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Abstract—In the last decade new actuator designs have been
presented trying to introduce at mechanical level the advantages
of compliance. Ranging from serial elastic actuators to different
designs of variable stiffness actuators, various prototypes have
been proposed and implemented on robots, thus allowing per-
formance of novel and challenging tasks. Nevertheless some of
these new devices often are affected by the drawbacks related
to friction. In particular, static friction due to its discontinuous
nature, can produce undesired behaviors that are rather difficult
to compensate.

In this paper we present a novel kind of passive variable
stiffness actuator based on agonist-antagonist configuration. The
specific design we adopted improves the capability of the system
in mechanically compensating the external disturbances, but on
the other hand intensifies the effect of stiction during the co-
contraction of the agonist and antagonist side of the actuator.
The consequence is the appearance of a set of neutral equilibrium
configurations of the output joint that we named “dead-band”.
This issue is tackled analytically investigating the propagation
and the distribution of the stiction components within the whole
system. The result is a condition over the spring potential energies
that is exploited to properly design the new non-linear springs.
Eventually experimental tests are conducted on the real actuator,
showing the effectiveness of our analytical approach.

I. INTRODUCTION

Over the last decades robot technology has experienced
remarkable progresses. Rise in processing power of electronic
micro-controllers and computers has lead to noteworthy im-
provements in planning and robot control. From a mechanical
standpoint, advances were closely tied to the development
of new actuation systems. Series elastic actuators (SEA) [1]
nowadays represent an alternative to classic rigid actuators
composed by electric motors and gears. More recently, several
variable stiffness actuators (VSA) [2] have also been intro-
duced to overcome some of the SEA limitations, which arise
from the constant value of actuator stiffness. In spite of greater
advantages in terms of reliability, safety and energy storage
[3], these novel generations of systems are affected by new
issues that are mainly related to their increased mechanical
complexity. In particular, with reference to agonist-antagonist
VSA, friction is often identified as one of the most evident
and most adverse drawback. All antagonistic actuators are
based on the basic idea of co-contracting both agonist and
antagonist motor sides of the system, to increase joint stiffness.
As a consequence, internal forces increase thus augmenting
frictions, and in particular stiction components. Eventually,

the performance of the actuator are highly affected by the non-
linearities introduced by stiction and its relative discontinuities
are often difficult to compensate. This decay in performance is,
together with inertia issues, a limit for controlling the actuator
mechanical bandwidth while performing applications such as
torque control or dynamic tasks involving human or environ-
ment interaction. Different approaches have been proposed to
reduce most evident and undesirable drawbacks. Among these
there are classical integrator action and disturbance observer
[4], adaptive controllers [5], sliding mode control [6] or model-
based friction compensation [7]. All of these approaches have
the advantage of being fast and accurate, but most of them
reduce the benefit of inherent passive compliance to a certain
extent. Controllers indeed introduce an additional compliance
which acts upon the series, variable or fixed, elasticity and that
could be difficult to tune.

In this paper we focus our analysis on a new actuator [8],
that can be classified in the group of unconventional agonist-
antagonist variable stiffness actuators, which comprises, for
example, the quasi-antagonistic design [9], the bidirectional
design [10] and the cross-coupled design [11]. Due to the
particular structure of the system, the actuator output joint
should posses a unique equilibrium position [12], but the
presence of stiction gives rise to a set of indifferent equi-
librium configuration. This range of equilibrium position,
named “dead-band”, rapidly increases together with actuator
co-contraction, i.e. simultaneous activation of the agonist and
antagonist actuators. Starting from the observation that both
friction and spring restoring forces can be represented as
a function of the actuator internal tension, we explore the
possibility of mechanically compensate the stiction adverse
effects by exploiting the actuator elastic elements. Through
the analytical representation of the correlations of the system
internal states, we derive analytical conditions to ensure that
during co-contraction the increase of the restoring forces is
“faster” than the increase of the friction forces. We exploit
this representation to formulate differential conditions on
the spring potential energy to guarantee that co-contraction
reduces the effect of friction on the joint equilibrium position.
The design of an optimized set of springs, respecting these
conditions, led to the construction of a new version of our
actuator. This new model shows that for increasing levels of
co-contraction the effect of stiction, and thus the dead-band
effect, decreases.



The main contribution of this work resides in a complete
and unique technique to mathematically model the relationship
between stiction and spring restoring forces, deduce analytical
conditions over the spring potential energies and design new
springs to improve the actuator performances in terms of
static dead-band. Furthermore our analysis does not make any
restrictive assumptions on the spring characteristic, making
this procedure as general as possible.

