ϕ | ϕU ϕ′

The conjunction (∧), implication (→) and biimplication (↔)
operators can be derived from the disjunction (∨) and negation
(¬) operators. The “always ” (�) and “finally” ( �) operators
can be derived from the “until” (U) and “next” (©) operators.

The truth of an LTL formula is evaluated over infinite se-
quences of states σ of a finite state machine A (Definition 2.5),
with each state defined as a truth assignment to the set of



propositions AP . The statement σ |= ©ϕ holds if ϕ is true
at the next state in the sequence; σ |= �ϕ holds if ϕ is true
at all states in the sequence; σ |= �ϕ holds if ϕ is true at
some state in the sequence. A is said to satisfy a formula ϕ
if for every execution σ of A, σ |= ϕ. A complete and formal
definition of the semantics of LTL can be found in [6].

Definition 2.2: (Atomic Propositions) The continuous be-
havior of the robot and the environment are abstracted by a
finite set of atomic propositions, AP = X ∪ Y .
• X is the set of environment inputs result from abstracting

the behavior of the environment sensed by the robot’s
physical sensors into a set of boolean propositions.

• Y = Reg ∪ Act is the set of robot outputs. The set of
region propositions Reg is obtained by partitioning the
workspace of the robot. There is always exactly one ri
with the value true, indicating the robot is inside a region
ri. The set of robot action propositions Act is abstracted
from robot actions, e.g., grasping a letter. ai is true if the
robot is performing the action and false otherwise.

Definition 2.3: (Mission Specification) We consider an
LTL specification ϕ of the form:

ϕ = ϕe → ϕs (1)

We denote X ∪Y and X ′∪Y ′ as the atomic propositions in
the current state and the next state respectively. With α ∈ [e, s],
each ϕα is a conjunction of the following formulas:
• ϕiα specify the initial conditions of the environment and

the system.
• ϕtα consist of the system safety guarantees (ϕts) and the

environment safety assumptions (ϕte). ϕ
t
s are of the form∧

k∈K �Ak with Ak being boolean formulae defined
over X ∪Y∪X ′∪Y ′. ϕte are of the form

∧
j∈J �Bj with

Bj being boolean formulae defined over X ∪Y ∪X ′. X ′
and Y ′ are equivalent to their corresponding variables in
X and Y when the latter are prefixed by © operators.

• ϕgα consist of the system liveness guarantees (ϕgs) and
the environment liveness assumptions (ϕge). They are of
the form

∧
i∈I � �φαi with φαi being boolean formulae

defined over X ∪ Y . The φgi components are also called
system goals.

The topology of the workspace is encoded in the specification
ϕ as part of ϕts. Here we omit the details of that encoding.

A specification is said to be unsatisfiable if ϕs cannot
be satisfied no matter what the environment behavior is. A
specification is said to be unrealizable if the environment can
enforce a violation of ϕ. No controller A (see Def 2.5) is
generated if the specification is unsatisfiable or unrealizable.
A specification is unsynthesizable if it is either unsatisfiable
or unrealizable; otherwise, it is synthesizable, or realizable.

Definition 2.4: (Game Structures) In order to determine if
there exists a controller (Def. 2.5) that satisfies some mission
specification ϕ (Def. 2.3), the generalized reactivity(1), or
GR(1) synthesis approach from [4] is used, which reduces
the problem to finding a winning strategy in a two-player
game between a system (robot) and an environment. The game

structure is defined as a tuple G = (X ,Y,Θ, ρe, ρs, φ) with
the following components:
• X and Y are environment input variables and system

(robot) output variables, as described in Def. 2.2. For
notational convenience, we also declare V = X ∪ Y .
We say that some assignment to the variables in V is a
position of the game.

