
Learning to locate from demonstrated searches
Paul Vernaza and Anthony Stentz

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213
Email: {pvernaza,axs}@nrec.ri.cmu.edu

Abstract—We consider the problem of learning to locate
targets from demonstrated searches. In this concept, a human
demonstrates tours of environments that are assumed to minimize
the human’s expected time to locate the target, given the person’s
latent prior over potential target locations. The latent prior is
then learned as a function of environmental features, enabling
a robot to search novel environments in a way that would be
deemed efficient by the teacher. We present novel approaches to
solve both the inference problem of planning an expected-time-
optimal tour given a prior and the learning problem of deducing
the prior from observed tours. Our learning algorithm is inspired
by and similar to maximum margin planning (MMP), although it
differs in key ways. On the inference side, we advance the state-
of-the-art by proposing novel relaxations that are integrated into
a heuristic-driven search algorithm. An application to a home
assistant scenario is discussed, and experimental results are given
validating our methods in this domain.

I. INTRODUCTION

The subject of our work is teaching a robot to locate a
target object (or objects) by demonstrating search tours that
are expected to locate the target efficiently. Although several
applications motivate our interest in this concept, the primary
application discussed in this work is a home assistant and/or
elderly care scenario. We envision that in order to perform
a variety of meaningful tasks, a home assistant robot should
be able to locate common household objects efficiently. In
designing a system to perform this task, we can imagine a
few primary concerns: we would like the robot to be able
to efficiently search any environment (including ones not
previously seen), and we would like to minimize the amount
of user or programmer effort spent devising heuristics to
accomplish this task.

Our learning approach is designed primarily to address
these concerns. The general idea is as illustrated in Fig. 1.
In this paradigm, an engineer or user can simply demonstrate
the path that they would take to locate a target object most
efficiently. By collecting many such examples across different
environments, we can learn to generalize these efficient search
plans to novel environments.

Our approach is inspired by inverse optimal control tech-
niques such as Max Margin Planning (MMP [17]). As such,
we assume that the demonstrations optimize an objective with
some hidden parameters to be discovered; namely, we assume
the demonstrations are tours of the environments that minimize
the demonstrator’s expected time to locate the target. The
latent parameters are therefore the probabilities with which
the demonstrator expects to find the target at each location in

Fig. 1: Caricature of learning-to-locate concept. Fig. A depicts
expected-time-optimal search for a target object: a person
searches for the object based on an environment-dependent
latent belief over potential object locations. The strength of
the belief at each location is proportional to the height of the
cylinder there. Fig. B demonstrates how the person’s expected-
time-optimal path might change depending on relative dis-
tances and belief strengths. In Fig. C, a robot observes a human
demonstrating a search for a target object; notably, the robot is
not able to observe the human’s latent prior. Fig. D illustrates
the result of learning: the robot is able to deduce the human’s
likely belief in a novel environment and uses this belief to
plan an expected-time-optimal search path.

the environment. In order to achieve generalization, we learn
these probabilities as functions of features of the environment.
We can then apply these to guess the user’s prior distribution
in a novel situation and use the prior to plan a search path
that is efficient under that prior.

In this work, we present the details of carrying out such
an approach. Although our method is inspired by MMP and
related structured prediction methods, it differs in key practical
and theoretical ways that we will discuss in more detail.
Additionally, as in MMP, our learning algorithm consists
of alternating between solving the inference problem (i.e.,

planning optimal search tours given the prior) and updating
the parameters (i.e., the prior); a major issue is therefore how
to solve the planning problem as efficiently as possible. To this
end, we present advances in planning expected-time-optimal
search tours by leveraging novel relaxations of the problem
that are incorporated into a heuristic-driven search algorithm.

The next section provides a general overview of the method.
Section III then delves into the details of our inference
algorithm. Section IV describes technical details regarding
the learning procedure, including differences between our
method and comparable methods for structured prediction.
We relate our method to previous work in Sec. V. Details
of our experiments in the home assistant scenario are given in
Sec. VI, followed by discussion.