The rest of the paper is organized as follows. Section II
gives an overview of the fundamental principles that guided the
actuator design. Section III presents the “case study” prototype
focusing on its main features and introducing the analytical
description of the sensitivity of the internal states. In Section
IV we introduce the issue caused by the stiction that we
aim to solve by identifying the main friction source and by
providing the mathematical representation of the dead-band. In
Section V we present the main theoretical analysis focused on
understanding which conditions the non-linear springs should
satisfy to reduce the effects of stiction, and providing the
relative closed form solution. Finally, Section VI is dedicated
to the finding of an optimum design of the non-linear springs,
which have been tested on the real system for the validation
of our theoretical analysis.

II. BACKGROUND

The system considered in this paper is a novel agonist-
antagonist VSA that has been designed to tackle highly
dynamical tasks. This new design principle arises from the
requirement to have new robotic systems able to operate
reliably in unstructured environments, where robots with rigid
structure are becoming a limitation for envisioned tasks or
applications such as in human-robot interaction [13]. To face
this problem different approaches have been proposed from
impedance control of stiff actuators like the DLR-LWR [14]
to several mechanical architectures to adjust the transmission
rigidity [15] and improve safety interaction [16]. Nevertheless
some drawbacks are starting to emerge because relying on
feedback in artificial agents (such as humanoid robots) might
not be a practical strategy specifically considering the grow-
ing amount of sensors (e.g., distributed force/torque sensors
[17],whole-body distributed tactile sensors [18], gyros and
accelerometers [19]) which are currently available and have
to be acquired and centrally processed to perform complex
actions. The design behind our actuator has been inspired by
investigating the muscle co-activation strategy that humans
exploit to cope with sensorimotor delays and noise in presence
of instabilities [20]. What results from these studies is that
stiffness regulation is indeed an essential movement feature
that in biological systems is not achieved with active feedback
loops.

A. passive noise rejection

In a recent work we considered a broad class of pVSA and
we computed the associated passive disturbance rejection [21].
In Fig. 1 we depict from a mechanical standpoint some of the
interaction that can occur between a motor ϑ, a joint q and

q

Fig. 1. Schematic representation of an actuation system. The elastic and
damping elements a and b, c and d correspond to the linearization of the
environmental interactions with the joint q and the motor ϑ respectively.

the environment. For example the key component of a typical
pVSA is an elastic element of variable stiffness in between
the motor and the joint, this elastic element is represented
by the spring c. We study the effect of disturbances entering
the system focusing in the passive disturbance rejection, i.e.
no feedback has been considered to increase disturbance
rejection. Disturbance is represented by stochastic variables
acting as forces on the motor and on the joint (white noise).
Computations, not reported here given the complexity of the
analytical expression [21], show that the passive disturbance
rejection monotonically increases with the stiffness of the
elastic element in between the motor and the joint (represented
by the parameter c). However, the values of a, b, d and
e are also essential to guarantee a certain level of passive
disturbance rejection. The spring elements connecting the
motor and the joint to the environment, a and b respectively,
are typically not present in pVSA designs with rotary motors.
Nevertheless, they play a crucial role in determining the overall
system passive disturbance rejection. In practice when a=b=0
the system is free-floating with respect to the environment
and noise can drive the system arbitrarily far from the initial
configuration. In a sense passive noise rejection is increased
by augmenting the stiffness of the path which connect the joint
to the ground. Therefore, we concentrate on actuators like the
ones in Fig. 1 not having a and b simultaneously zero. We
name these actuators “passive noise rejecting VSA” (pnrVSA).

A nice example of actuators possessing the aforementioned
features is represented by biological muscles. In particular the
main properties of the biological muscles have been reported
by [22] using the model represented in the left part of Fig.2.
It can be proven (see [23] pag.23) that its mechanical model
is equivalent to the one shown in the right part of Fig. 2 and
therefore the overall muscle force can be written as:

F = FSE(KSE , l2) = FPE(KPE , l1) + ϑ(Lj , f(t)),

where KSE is the series elastic element (c in Fig. 1), KPE

is the parallel elastic element (a in Fig. 1) which in series
with KSE account for the passive tension properties of the
muscle and ϑ is the active force generated by the contractile
element depending on the muscle history activation f(t) and
the overall length Lj .