• Θ ⊆ 2V is the set of initial positions of G.
• ρe ⊆ 2V × 2X is the set of input constraints that restricts

the behavior of the environment at some positions.
• ρs ⊆ 2V ×2V is the transition relation of G that describes

the allowed transitions by the system.
• φ is a winning condition for the system in G, given as an

LTL formula of the form
(� �φ

e
1 ∧ . . . ∧� �φ

e
m)→ (� �φ

s
1 ∧ . . . ∧� �φ

s
n),

where every element of φe1, . . . , φ
s
n is a boolean formula

over V that is free of temporal operators.
By solving the game, we can obtain a winning strategy for

the system (robot) player. This is elaborated in Section V.
Definition 2.5: (Synthesis and Execution of the Con-

troller) Our synthesized controller is a deterministic finite
state automaton A = (X ,Y, S, S0, δs, γX , γY) constructed
based on the framework presented in [15], where:
• X and Y are defined in Definition 2.2,
• S is the set of states with S0 ⊆ S being the set of initial

states,
• δs : S × 2X ⇀ S is the (partial) transition function that

defines the next state for a current state and a subset of
the environment inputs X that are true.

• γX : S → 2X labels a state si by input valuations, which
correspond to all transitions xi ⊆ X leading to the state.

• γY : S → 2Y is the state labeling function that labels
each state si with a subset of the propositions in yi ⊆ Y
that are true in that state.

The infinite execution of automaton A is a sequence of states
σ = s0, s1, ... such that s0 ∈ S0 and si+1 = δs(si, xi+1) for
all j ∈ N. We define (γX (s0), γY(s0)) (γX (s1), γY(s1)) . . . to
be the trace induced by σ.

III. MAIN PROBLEM FORMULATION

This paper addresses the challenge of dealing with spec-
ifications that are synthesizable only with the addition of
environment assumptions, such as the necessity of line 1
in Example 1. In many situations, a user defining a high-
level robot task may have partial or no information about
the expected environment behavior. Nonetheless, assumptions
about the environment are necessary in order to synthesize
a controller. Not knowing what to assume, the user may
make unrealistic assumptions that are violated at runtime. In
previous work, such violations caused the robot to fail its
mission.

Problem 1: Let ϕ = ϕe → ϕs be a realizable mission
specification, and ϕ′e be an unknown LTL formula describing
the actual environment constraints such that ϕ′e is of the form
described in Definition 2.3 and ϕe → ϕ′e, i.e. the actual



environment can exhibit a richer set of behaviors. We want
to control a robot in an environment satisfying ϕ′e to enforce
ϕs whenever possible, and obtain an observed approximation
ϕ′′e with ϕe → ϕ′′e . If ϕ′e → ϕs is unrealizable, we want to
eventually detect that. If ϕ′e is only concerned with variables in
X , we additionally want the approximation to be conservative,
i.e., such that ϕ′′e → ϕ′e holds.

Note that in Problem 1, we can always set ϕe = �(false)
in order to guarantee that we start with a realizable mission
specification in the case that no conservative starting point for
the actual environment assumptions is available.

IV. APPROACH

To address Problem 1, we consider a combined approach;
first, we create a controller that is less sensitive to unexpected
behavior of the environment. We modify the controller syn-
thesis algorithm of [4] so that it creates a controller with extra
“recovery” transitions (Section V).

Second, we capture the actual behavior of the environment
during execution and rewrite the assumptions portion of the
specification, in what we call “Environment Characterization”
(Section VI). Since our synthesized controller has recovery
transitions, it can continue to work in many cases where
rewriting is found to be necessary during runtime. This allows
the controller to continue its operation and collect more
data for the environment characterization. Note that in the
characterization process, we are not modeling the environment
explicitly, but rather we are relaxing the assumptions about
its behavior and thus synthesizing a plan for a richer set of
environment behavior.

Fig. 2 illustrates how our approach affects the flow from
high-level mission specification to mission execution of low-
level robot behavior.

Mission Specification in LTL 

Controller Synthesis 

Mission Execution 

Section V: 
Recovery 
Synthesis of 

controllers that 
are robust to 
environment 
assumption 

violation 

Section VI: Environment Characterization 
No environment assumption violation OR Environment assumption violation with appropriate actions 

Section VI: 
Environment 

Characterization 
Environment 

assumption violation 
with no appropriate 
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Fig. 2: Approach

V. RECOVERY

For the first part of our approach, we propose creating
robot controllers that (i) preserve the correctness guarantee
of the GR(1) synthesis algorithm in [4] when no environment
assumption violations occur, and (ii) always choose some next
action for the robot, if it exists, that does not violate the system
safety guarantees while ensuring that after recovery, the system
can still satisfy its mission specification when ignoring the last
environment assumption violation.