II. METHOD OVERVIEW

A. The inference objective
As stated earlier, our method assumes that we are able to

obtain demonstrated search paths that minimize the demon-
strator’s expected time to locate the target. To make this
notion more precise, we first introduce some notation. An
environment is associated with a graph, consisting of a set
of locations and a graph on those locations, which we assume
to be complete wlog. To simplify notation, we assume that all
environments consist of the N locations {1, . . . , N}. Each arc
in the graph is also associated with a transition time (or cost),
such that c(a, b) is the time taken in traversing the arc from
a to b. A tour x of the environment is represented by a path
visiting all the nodes; i.e., a permutation of {1, . . . , N}.

We can associate with each tour x the random variable
Td(x) representing the earliest time at which the tour in-
tersects the target, denoting its expectation by ETd(x). We
are interested in the expectation taken with respect to the
demonstrator’s belief, which we characterize by the prior
distribution Q: Qi is defined as the probability with which
the demonstrator expects to find the target at location i. The
dependence of the expectation on Q is emphasized by the
notation E[Td(x) | Q]. Finally, we can write the expected time
to detection of the target under the belief Q as

E[Td(x) | Q] =

N∑
i=1

Qxi

i−1∑
j=1

c(xj , xj+1). (1)

At run-time, our robot will need to deduce Q for its
environment and then compute argminx E[Td(x) | Q] in order
to plan a search path. This constitutes a hard combinatorial
optimization problem. We defer discussion of our solution to
this problem until Sec. III, focusing for now on the problem
of learning Q.

B. The learning objective
In order to achieve generalization across environments, we

consider Q to be an unknown function of the environment to
be deduced from our training data1. In order to do this, we will

1For simplicity, we assume the target object is fixed, and hence we do not
generalize over target objects. However, there is no conceptual difficulty in
using our method to generalize over target objects as well.

Fig. 2: Learning assumptions expressed as a plate model.
Shaded circles represent latent variables. Arrows represent
immediate, causal dependencies between quantities. See text
for notation.

search over a set of Q functions parameterized by a parameter
vector w. We use the notation Q(e;w) to denote the prior Q
evaluated on the environment e given the parameters w. Our
training data X consists of pairs (x̂, ê), where x̂ is an example
tour in environment ê.

We define the score function S(x, e, w) to be the objective
value that the demonstrator assigns to the path x in the
environment e, given parameters w to be determined. For now,
we assume that the user optimizes just the expected time to
find the target, which can be expressed as:

S(x, e, w) := E[Td(x) | Q(e;w)] (2)
x̂ = argmin

x
S(x, ê, w), ∀(x̂, ê) ∈ X . (3)

The dependencies between and assumptions on w, Q, x̂, and
ê are summarized in the graphical model illustrated in Fig. 2.

We would like to find w such that (3) holds as well as
possible for all the training data. In order to do so, we consider
selecting w such that the score of x̂ is as low as possible
compared to the score of any other tour in ê. This can be
achieved by solving an optimization problem of the following
form:

min
w

R(w) + C(
∑

(x̂,ê)∈X

S(x̂, ê, w)−min
x
S(x, ê, w)). (4)

This is similar to objectives used in structured prediction
methods such as MMP or structured perceptron, with notable
differences to be explained in Sec. V-A. Here R(w) is a reg-
ularization term meant to penalize overly complex solutions,
and C is a fixed parameter that selects a trade-off between
complexity and the degree to which the desired training data
constraints are achieved; for each instance not satisfying the
constraint, we pay a penalty proportional to the amount by
which the expected search time of the training tour exceeds
that of the best tour under the current prior.

We optimize this objective in a way similar to the subgra-
dient method for max-margin structured prediction: given a
current w, we solve the inner minimization over x, compute
the gradient of the objective as if x were fixed to that value,
and then take a step in the negative of that direction. More

precisely, we alternate the following steps:

x∗ê ← argmin
x

E[Td(x) | Q(ê;w)], ∀(·, ê) ∈ X (5)

w ← w − αk∇w[R(w)+

C(
∑

(x̂,ê)∈X

S(x̂, ê, w)− S(x∗ê, ê, w))], (6)

where αk is a sequence of step sizes. Notably, this requires
us to find an expected-time-optimal tour for each training
example in order to compute the gradient step, the details of
which we defer to Sec. III.