During the actuator design we concentrate on two main
characteristics of the mechanical muscle model: the possibility
of finding a closed path that connects the frame to the
actuator endpoint and the capability of varying the stiffness
independently from length. Thus our goal has been to design
a mechanism composed by an elastic element in series with a



Fig. 2. Hill muscle model (right hand side) and an equivalent model (left
hand side). Muscle regulation, as suggested by [24], is done controlling the
system as a non-linear spring with adjustable resting length. The actuator ϑ
is represented as a contractile element.
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Fig. 3. Prototype schema: output joint q is controlled by means of internal
actuation torques τϑ and τϑa , while ϑ and ϑa represent capstan angular
position. τq is an external torque acting on the output joint.

structure composed by a contractile element in parallel with
a second elastic element 1. As shown in Fig. 3 this idea
has been exploited to build an agonist-antagonist actuator
which resembles the human muscles arrangement: all springs
connecting the joint to the motors and the motors to the ground
are non-linear (as indicated by the sketch with coils of variable
width).

III. PROTOTYPE DESCRIPTION

We now propose an overview of the actuator mechanical
design focusing on the nonlinear spring selection and de-
sign. The principle sketched in Fig. 1 has been implemented
with rotational motors which are more commonly used in
the foreseen applications. The design shown in Fig. 3 is
obtained by attaching two nonlinear springs on the opposite
side of the motor capstans: the first, named KPE , realizes the
connection to the ground and works in parallel with respect
to the contractile element ϑ (spring elongation equals reel
displacement); the second, named KSE , behaves as series
elastic element. Intuitively, a clockwise rotation of the motor
ϑ coupled with a counterclockwise rotation of ϑa stretches
all springs causing no movement of the joint q. If springs are
designed in such a way that stiffness increases with stretch, the
overall path connecting the joint to the ground is stiffened up,
resulting in increased noise rejection. A complete analysis and
characterization of these intuitive control laws can be found
in [12]. Furthermore we can define the following quantities:
• rj is the radius of the joint pulley;
• rc is the capstan radius;

1With reference to Fig. 1 we can identify this mechanical structure
considering the the components a, ϑ and c.

• ϑ is the agonist capstan angular position;
• ϑa is the antagonist capstan angular position;
• q is the joint angular position.

As a convention for positive rotations of all angles (ϑ, ϑa

and q), we will assume positive angles for counterclockwise
rotations. Since the device has been designed to work in a
co-contraction configuration we can simplify our analysis by
assuming ϑ always negative (ϑ < 0) and ϑa always positive
(ϑa > 0) corresponding to the black arrows in Fig. 3.

The nonlinear spring design has been optimized and cus-
tomized in order to have light and compact solutions for both
the parallel elastic element KPE and the series elastic element
KSE . The change in stiffness is achieved through a cam
varying radius, specialized into two different custom solutions.
Regarding the KSE spring we rely on a similar procedure
to the one reported in [25], connecting a non-circular spool
in parallel to a linear torsional spring, as shown in the left
hand side of Fig. 4. In designing the parallel elastic element
KPE we had to consider some constraints related to the wide
range of motion of the output joint. Therefore we adopted
a different design, which relies on a three-dimensional non-
circular profile (right hand side of Fig. 4) connected to a linear
compression spring. In Fig. 5 is shown the CAD model of the
complete actuator for which more details can be found in [8].

Fig. 4. The nonlinear springs. On the left side the scheme that represents the
principle used to derive the KSE elastic element which can be seen as a non-
linear extensional spring. While on the right side a schematic representation
of the KPE elastic element, which can be considered as a non-linear torsional
spring.

Fig. 5. Overview of the CAD model of the pnrVSA.



A. Sensitivity matrix derivation

To analyze the system behavior we need to introduce
a mathematical description of the relationship between the
actuator internal states. For this purpose with reference to
the diagram in Fig. 3 we introduce the potential energies
of the spring as U1 and U4 respectively for the agonist
and antagonist KPE elastic elements and as U2 and U3 for
the KSE elastic elements. Moreover assuming equilibrium
configurations (qeq, ϑeq, ϑ

a
eq) with constant torques (τq = τ̄q ,

τϑ = τ̄ϑ and τϑa = τ̄ϑa ) we can write the following equations:
−U ′1(ϑeq)− U ′2(ϑeq + qeq) = τ̄ϑ