The algorithm in [4] performs synthesis in two steps: it
first solves the game that we build from the specification.
Then, if the system is found to be winning, the algorithm

uses the artifacts computed in the game solving process to
extract a winning strategy for the system player. Our proposed
approach for incorporating fault recovery modifies the strategy
extraction step of the construction, and in fact extends the
strategy computed by the approach in [4].

By the results of [4], we can compute the set of winning
positions for the system player in G by the following formula:

W = νL.

n∧
j=1

µM.

m∨
i=1

νN.(φsj∧ �©(L)∨ �©(M)∨¬φei ∧ �©(N))

In this formula, ν is a greatest fixed point operator, µ is a
least fixed point operator, and �© is the enforceable predecessor
operator. Intuitively, the formula represents that we search for
the largest set of positions W from which the system can
guarantee to satisfy the winning condition φ without leaving
W . Inside the outer-most fixed point operator, we iterate over
all goals φs1, . . . , φ

s
n and check that the system can reach every

goal if the environment liveness assumptions φei hold. The
system might not be able to reach the next goal in one step.
To find multi-step strategies towards the next goal, we start
with the goal positions; we use the least fixed point operator
µ to successively compute larger and larger sets of positions
in the game from which the system can reach the goal. As
the environment may prevent the system from reaching a
goal by violating its assumptions, we must account for this
fact. For this, we build a greatest fixed point νN over the
positions from which we either get closer to the goal, or stay
in a set of positions that witnesses the non-satisfaction of the
environment liveness assumptions.

When the initial positions are contained in the set of winning
positions, the specification is synthesizable. In such cases, we
extract a strategy in the form of a finite-state automaton A
from the intermediate computations. In particular, during the
last iteration of the outermost greatest fixed point, where we
have already computed W = νL. . . ., we store for every i ∈
{1, . . . ,m}, j ∈ {1, . . . , n}, c ∈ N the following series of
intermediate results:

Pj,c,i = νN.(φsj ∧ �©(L) ∨ �©(Mj,c) ∨ ¬φei ∧ �©(N)),

where we define:

Mj,c = µcM.

m∨
i=1

νN.(φsj ∧ �©(L) ∨ �©(M) ∨ ¬φei ∧ �©(N))

In this context, the variable j represent the robot goal under
concern, c denotes the reactive distance to the goal, and
i represents some environment liveness condition number.
The expression µc denotes stopping the least fixed point
computation of the formula right of the operator after c steps
and returning the result.

We construct a finite-state machine that has a set of states
for every goal. When the implementation is in one of the states
for a goal j, the finite state machine chooses the next outputs
such that the system moves closer to goal φsj . We also label
every state in the finite state machine with the current input
X ⊆ X and current output Y ⊆ Y of the system. When
the environment provides some next input X ′ that fulfills
the assumptions, i.e., we have (X,Y,X ′) |= ρe, the system
chooses some next output Y ′ such that (X,Y,X ′, Y ′) |= ρs



and (X ′, Y ′) ∈ Pj,c,i. For the lexicographically minimal
values of c and i, we give priority to minimizing c. In this
way, we enforce that the robot controller moves closer to the
goal. Whenever (X ′, Y ′) |= φsj , we switch to the next goal.

To incorporate the idea of recovery into this setting, we
remove the check whether (X,Y,X ′) |= ρe holds before
computing a successor position for some input X ′. Instead
of looking at which next input is allowed, we consider all
next input possibilities and compute transitions in the finite-
state automaton that are non-failure-causing. From a state that
is labeled by (X,Y ), we call some transition for input X ′ and
output Y ′ non-failure-causing if we have (X,Y,X ′, Y ′) |= ρs
and (X ′, Y ′) ∈ W , i.e., starting from position (X ′, Y ′) in
the game, the system can still satisfy its winning condition.
The idea here is that we check if the violation of a safety
assumption requires the system to violate the specification
in the long run. Whenever this is not the case, there is
some recovery output for the system that we can use as
Y ′. Again, we choose a successor position in Pj,c,i with
the lexicographically minimal index (c, i). This ensures that
environment safety assumption violations that are not of
relevance for the robot’s current goal are simply ignored by
the robot controller that we synthesize. The overall algorithm
to obtain an error-resilient implementation after computing
{Pj,c,i}1≤j≤n,c<cmaxj ,i<imaxj,c

is described in Algorithm 1.