C. The form of the prior

A last design issue is the selection of the family of priors
that we will consider in our optimization. We believe that
the most natural choice is the family of maximum entropy
(MaxEnt) priors expressed as

Qi(e;w) =
exp

∑
j wjφij(e)∑N

k=1 exp
∑

j wjφkj(e)
. (7)

Here φij(e) denotes the jth feature of the ith location in
environment e; to give an example, we might define φ11(e)
to be the number of televisions at location 1, and we might
define φ12(e) to be the number of chairs at the same location.

The type of prior in (7) may be derived from first principles
in the following way. Suppose that the demonstrator searches
for and locates something many times and accumulates ex-
pectation statistics of the features—continuing the previous
example, this would correspond to calculating the expected
number of televisions and chairs at the target’s location.
Then the maximum entropy distribution consistent with these
statistics is of the form (7). The MaxEnt distribution is in a
sense the least biased distribution consistent with the data [7].
By assuming that the demonstrator’s prior is of this form, we
are assuming that they are choosing a rational belief based on
the type of information that is likely available to them.

D. The latent prior assumption

A critical assumption of our method is that we observe
optimal search paths and that the underlying priors are hidden.
If the priors were not latent, we could simply fit models
of the form (7) directly via regression. However, we prefer
the latent prior model for several reasons. First, our intuition
suggests that most people are not particularly adept at precisely
quantifying uncertainty in their beliefs, since this kind of
information is rarely required of them. Searching, on the other
hand, is a familiar and intuitive task that people perform
regularly, and we might expect people to have good heuristics
to solve it. Furthermore, in a practical setting, we may wish to
model other aspects of searching behaviors (see Sec. IV-B) that
may only be discovered via demonstrations of search paths. If
search paths are necessary anyway, then we might as well use
these paths to infer the priors as well.

III. PLANNING OPTIMAL SEARCH TOURS

Solving the expected-time-optimal search problem (1) is
a difficult combinatorial optimization problem. A dynamic
programming solution was previously presented in [12]. That
work computed the value function for a given start location and
target probability distribution by writing the recursive Bellman
equations for the value function and solving the equations
iteratively via value iteration. We present an alternate approach
here that leverages novel relaxations as heuristics in A* in
order to solve the problem much more efficiently.

A. Optimization via graph search

The most straightforward way to approach the minimization
of (1) as graph search is to explore the tree of all possible
visitation orders of the locations, computing an additional term
in the outer sum of (1) each time we append a location to the
permutation. The worst-case complexity of this approach is
proportional to N !, as it considers every possible permutation
of the locations. We can improve on this by simply switching
order of the sums in (1), obtaining the expression

N−1∑
j=1

c(xj , xj+1)

N−1∑
i=j+1

Qxi
. (8)

The inner sum is equal to the probability that the target is not
in the set {x1, . . . , xi}, leading to the equivalent expression:

N−1∑
j=1

c(xj , xj+1)(1−
j∑

i=1

Qxi
). (9)

We can convert this to graph search by defining our state as a
minimal sufficient statistic necessary to compute an additional
term in the outer sum. Specifically, this statistic consists of
the last visited state and the set of all previously visited states
(as opposed to the sequence). We therefore define a state as a
pair (y,V), where y is the last visited state and V is the set of
previously visited states. The state successor function succ(·)
and transition cost function c(· → ·) are defined by

succ((y,V)) = {(z, (V ∪ y)) | z /∈ V ∪ y} (10)

c((y,V)→ (z, (V ∪ y))) = c(y, z)(1−
∑

v∈V∪y
Qv).

As the size of the state space is N2N , and there are O(N) suc-
cessors per state, the worst-case complexity of searching this
graph via Dijkstra’s algorithm with a d-heap is O(N22N) [1].
By contrast, the complexity of the value iteration (or Bellman-
Ford [2]) approach of [12] is O(N34N).