U ′4(ϑaeq) + U ′3(−qeq + ϑaeq) = τ̄ϑa

−U ′2(ϑeq + qeq) + U ′3(−qeq + ϑaeq) = τ̄q

, (1)

where U ′i(x) is the first derivative of the potential energy with
respect to x. These equations define a functional which can
be exploited to define the relationship between the internal
torques τ =

[
τ̂ϑ, τ̂ϑa , τ̂q

]T
and capstan/joint position α =[

ϑ̂, ϑ̂a, q̂
]T

. In particular to simplify the equations we will
consider the following variables:

rcϑ = ϑ̂ , rjq = q̂ , rcϑa = ϑ̂a,
τϑ
rc

= τ̂ϑ ,
τq
rj

= τ̂q ,
τϑa

rc
= τ̂ϑa .

and eventually exploiting the implicit function theorem we
can compute the Jacobian matrix:

∂α

∂τ
=


∂ϑ̂
∂τ̂ϑ

∂ϑ̂
∂τ̂ϑa

∂ϑ̂
∂τ̂q

∂ϑ̂a

∂τ̂ϑ
∂ϑ̂a

∂τ̂ϑa

∂ϑ̂a

∂τ̂q

∂q̂
∂τ̂ϑ

∂q̂
∂τ̂ϑa

∂q̂
∂τ̂q

 . (2)

The analytical expression of ∂α/∂τ will play a crucial role in
the next section during the modeling of the effects of stiction
on the joint q. In particular, we will focus on the quantities
referred to the sensitivity of the output joint to the internal
actuation torques ∂q̂

∂τ̂ϑ
and ∂q̂

∂τ̂a
ϑ

, aiming at characterizing how
the equilibrium configuration for q is affected by static friction
acting on ϑ and ϑa.

IV. STICTION EFFECTS

As mentioned in the previous section, friction plays an
important role in determining the performance of our system.
Due to the particular spring and cable configuration that has
been chosen to design the actuator, for a given set of internal
(τϑ, τϑa ) and external (τq) torques the output joint q should
posses a unique equilibrium position, solution of Eq. 12.
However, as shown in Fig. 6, the overall system behaves
differently and presents multiple equilibrium configurations
at which spring restoring and stiction forces are perfectly
balanced.

2In [12] we derived trivial conditions over the potential energies of the
springs to ensure the uniqueness of the joint equilibrium position. These
conditions are the following: monotonically increasing and non-negative
stiffness.

Fig. 6. The picture shows the dead-band that occurs for an internal capstan
torque of 1 Nm.

Motor Gear
τm τ

Capstan
τf

Fig. 7. Motor subsystem: the motor is connected to the capstan by the gear.
Friction effects between gear teeth greatly influence the torque transmission
from motor to gear and vice-versa.

To identify the main sources of friction we decided to test
the actuator by dividing it in two main subsystems: a frame
subsystem and a motor subsystem. The frame includes the
four non-linear springs, the output joint and all necessary
bearings. The motor subsystem, shown in Fig. 7, is composed
by the electric motor, the gear and the capstan. This separation
has been made knowing that usually the teeth friction in
gears is predominant with respect to the other sources. To
test the frame subsystem we simply assembled our actuator
substituting the two electric motors with their relative gears
with two further capstans. These two capstans were connected
with a cable to a mass; thus we obtained an ideal constant
torque source not affected by gear friction. In this setup we
noticed significant improvement of the performances of the
system. Already at low level of co-contraction the dead-band
effect was hardly noticeable. Further increasing the weight
of the masses, thus augmenting the level of co-contraction,
rapidly made it disappear. The analysis of the frame subsystem
clearly showed that the main source of stiction lies in the motor
subsystem.

To explain this behavior we can consider the scheme in
Fig. 7. Denoting ρ as the reduction ratio, ideally we should
have that τ̃ = ρτm, but in practice the real torque on the
load (the internal capstan) τ can be decreased or increased
(depending if considering the subsystem from the motor or
the capstan point of view) by the friction torque τf which
relates to the gear static efficiency.