Algorithm 1 Strategy extraction algorithm. The game struc-
ture is given as a tuple G = (X ,Y,Θ, ρe, ρs, φ), the family of
results {Pj,c,i}1≤j≤n,c<cmaxj ,i<imaxj,c

as defined on page 4
is assumed to be computed already. We assume, w.l.o.g., that
n ≥ 1. The variable ToDo stores the states whose successors
still have to be computed as a set, so duplicates are removed.

procedure EXTRACTIMPLEMENTATION
S0 ← Θ× {1}, ToDo ← S0, S ← ∅, δs = ∅
while ToDo 6= ∅ do

(s, j)← popElement(ToDo)
5: S ← S ∪ {(s, j)}

γY ← γY ∪ {(s, j) 7→ s|Y}
for X ′ ⊆ X do

for c < cmax j , i < imax j,c do
if ∃Y ′ ⊆ Y : (X ′, Y ′) ∈ Pj,c,i

iiiiiiiiiiiiiiiiiixxx ∧ (s,X ′, Y ′) |= ρs then
10: Y ′ ← some Y ′ ⊆ Y s.t. (X ′, Y ′) ∈ Pj,c,i

∧ (s,X ′, Y ′) |= ρs
if (X ′, Y ′) |= φsj then
j′ ← (j mod n) + 1

else
j′ ← j

15: δs ← δs ∪ {((s, j), X ′) 7→ ((X ′, Y ′), j′)}
if ((X ′, Y ′), j′) /∈ S then

ToDo ← ToDo ∪ {((X ′, Y ′), j′)}
break to line 7

return (X ,Y, S, S0, δs, γY)

The following theorem captures the error-recovery guaran-
tees in the robot controllers synthesized with our approach.

Theorem 1: Let ϕ = (ϕie ∧ ϕte ∧ ϕge) → (ϕis ∧ ϕts ∧ ϕgs)
be a mission specification with ϕte = �ϕt,1e ∧ . . . ∧ �ϕt,ke .
We obtain a finite-state automaton A that satisfies ϕ using
Algorithm 1 and claim the following quality guarantees of A:

1) Let w = (we0, w
s
0)(we1, w

s
1)(we2, w

s
2) . . . ∈ (2X × 2Y)ω

be an infinite trace induced by A and only for finitely
many j ∈ N, we have (wej , w

s
j )(w

e
j+1, w

s
j+1) 6|= ϕt,ie for

some 1 ≤ i ≤ k. Then w |= (ϕis ∧ ϕts ∧ ϕgs) if w |= ϕge .
2) Let w = (we0, w

s
0)(we1, w

s
1)(we2, w

s
2) . . . (wel , w

s
l ) ∈

(2X × 2Y)∗ be a finite trace induced by A; σ =
s0s1 . . . sl be its corresponding run, and X ′ ⊆ X ′
such that δs(sl, X ′) is undefined (i.e., the run ends
after l transitions). Then we have (wel , w

s
l )X

′ 6|=
ϕt,ie for some 1 ≤ i ≤ k. Also, there does
not exist another automaton A′ that (a) satisfies ϕ
along all of its runs; (b) has a trace of the form
(we0, w

s
0)(we1, w

s
1)(we2, w

s
2) . . . (wel , w

s
l )(X,w

s
l+1) . . . for

some wsl+1, and (c) also has quality guarantee number
one from this list.

Proof: For the first claim, note that w |= ϕis by the
fact that ϕis is only concerned with the first element of w.
Also, by the construction of Θ in G (see [4]), the automaton
can only pick a first output such that it satisfies ϕis. We
have that w |= ϕts as Algorithm 1 never picks outputs that
violate ϕts (which is encoded into ρs when building the game
from ϕ). The satisfaction of ϕge → ϕgs follows from the fact
that the transitions taken after the last environment assump-
tion violation are also possible transitions in an automaton
computed using the classical strategy extraction algorithm for
GR(1) specifications, which ensures the satisfaction of the
robot goals.