B. Incorporating relaxations as heuristics

We now relate how to employ the solutions of arbitrary
relaxations of the problem as heuristics for planning in this
graph-based framework. A heuristic is defined as a lower
bound on the minimum cost to the goal state, as a function
of an arbitrary state in the graph [6]. Note that having a
way to obtain a lower bound on the optimum of (1) does
not immediately translate into a lower bound starting from an

arbitrary state of the graph search. We would therefore like to
convert the problem of obtaining a heuristic to that of bounding
a problem of the form (1). Consider the graph representation
of (10) and an arbitrary state (y,V). The remaining cost to the
goal is given by the expression

N−1∑
j=|V|+1

c(xj , xj+1)(1−
j∑

i=1

Qxi), (11)

where x|V|+1 is identified with y. The probability on the right
is equal to the probability that the target is not in the set
{x1, . . . , xj}, which is equal to the probability that the target
is neither in the set {x1, . . . , x|V|} nor in the set {x|V|+1}.
The previous expression is therefore equivalent to

P (target /∈ {x1, . . . , x|V|})
N−1∑

j=|V|+1

c(xj , xj+1)(1−
j∑

i=1

Q′xi
),

where Q′ denotes Q conditioned on the event that the target is
not in the set {x1, . . . , x|V|}. Up to a constant, this expression
is of the form (1) with a new prior Q′, starting at location y.

C. Obtaining heuristics via relaxations

The previous discussion prompts us to consider bounds that
may be obtained by optimizing relaxations of the expected-
time-optimal search problem with efficient solutions. We con-
sider two such relaxations, which are illustrated in Fig. 3.
First, we may consider relaxing the constraint that in order to
traverse an arc, the current location must be equal to the source
of the arc. The resulting problem has the important property
that the cost of inspecting a new location is independent of
the current location. This variant of the expected-time-optimal
search problem has been studied before in the search theory
literature, and is known to have a simple solution [4]: greedily
visit the location with the highest ratio of prior probability to
inspection cost. Specifically, we iterate the following update
until Qi = 0,∀i:

y ← argmax
y′

Qy′

minz c(z, y′)
, Qy ← 0 (12)

This is illustrated in Fig. 3. We first teleport to location 1,
travel to location 2, and then inspect location 2. After traveling
back to and inspecting 1, we then teleport to location 3 in
order to travel to and inspect the last location, which has a
high probability, but is far from all other locations.

Another heuristic is obtained by relaxing the implied con-
straint that we have only one searcher with which to locate the
target. Given N searchers, the optimal strategy is clearly to
assign each location to a searcher and have the searchers travel
to their assigned locations optimally and in parallel. Let d(y)
represent the time associated with the least-time path from the
start location to y. The expected time to locate the target under
this policy is simply

N∑
i=1

Qid(y). (13)

We evaluate these heuristics in Sec. VI.

1 2

3

relax arc source
constraints

relax single-searcher
constraint

0.5

0.25

10

2

Fig. 3: Illustration of relaxations of expected-time-optimal
search. See text for details.

IV. LEARNING DETAILS

A. Gradient-based optimization

A key difference between our method and max-margin
methods is the nonconvexity of our score function. Although
the mechanics of the alternating optimization method proposed
in Sec. II-B method are identical to the subgradient opti-
mization method for max-margin objectives, it is important
to emphasize that our optimization can no longer be called
a subgradient method [3]. This is due to the nonconvexity
of our score function, which implies that there must be
points at which subgradients of the objective do not exist.
Unfortunately, this means that we cannot apply standard
results regarding convergence of the subgradient method to
our method. However, our results in Sec. VI demonstrate that
convergence is observed in practice.

Another important sanity check in the absence of theoretical
convergence results is to examine the precise form of the
update rule (6) to see whether it seems reasonable. We
obtain the following expression for the derivative of the score
function in (6):

∂S(x, e, w)

∂wk
= −Ez(φzk(e)− Ez′φz′k(e))·

N∑
i=1

c(xi, xi+1)1{z ∈ {x1, . . . , xi}},

where Ez denotes expectation over locations z with respect to
the prior Q(e;w) and 1{·} denotes the indicator function. This
expression is an expectation of a product of two terms: the first
being a deviation of the feature from the mean, and the second
being the total amount of time that the target is observed by
the path. We can deduce from this that the features that matter
to the objective are those that occur at locations early in the
path and at locations where their values are far from the mean.
This corresponds with intuition, as locations occurring late in
the path correspond to locations that are probably unlikely,
and features with low variance are probably not significant.