A. Analytical condition derivation

To perform our qualitative analysis we assumed that the
torque static friction is a function of the torque acting on the
load3: τf = τf (τ), with τ being either τϑ or τϑa depending on

3This assumption derives from the fact that co-activation increases internal
forces. Certain friction forces, such as stiction, increase with normal forces and
therefore an increased stiction should be expected in response to an increased
level of internal forces.



the considered capstan (agonist or antagonist as represented
in Fig. 3). The analytical description of the dead-band can
be found considering the sensitivity matrix defined in Eq. 2.
We can think of the dead-band as the consequence of an
uncertainty that affects the torques that are applied at the
capstans, where the amplitude of this uncertainty can be
represented considering the stiction torque. Furthermore the
total actuator dead-band 4q can be seen as the sum of the
contributions coming from the agonist and antagonist side,
yielding:

4q =
∂q̂

∂τ̂ϑ
τ̂f (τ̂ϑ) +

∂q̂

∂τ̂ϑa

τ̂af (τ̂ϑa) . (3)

From the expression of ∂α/∂τ given in Eq. (2) we have:

∂q̂

∂τ̂ϑ
=

U ′′2
U ′′1 + U ′′2

∂q̂

∂τ̂q

and

∂q̂

∂τ̂ϑa

=
U ′′3

U ′′3 + U ′′4

∂q̂

∂τ̂q
,

thus substituting those quantities in Eq. (3) yields:

4q =
U ′′2

U ′′1 + U ′′2

∂q̂

∂τ̂q
τ̂f (τ̂ϑ) +

U ′′3
U ′′3 + U ′′4

∂q̂

∂τ̂q
τ̂af (τ̂ϑa)

=
∂q̂

∂τ̂q

(
U ′′2

U ′′1 + U ′′2
τ̂f (τ̂ϑ) +

U ′′3
U ′′3 + U ′′4

τ̂af (τ̂ϑa)

)
. (4)

Eq. 4 represents the quantity we were looking for: it analyti-
cally defines the global actuator dead-band as a function of the
internal system torques (and thus the co-contraction level). In
particular we have been able to define how the static friction
on the gearbox is reflected on the output joint.

To improve the performance of our system we now formu-
late a differential condition on the spring potential energies
to guarantee that co-contraction reduces the effect of gearbox
friction on the joint equilibrium position. To make the anal-
ysis as general as possible, the conditions are expressed by
assuming a generic functional dependence between stiction τf
and applied torque τ . Similarly the non-linear spring potential
energies are kept unspecified.

We want to study how Eq. (4) varies with variations of τ̂ϑ
and τ̂ϑa . The first term is the joint sensitivity, i.e. the inverse
of the joint stiffness, and it monotonically decreases given a
proper control action, for example by a co-contraction. We are
then left to study the remaining quantities inside the brackets.
Because of the symmetry of the actuator we can focus our
analysis on the antagonist term only4. By taking its derivative

4We choose the actuator antagonist side because in this case torque and
angular position of the capstan are positive for co-contraction as defined in
Fig. 3. Furthermore for the sake of notation simplicity we drop the superscript
“a”.

with respect to τ̂ϑ we get:

∂

∂τ̂ϑ

(
U ′′3

U ′′3 + U ′′4
τ̂f (τ̂ϑ)

)
=

=
U ′′3 U

′′′
4

(
∂ϑ̂
∂τ̂ϑ

+ ∂q̂
∂τ̂ϑ

)
− U ′′′3 U ′′4 ∂ϑ̂

∂τ̂ϑ

(U ′′3 + U ′′4 )
2 τ̂f

+
U ′′3

U ′′3 + U ′′4
τ̂ ′f , (5)

where for the sake of notation simplicity we drop the depen-
dency of τ̂f from τ̂ϑ and denote ∂τ̂f

∂τ̂ϑ
(τ̂ϑ) as τ̂ ′f . This simple

expression can be exploited to define the condition in order
for the dead-band ∆q to decrease:

∂

∂τ̂ϑ

(
U ′′3

U ′′3 + U ′′4
τ̂f

)
< 0 . (6)

Equation (6) has a great importance because it represents the
criterion to which the new non-linear spring must conform.
Furthermore substituting the expression of U3 and U4 of
the first prototype of the actuator it has been possible to
confirm that Eq. 6 is not satisfied and thus to explain why
the current choice of springs and gearboxes originated a dead-
band monotonically increasing with co-contraction.

V. DERIVATION OF SPRINGS POTENTIAL ENERGIES

The problem of finding a solution for our differential
inequality (6) can be tackled from different perspective and
using different methods. One option is, for example, to solve
an optimization problem, while another option is to solve
the problem analytically for easy potential energies (e.g.,
polynomial up to the 3rd order). In both cases anyway we
wouldn’t obtain adequate results, as a consequence of the fact
that the optimization involves a large number of parameters
and that we already impose the solution structure (i.e., 3rd
order polynomial). Among all the possibilities, we decide to
adopt a different method. We consider the dead-band condition
as a single functional of τϑ relating the potential energy of
both springs to each other. With this approach we solve the
differential equation and make explicit the relation between
serial and parallel elastic elements. Eventually, to find the
spring characteristic equation, we rewrite the equations as
functions of capstan angular position (ϑ) instead of capstan
torque.