For the second claim, note that the automaton A computed
by Algorithm 1 never transitions to a state whose correspond-
ing position in G is not winning for the system player. This
can be seen from the fact that for all j, Pj,c,i converges to
the set of winning positions with increasing c and i, and no
transition to a state labeled by a position that is not in Pj,c,i
for some c is possible in A. As for winning G, the system
player always has admissible next moves for all environment
player moves allowed by ρe. The only way for the strategy
extraction algorithm not to find a transition is that ρe has just
been violated. As ρe is computed from ϕte, this means that
some ϕt,ie has been violated. However, whenever there is some
next move that leads to a winning position and such a move is
allowed by ϕts, our algorithm finds the position, as it appears
in some set Pj,c,i. On the other hand, transitioning to a non-
winning position in the game would prevent the system from
satisfying (ϕis ∧ ϕts ∧ ϕgs) even if w |= ϕte ∧ ϕge in the future;
the first property in the claim would be violated.

Intuitively, the theorem guarantees two properties of the
synthesized robot controller:
• Whenever the trace of the controller is infinite and

there are only finitely many temporary violations of the
environment safety assumptions, the robot controller will
eventually meet its goals while performing only safe
actions. Thus, the violations are tolerated.



• If the robot controller gets into a deadlock at some point,
then this can only be the case where an environment
safety assumption violation has just been witnessed.
There does not exist a way to tolerate the violation
without preventing the robot from achieving its mission
in the future, even in the optimum case that no further
environment safety assumption violations occur.

The complexity of GR(1) synthesis with recovery is the
same as for the GR(1) synthesis without recovery [4]. The
recovery algorithm gives a list of next possible actions of
the robot, which is of size exponential in the number of
atomic propositions. This is the same as for the original GR(1)
synthesis algorithm. Admittedly, the list length often grows
a bit when recovery transitions are added, but the overall
complexity stays the same. In our experiments, we showed
that this growth is not prohibitive in practice.

If environment assumption violations keep occurring, they
can prevent the robot from fulfilling its mission. In that case,
the environment assumptions should be rewritten as described
in Section VI.

VI. ENVIRONMENT CHARACTERIZATION AND
RESYNTHESIS

In this section, we present an approach for online construc-
tion of the observed environment assumption approximation
ϕ′′e (described in Problem 1), followed by controller resyn-
thesis. Recall that we are concerned with GR(1) specifica-
tions, so ϕ′′e will be of the form ϕ′′ie ∧ ϕ′′te ∧ ϕ′′ge . Using
runtime verification of the environment safety assumptions
ϕ′′te (Section VI-A), we detect violations of ϕ′′te when they
occur. We then update ϕ′′te based on the information gathered
during execution and resynthesize the controller if needed, as
described in Section VI-B. Whenever for some approxima-
tion ϕ′′te the specification ϕ′′e → ϕs is unsynthesizable, our
algorithm provides feedback to the user with the analysis tool
developed by [22] and asks for constraints to be added to
ϕ′′ge . We use the environment assumptions ϕe = ϕie∧ϕte∧ϕge
already provided by the user as an initial approximation for
ϕ′′e = ϕ′′ie ∧ ϕ′′te ∧ ϕ′′ge . Without loss of generality, we
assume that all environment transition constraints have been
merged into one, i.e., we have ϕte = �ψte for some sub-
formula ψte. We can always perform such a merge by taking
ψte =

∧
(�ψ) is a conjunct of ϕt

e
ψ.

A. Runtime Verification

To monitor the environment safety assumptions during exe-
cution, we parse each safety assumption into a tree structure.
The valuation of the robot and environment propositions Y
and X are used together with the latest sensor values for X ′
to evaluate the parsed tree at each timestep of the mission
execution, thus detecting environment assumption violations.

B. Environment Characterization and Resynthesis

In essence, the environment characterization process itera-
tively relaxes the assumptions on the environment, based on
actual observed environment behavior, until either the robot

completes its task or a specification becomes unsynthesizable
at which point the user is asked to provide liveness assump-
tions. This section describes when the formula ϕ′′te is updated
and what it is updated to.