B. Incorporating additional preferences

It is important to note that it is straightforward to model
additional preferences in the demonstrator’s objective (2). For
instance, in practice, we might expect that the demonstrator
may prefer tours that are short, even if they take slightly longer
to locate the target in expectation. This preference can be
modeled by adding an additional term to the user’s objective:

S(x, e, [w,α]) = E[Td(x) | Q(ê;w)] + α

N−1∑
i=1

c(xi, xi+1).

(14)
We then modify our update rules and the inference routine
accordingly in order to optimize over α as well as w.

V. RELATED WORK

A. Structured prediction and energy-based methods

The concept of an energy-based method (EBM [13]) is
a very general one that describes most structured prediction
approaches. In this view, the goal of learning is to find an en-
ergy function that accepts input-output pairs, returning a scalar
value that is low when the pairs are likely to be observed,
and is high otherwise. The key to understanding different
interpretations of our work as an EBM is the observation
that our method incorporates two kinds of energy (or score)
functions: the path energy of Eq. (2) and a location energy,
equal to the log of Eq. (7). Considering either as the principal
energy leads to very different interpretations of our method.

1) Unnormalized EBMs: First, we can consider the path
energy as primary and the location energy as an incidental
feature of a particular parameterization of the path energy. In
this case, our method is most naturally viewed as a unnormal-
ized EBM distinguished by two features: first, the nonlinearity
of our energy in the parameters; and second, the lack of a
loss function2. Linear methods with regularization, such as
MMP/M3N [17, 21] require a loss function in order to avoid
the trivial solution of zero energy everywhere; furthermore,
the MMP/M3N objective is a convex upper bound of the
loss, which leads to loss-based bounds on generalization error.
Although our method is similar to structured perceptron [5] in
its lack of a loss function, structured perceptron is dissimilar
in that it additionally lacks an explicit regularization term,
necessitating additional tricks such as voting, averaging, or
early stopping are necessary to yield good generalization [5].

Our decision to omit the loss and use regularization is mo-
tivated by several observations. First, although regularization
drives the parameters towards zero, this generally increases
energies due to our nonlinearity, preventing the global energy
collapse that would happen in the linear case. Moreover, sig-
nificant computational efficiency gains are realized by omitting
the loss, since solving the loss-augmented inference problem
in our case requires solving a more general optimization that

2Note that the literature is inconsistent in the precise usage of the term
loss function. Here, we use it in the sense that it is used in the max-margin
structured prediction literature [22].

likely does not admit lower bounds as tight as those derived in
Sec. III-C. However, there is a deeper issue that motivates the
omission of the loss, which is the fact that no particular choice
of loss seems appropriate for this problem. The following
alternative interpretation of our method may clarify the issue.

2) Normalized EBMs: If we consider the location energy
as the “primary” energy, then our method can be interpreted
as a normalized EBM, where energies are normalized across
outputs and are hence interpretable as probabilities. When the
energies are linear in the features, normalized EBMs coin-
cide with MaxEnt models, which include logistic regression,
Conditional Random Fields [11], and MaxEnt IOC [23, 24].
In particular, our method can be derived from a logistic
regression view, since Eq. (7) is equivalent to a multiclass
logistic regression model, where each location corresponds to
a class. Unlike a typical logistic regression approach, though,
we cannot fit the model from observations of (feature, class)
pairs, since we are only able to observe optimal searcher paths;
therefore, we introduce the concept of a path energy in order
to constrain the location distribution such that the observed
search paths appear optimal. In this view, adding loss to these
constraints is not appropriate, as it is not observable: in other
words, we observe that some paths must be optimal, but we
do not observe that they are optimal by any margin.