Starting from Eq. 6 we construct an augmented form
introducing a non-negative slack variable to transform the
differential inequality into an equality. We choose the slack
variable to be quadratic to easily guarantee its positivity:

λ =

(
u

τϑ

)2

. (7)

where u represents the dead-band reduction rate. Furthermore
we define the functional T (τϑ) as follows:

T (τϑ) =
U ′′3 (τϑ)

U ′′4 (τϑ) + U ′′3 (τϑ)
(8)

where it is important to notice that U ′′3 and U ′′4 are derivative of
the potential energy with respect to ϑ but written as function of



τϑ
5. By using (7) and (8) we can rewrite Eq. 6 in the following

simplified form:

∂

∂τϑ
(T (τϑ)τf ) + λ = 0. (9)

We can compute its derivative obtaining the following differ-
ential equation in T (τϑ):

µτϑT
′(τϑ) + µT (τϑ) +

u2

τ2ϑ
= 0 (10)

and its solution:

T (τϑ) =
u2

µτ2ϑ
+
C

τϑ
, (11)

where C represents the constant of integration and µ represent
the static friction coefficient 6. Exploiting the definition of
T (τϑ) it is possible to express U ′′4 as function of U ′′3 :

U ′′4 =
U ′′3 − T (τϑ)U ′′3

T (τϑ)
=

(
1

T (τϑ)
− 1

)
U ′′3 . (12)

Eq. 12 is the mathematical counterpart of the concept we
mentioned before, i.e. to write the dead-band condition as
a functional of τϑ and to relate the potential energy of the
springs to each other. This equation will be used to derive the
parallel spring potential energy given the series one.

The last step to complete the analytical model requires the
introduction of a new equation relating the potential energies
and the capstan angular position. This can be done by having
a look again at the sensitivity matrix in Eq. 2. In particular
we focus our analysis on the term ∂ϑ̂a

∂τ̂a
ϑa

, which represents the
sensitivity of the internal capstan position with respect to the
internal actuation torque. This term, simplifying the notation,
is:

∂ϑ

∂τϑ
=

U ′′1 U
′′
2 + U ′′1 U

′′
3 + U ′′2 U

′′
3

U ′′1 U
′′
2 U
′′
3 + U ′′1 U

′′
2 U
′′
4 + U ′′1 U

′′
3 U
′′
4 + U ′′2 U

′′
3 U
′′
4

.

(13)
To simplify this equation, we can consider that adopting the
co-contraction strategy implies that the agonist and antagonist
capstan torques are equal in magnitude, i.e., |τϑ| = |τϑa |. As
a consequence, the net torque acting on the output joint is 0
because each actuator balances the other. Conceptually, this
particular situation, from the antagonist motor side, is experi-
enced as if the cable connecting the series elastic element to
the joint were attached to an infinitely stiff spring. Thanks to
this observation we can simplify Equation 13 considering the

5This can be done if we consider that the angular position of the capstan
is a function of the applied torque: ϑ(τϑ). In particular if the agonist
and antagonist torques are equal in magnitude the capstan position can be
computed inverting the following equilibrium equation:

τϑ = U
′
PE(ϑr)r + U

′
SE(ϑr)r

6As shown in Section VI the stiction torque τf is a linear function of the
capstan torque: τf = µτϑ

agonist elastic elements, whose potential energies are labeled
U1 and U2, as if they have infinite stiffness, thus obtaining:

∂ϑ

∂τϑ
=

1

U ′′3 + U ′′4
(14)

Substituting Eq. 11 and Eq. 12 into Eq. 14 we obtain a simple
equation relating the antagonist serial spring and the antagonist
capstan sensitivity:

∂ϑ

∂τϑ
=
u2 + µτϑC

µτ2ϑU
′′
3

(15)

Now, choosing an appropriate U ′′3
7 and integrating Eq. 15, we

obtain the relation between the capstan angular position and
the applied torque:

U ′′3 = kτ2ϑ (16)

ϑ(τϑ) =

∫
u2 + µτϑC

µτ2ϑkτ
2
ϑ

dτϑ =
2u2 + 3µτϑC

6kµτ3ϑ
(17)

If we solve Eq. 17 for τϑ(ϑ) we obtain three different
solutions: two are complex conjugates and one is real. We
consider only the real one:

τϑ =
3
√

6kϑCµ2 − 3
√
γ2

3
√

6γkϑµ
, (18)

where

γ =
√

6k3µ4ϑ3 (C3µ2 + 6kϑu4) + 6k2µ2ϑ2u2.