Whenever environment assumptions are violated, ϕ′′te is
modified. Given the recovery transitions (Section V), the
robot may be able to complete its task without updating the
assumptions. In that case, we do not perform resynthesis. If
the robot cannot guarantee progress towards its goals, a new
controller is synthesized with the updated ϕ′′te . This occurs in
the following situations: (i) the recovery transition is a self
transition (si ≡ si+1), meaning that the current state satisfies
system safety ϕts but the recovery behavior is to wait until the
assumption violation is over, or (ii) the recovery transitions
cause the robot to change state (δs(si−1, xi) 6= δs(si, xi+1))
but there could be a livelock situation. We treat possible live-
lock situations conservatively; if the environment assumption
is continuously violated, i.e. the robot is only taking recovery
transitions, and the robot has made N state transitions (N
being user defined), we rewrite ϕ′′e and resynthesize the robot
controller. While this may result in unnecessary synthesis
calls, it avoids environment induced livelocks.

The environment characterization and resynthesis algorithm,
as described in Algorithm 2, relaxes the environment safety
assumption by adding disjuncts to ϕ′′te based on observed
behavior. We consider two types of updates: Formula 2 where
current environment states are added as allowed and Formula 3
where environment transitions (pairs of current and next states)
are added. The former allows for more environment behaviors
and is attempted first (line 7). However, if the specification
remains unsynthesizable, the latter is attempted.

�(ψte ∨
k∨
i=0

(
∧
x∈xi

x ∧
∧

x∈X\xi

¬x)) (2)

�(ψte ∨
k∨
i=0

(
∧
x∈xi

x ∧
∧

x∈X\xi

¬x ∧©(
∧

x∈xi+1

x ∧
∧

x∈X\xi+1

¬x))) (3)

If the specification is still unsynthesizable with the more
restrictive assumption (Formula 3), we employ the analysis
tool of [22] to identify the environment liveness condition ϕ∗ge
which, when appended to the specification as ϕ′′ge = ϕge∧ϕ∗ge ,
makes the specification realizable. If this creates a synthesiz-
able specification, the algorithm then returns to using the less
restrictive environment behavior of Formula 2.

The algorithm allows the user to start with a specification in
which the environment safety assumptions are �(false), i.e.
the environment has no possible behaviors and the system is
winning. The approach will then automatically characterize the
environment during execution, generating a realizable specifi-
cation if one exists. If the environment cannot be described by
a formula in GR(1) over the environment propositions, ϕ′′te can
overapproximate the real environment transition constraints,
up to the point of becoming equivalent to �(true). Otherwise,
our approach guarantees that we always have ϕ′′te → ϕ′te
for the actual (unknown) transition constraint ϕ′te that the
physical environment adheres to, provided that the algorithm



Algorithm 2 Runtime Environment Characterization. The
inputs are the current inputs xi, the incoming environment
inputs xi+1, the current system outputs yi and the specification
ϕ = ϕie ∧ ϕte ∧ ϕge → ϕis ∧ ϕts ∧ ϕgs .

procedure ENVCHARACTERIZATION
ϕ

′′t
e ← ϕte, ϕ

∗g
e = ∅, i← 0

while not abortExecution do
Update Eq. 2 and Eq. 3

5: if (xi, yi)xi+1 6|= ψ′′te and (si ≡ si+1 or
δs(si−1, xi) 6= δs(si, xi+1) for N times) then

ϕi ← (ϕie ∧ ϕis)∨ mapToLTL(xi ∪ yi)
ϕ′′te ← Eq. 2
Aut← SYNTHESIS(ϕ = ϕ′′e → ϕs)
if ¬Aut (ϕ is unrealizable) then

10: ϕ′′te ← Eq. 3
Aut← SYNTHESIS(ϕ = ϕ′′e → ϕs)

if ¬Aut (ϕ is still unrealizable) then
ϕ∗ge ← ϕ∗ge ∧ addEnvLivenessByUser()
ϕ′′ge = ϕ∗ge ∧ ϕge

15: Aut← SYNTHESIS(ϕ = ϕ′′e → ϕs)
if ¬Aut (ϕ is unrealizable with user input) then

abortExecution
i← i+ 1

switched to using Formula 3. If this approximation quality is
of importance, we can alternatively start with that formula.

Our approach allows the robot to make as much progress
towards its goals as possible while at the same time reducing
the number of resynthesis occurrences, as they are relatively
expensive. If the unexpected environment behavior is sporadic,
recovery alone typically suffices as long as the robot is safe.
Whenever the robot cannot make progress towards its goal, we
employ environment characterization to synthesize a controller
that is correct for the observed environment behavior.

VII. EXAMPLE

Example 2: Consider a robot performing a package delivery
task as defined in Specification 2, in the workspace shown in
Fig 1. The robot starts in hallway with all sensors false (line 1-
2). It then visits mailroom to pick up a package if it is notified
that a package is ready for pickup by the packageReady sensor
(line 6, 9-10). With the package in hand, the robot must deliver
it to office (line 7-8, 11). In addition, the robot cannot enter the
atrium when the sensor betweenClasses is true, and it cannot
enter the kitchen if cooking is true (line 4-5). The door region
is blocked if the doorClosed sensor is on (line 3).

Note that Specification 2 does not make assumptions about
the behavior of the environment; as such, it is unrealizable
since the environment could have the doorClosed sensor on
forever. This prevents the robot from reaching office and
delivering its package.

The experiments were conducted with an Aldebaran Nao
with pose provided by a Vicon motion capture system. Figure
3 depicts the items used to represent the environment events:
packageReady is a user input; betweenClasses and cooking

Specification 2 A package delivery task

Component of ϕi
e and ϕi

s

1 (πHallway ∧ ¬πdeliver ∧ ¬πpickup)
2 (¬πpackageReady ∧ ¬πdoorClosed ∧ ¬πcooking∧

¬πbetweenClasses)
Component of ϕt

s

3 �(πdoorClosed → ¬πdoor)
4 �(πcooking → ¬πkitchen)
5 �(πbetweenClasses → ¬πatrium)
6 �(πmailroom ∧ πpackageReady∧

¬πobtainedPackage)↔ (πpickup)
7 �(πoffice ∧ πobtainedPackage)↔ (πdeliver)
8 �((πpickup ∧ ¬πdeliver)→©πobtainedPackage))∧

�(πdeliver → ¬©πobtainedPackage))∧
�((πobtainedPackage ∧ ¬πdeliver)→©πobtainedPackage)∧
�((¬πobtainedPackage ∧ ¬πpickup)→ ¬©πobtainedPackage)

9 �(πobtainedPackage → ¬©πmailroom)
Component of ϕg

s

10 � �((πpackageReady ∧ ¬πobtainedPackage)→ πmailroom)
11 � �(πobtainedPackage → πoffice)

Fig. 3: Sensors used for Example 2: packageReady, doorClosed,
cooking and betweenClasses

are detected using the Vicon system and doorClosed is a ra-
dial barcode detected by the Nao’s built-in vision system. The
accompanying video captures all of the following examples.

A. Unrealizable Specification

As described in Section VI-B, when we have no information
about the environment, we synthesize a robot controller for
a ‘False’ environment. At the start of the experiment, the
environment safety condition �(false) does not hold and
we construct ϕ

′′t
e in Algorithm 2 by appending the current

observations of the environment. As all the sensor values
are false initially, this results in the new environment safety
condition ϕ′′te = �(false∨ (¬πpackageReady ∧¬πdoorClosed∧
¬πcooking ∧ ¬πbetweenClasses)).

With the modified specification being realizable, we resyn-
thesize and continue the execution. At this time, the sensor
packageReady is true and the robot should visit mailroom
and pick up the package. However, with the previous safety
assumption, the generated controller has no transitions going
to mailroom, since packageReady is assumed to always
be false. As the robot is stuck in the current state, the
current observed environment (πpackageReady∧¬πdoorClosed∧
¬πcooking∧¬πbetweenClasses) is appended to the environment
safety formula ϕ

′′t
e and a controller is resynthesized. The robot

proceeds to mailroom and picks up the package.



As the robot is moving towards door, it discovers that
the door is closed, thus violating the assumptions. Here, the
recovery only has a self transition causing the robot to wait
in front of the door until it is opened again. The addition
of current (Formula 2) and next (Formula 3) inputs to the
environment safety formula cannot resolve the unrealizability
of the specification. We then use the specification analysis tool
and figure out the necessary environment liveness condition for
a realizable specification; we find out the robot cannot proceed
to office if the door is closed forever. With the addition of the
environment liveness � �(¬πdoorClosed), the specification is
realizable again and the characterization of the environment
behaviors is reset to Formula 2.