Substituting Eq. 18 into Eq. 16 and Eq. 12 we obtain the
functionals we were looking for.

As a simple test to prove the validity of our approach we
substitute the second derivative with respect to ϑ of the new
potential energies, written as a function of τϑ, inside the dead-
band condition (6). What we obtain is an always negative
derivative with slope given by the slack variable (7) λ:

∂

∂τ̂ϑ

(
U ′′3

U ′′4 + U ′′3
τ̂f

)
= −u

2

τ2ϑ

The main result of this section is represented by the analytical
expression of the two potential energies. The two solutions are
both characterized by the presence of a vertical asymptote and
have three free variables, i.e. k, u and C, which can be chosen
to tune the shape of the two curves for a given actuator.

VI. EXPERIMENTAL TESTS

In this section, through experimental test, we validate the
analytical solutions previously derived. In particular, tests
are conducted in two different phases: first we measure the
dead-band amplitude of the current actuator and we estimate
the gear static friction coefficient µ. Subsequently, through
numerical optimization, we adapt the analytical expressions of
the non-linear spring potential energies to our current motor
subsystems and we test the new springs.

7A potential function which guarantees the positivity and the monotonically
increasing property assumed in Section IV, written as a function of τϑ.



Fig. 8. Experimental tests on the motor subsystem to estimate the static gear
friction. This plot reveals the linear behavior for which the corresponding
regression coefficient µ has been estimated to 0.28. The plot also shows the
error bars for the measured data.

Torque
[Nm] DB [deg]

0.12 3.5
0.25 27.9
0.50 69.9
1.00 85.5

TABLE I
THE TABLE SHOWS HOW THE DEAD-BAND (NAMED “DB”) INCREASES

WITH CO-CONTRACTION.

A. Current actuator performances

Exploiting the output joint position sensor [26], the am-
plitude of the actuator dead-band has been measured for a
given set of equal internal actuation torques. Results have
been recapped in Table I. It emerges clearly that by increasing
the level of co-contraction the amplitude of the dead-band
increases.

The static friction coefficient µ has been evaluated by car-
rying out the following experiment for each motor subsystem.
We applied to the motor a known constant torque and we
wound a steel cable around the capstan. We applied to it a
known and measurable force and we started to progressively
increase it until the capstan started to rotate. In this way we
obtained the real torque at the load, τ . Knowing the gear ratio
ρ it has been then possible to calculate the expected τ̃ and to
estimate the friction component τf . The results of the tests,
shown in Fig. 8, reveal the linear behavior of the friction, for
which it has been possible to estimate the coefficient µ = 0.28.

B. New spring design and test

To design a suitable set of non-linear springs for the current
actuator we can shape the analytical solutions through the three
variables k, u and C. Given the complexity of the formulas,
that makes impossible to mathematically explore the space
of all feasible values, we decide to tackle the problem by
using numerical tools through a multi-variable optimization.
To define the feasible domain, we consider two kinds of con-
straints: algebraic and design constraints. Algebraic constraints
can be derived from the expression of U ′′3 and U ′′4 , as seen in
the previous section. In particular, to guarantee the physical
consistency of our mathematical analysis we need to guarantee
that:

6k3µ4ϑ3
(
C3µ2 + 6kϑu4

)
> 0 (19)

The variable u represents the reduction rate of the dead-band:
the higher the value of u, the faster the dead-band decreases
during co-contraction. This implies that we need to find a
good compromise that guarantees the validity of our analytical
model and maximizes the effectiveness of the new springs.
Regarding design constraints, we have some restrictions such
as limited space and motors’ peak torque of about 1 Nm.
Furthermore we need to consider in our optimization problem
the possibility to cover a wide range of stiffness and maximize
the operational range of the output joint.