With the door reopened, atrium is now occupied by the
students between classes. The robot cannot proceed to its goals
with the current controller and thus the clause (πpackageReady∧
¬πdoorClosed ∧ ¬πcooking ∧ πbetweenClasses) is appended to
the environment safety formula ϕ

′′t
e and a new controller is

synthesized. The robot then takes the lower path.
As the robot reaches classroom, atrium reopens while

kitchen is now occupied by the chef. With only a
self transition existing for the current state in the con-
troller, the current environment behavior (πpackageReady ∧
¬πdoorClosed ∧ πcooking ∧ ¬πbetweenClasses) is appended
to ϕte. However, the specification is unrealizable as the
environment can block kitchen when the robot is in
classroom, and atrium when the robot is in corridor,
creating a livelock. Instead, we add the current environ-
ment behavior and the next environment behavior from
the sensors (πpackageReady ∧ ¬πdoorClosed ∧ πcooking ∧
¬πbetweenClasses ∧ ©πpackageReady ∧ ¬©πdoorClosed ∧
©πcooking ∧ ¬©πbetweenClasses) to the environment safety
formula ϕ

′′t
e . The robot will now go back to corridor and

take the upper path.
The robot will be able to go from corridor to atrium with

the highly restrictive environment and finally reaches office
and delivers the package. This example is included in the
supplement video as the first example.

B. Recovery Approach
Consider Specification 2 augmented with the environment

assumptions listed in Specification 3, that state: the door
is never closed (line 1); if the robot is in corridor then
betweenClasses must be false (line 2); the chef is not in
kitchen when the robot is in mailroom picking up the
package (line 3); and the chef shall leave kitchen at some
point (line 4). With the addition, the new specification is now
realizable and a controller is generated.
Specification 3 Additional specification to the package deliv-
ery mission

1 �(¬πdoorClosed)
2 �(πcorridor → ¬©πbetweenClasses)
3 �((πmailroom ∧ πpackageReady)→ ¬©πcooking)
4 � �(¬πcooking)

In the experiment, the robot starts in hallway. With the
notification of package is ready for pickup, the robot visits

mailroom and picks up the package. When the robot is
in mailroom, kitchen is occupied by the chef and the
packageReady sensor is on. According to Specification 3, the
chef should have left the kitchen when package is ready and
the robot is in hallway. In this case, the environment safety
assumption is violated.

Since the robot can leave mailroom with no violations of
the system safety guarantees, the robot will move on to deliver
the package, using the recovery transitions. On its way to
office , in hallway, the chef left kitchen and betweenClasses
becomes true when the robot enters corridor, the environment
safety assumption �(πcorridor → ¬©πbetweenClasses) in
Specification 3 is violated.

Because the shortest path to the office is through the
atrium, and since the recovery approach only adds extra
transitions to states where the robot is safe, the recovery
approach causes the robot to wait in corridor until it can go
through atrium. Once classes start again (πbetweenClasses is
false), the robot can go from atrium to office. This example
is included in the supplement video as the second example.

If the recovery and the environment characterization ap-
proaches are used together, when one of the environment
safety assumptions is violated and the robot cannot make
progress towards its goal, we add in the environment behavior
that we have observed so far as in Eq. 2 or Eq. 3 and
resynthesize. With this change, the robot moves to classroom,
kitchen and finally reaches office and delivers the package as
seen in the third example in the supplement video.

VIII. CONCLUSIONS

In this paper, we address the problem of generating provably
correct controllers from high-level specifications for robots
operating in unexpected or unknown environments. We present
an approach that recovers from violations of environment
safety assumptions and captures the actual behavior of the
environment when unexpected environment behavior is ob-
served. In previous work, such violations would cause the
robot to stop since the synthesized controller did not contain
any next action for such situations. Furthermore, the robot
would not indicate why it has stopped executing its task.

Our approach allows the user to identify and detect the
violations of environment safety assumptions during execu-
tion. Our modified synthesis algorithm creates controllers that
ensure the robot makes progress towards its goals, if possible,
in the event of such violations. In contrast to other related ap-
proaches, the generated controller satisfies its specification by
pursuing its own goals rather than falsifying the environment;
the latter of which may create correct controllers exhibiting
undesirable behavior. In addition, we modify the specification
on the fly and correct the user’s false or incomplete assump-
tions about the environment behavior.
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