The optimization has been split into two steps: the first
part checks the consistency of the spring energy potentials,
while the second step numerically simulates the actuator
co-contraction. As presented in Algorithm 1 the first step

Algorithm 1 Optimization procedure
Opt. Algorithm generates u, C and k
compute the coefficients of U3′′ and U4′′

if U3′′ < 0 OR U4′′ < 0 then
4: Cost← abs(min(U3′′, U4′′))

else
numerically integrate U3′′ and U4′′

simulate co-contraction
8: measure initial and final “DB”

measure spool final angular deflection
measure joint sensitivity
Cost ← W1 * capstan angular deviation +

12: W2 * (final “DB” - initial “DB”) +
W3 * joint sensitivity

end if

is composed by three lines of the code, which generate a
value for the three variables, compute the non-linear spring
coefficients U ′′3 and U ′′4 and test them to verify that there are
no negative values. If this is the case, the cost is defined in
such a way as to drive the optimization towards positive spring
coefficients. The second step of the algorithm is executed only
if all the stiffness coefficients are positive. In this case we
obtain the spring potential energies by performing a double
numerical integration. We then simulate a co-contraction phase
increasing the torque from a minimum value up to the motors’
peak torque. During the numerical simulation we measure the
initial and final dead-band (named “DB”), the final torsion of
the capstan and the joint sensitivity. Eventually, the objective
function is the weighted sum of the capstan angular deviation
from the desired value 8, the dead-band decrease and the final
joint sensitivity 9.

Structuring the objective function into two separate sub-
functions has the advantage of guiding the algorithm near the
feasible set, i.e. in our case avoiding negative stiffness, but it
has the drawback of creating a discontinuity which can be lead
to a local minimum. To face this issue, and considering also

8This quantity is essential for the compatibility of the new springs with our
former hardware because guarantees that the springs are not either too weak
or too stiff.

9Decreasing the joint sensitivity has the effect of increasing its stiffness



Fig. 9. The plots show the main results of the optimization. In particular, the first three figures represents the behavior of the objective function with respect
to the three free variables. In each plot is shown the objective function behavior without keeping constant the other two variables. In the second row are
shown the characteristics of the parallel and serial springs together with the relative appearance of the non-circular cams designed to construct the non-linear
springs.

that the co-contraction simulation is highly time demanding,
we adopt an optimization algorithm based on a multi-process
implementation of Differential Evolution [27]. Furthermore we
tune the weight W2 in order to locate the optimal solution
in the region of “negative cost” which can not be reached
by the first step. Figure 9 shows the main results of the
optimization. In particular, it is interesting to notice how the
objective function behaves symmetrically with respect to the
free variable u and how the techniques implemented to avoid
objective function discontinuities have been effective. We also
present the two non-linear spring functions for which vertical
asymptotes are around 9 radians, and their respective non-
circular cam profiles that have been used to design the new
serial and parallel elastic elements.

The last step has been the mechanical realization of the
springs and the reassembling of the complete actuator to per-
form the experimental test. As with the previous configuration
we stimulate simultaneously both electric motors in order to
produce similar torques at the internal capstans for different
levels of co-contraction. The results are shown in Table II
which highlights the effectiveness of the novel components
in inverting the dead-band mechanical behavior. In particular,
given the optimization objective function, the actuator shows
a large dead-band for low torques. The last experiment has
been carried out increasing the motor current over its nominal
value for a short period of time.

VII. CONCLUSIONS

In this paper we addressed and solved the problem of
quantifying analytically the effects and the propagation of
internal static friction for a prototype of agonist-antagonist
variable stiffness actuator. The novelty and the contribution
of our work resides in the possibility of exploiting the elas-
tic elements present in a wide class of agonistic VSA to

Torque
[Nm] DB [deg]

0.12 104.61
0.25 100.81
0.5 87.73
1 61.62

1.5 49.81

TABLE II
THE TABLE SHOWS THE EFFECTIVENESS OF THE NEW SPRINGS.

passively compensate the undesired side effects of internal
friction. Through an analytical approach we have been able
to generate a closed-form condition over the spring potential
energies to decrease the dead-band for increasing levels of
co-contraction. In particular, even if we couldn’t achieve the
dead-band cancellation, we demonstrate that our mathematical
approach can reasonably be exploited to design a novel fully-
stiction-compensated actuator. The principal constraints that
limited the effectiveness of the optimization for our current
actuator have been the limited torque provided by the motor
subsystems, the very narrow space for designing the new
components and still some important, but not predominant,
sources of friction in the frame subsystem. We aim in future
at designing a new actuator from scratch in order to have a
smaller set of constraints allowing full exploitation of all the
potentiality of our methodology.
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