Finally, we note that an alternative that we did not pursue
consists of normalizing the path energy over paths, thus
yielding a method similar to MaxEnt IOC [23, 24]. In this
case, we would maximize the likelihood of the observed
paths, assuming a log-likelihood proportional to Eq. (2). The
main disadvantage of this approach is having to compute
the normalization factor (or partition function). Although the
partition function may be computed via value iteration in path-
structured energies such as ours [11, 23, 24], the expense of
doing so scales quadratically in the size of the state space—
which in our case is already exponential in the number of
locations. By contrast, our method generally requires less than
a single pass over the state space to perform inference, since
we can optimize the path energy via heuristic-guided search
as described in Sec. III. Although we did not try to compute
the partition function, we expect that the practical expense
of doing so would be comparable to the value-iteration-
based planning approach of [12], which was implemented and
analyzed in Sec. VI-A.

B. Other learning approaches

Despite having a name similar to our work, the “learning
to search” method proposed in [18] is an extension of MMP
applied to the problem of learning a fast planner from a slow
one—that work is not related in any way to the problem of
locating things.

An example of work that is conceptually related to ours
is that of Joho et. al. [8, 9]. That work is also concerned
with efficiently locating objects. Two different learning-based
approaches are considered: one that learns a reactive search
policy from search demonstrations, and another that learns
MaxEnt priors over target locations from example environ-

ments. The first case is similar to ours in that we assume
a similar type of training data; however, the approach taken
is vastly different. While they directly learn a mapping from
features to policy, we learn a mapping from features to priors,
and then act optimally given the prior. The second approach is
fundamentally different from our method because the training
data consists of environments instead of paths. However, we
coincidentally also use a MaxEnt-type distribution to represent
our prior. Another example of work with similar motivation
to ours is [10], which focuses on finding novel objects by
building probabilistic models from co-occurrence data. Our
work again differs mostly in that we learn from demonstrated
searches as opposed to statistics about environments. We also
focus on generalizing over environments instead of target
objects, although it is straightforward to apply our method
to the latter problem as well.

C. Planning optimal search tours

Another vein of related work is that concerned with the
problem of planning expected-time-optimal search tours. The
aforementioned work of [12] solves the same planning prob-
lem that we solve, but via a less efficient dynamic program-
ming method than the one we employ—see the discussion in
Sec. III and the experiments for more details. Similar but less
related are a few examples of work concerned with finding
locally optimal search paths in continuous spaces [14, 19].
Vice-versa, there is a body of earlier work focusing mostly on
finding optimal search policies for purely discrete problems
with no sense of continuity [4, 20]. We leverage one of the
results from this field in order to develop one of our heuristics,
as described in Sec. III-C.

VI. EXPERIMENTS

A. Planner evaluation

We first evaluated our proposed planning method empiri-
cally by examining its performance in a particular environment
as we scaled the number of locations included in it. The
environment used for this experiment is depicted in Fig. 4a.
The prior Q was drawn from a Dirichlet distribution with all
parameters set to 1 and then fixed for all trials. The results are
shown in Fig. 4b. In the figure, an ’iteration’ refers to a value
update in value iteration or a node expansion in A*, both of
which are associated with approximately equal work.

The first observation we make is that the value iteration
method of [12] is significantly slower than our graph-based
methods, as expected. Even without using heuristics, the
graph-based method was orders of magnitude faster for all
problem sizes. The difference between using heuristics and
not was less pronounced but still substantial. None of the
heuristics was able to counteract the exponential dependence
of the number of nodes expanded on the number of locations.
However, the number of nodes expanded decreased by a factor
exceeding 10 when using the heuristics on large problems,
compared to using no heuristic. Somewhat surprisingly, both
of the heuristics performed very similarly, although the parallel
heuristic performed slightly better than the greedy heuristic.

(a) The environment used to evaluate the planner

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 5 10 15 20 25

It
er

at
io

ns

Number of locations in environment

Value it.
Dijkstra

A* parallel

A* greedy
A* max

(b) Planner scaling results (note log scale of y axis)

Fig. 4: Results of planner performance evaluation experiment.
Each line corresponds to a different planning method. Value
it. refers to the value iteration method of [12]. A* parallel
indicates A* with the parallel search heuristic, and A* greedy
indicates A* with the heuristic obtained by relaxing arc source
constraints, as described in Sec. III-C. A* max indicates the
heuristic obtained by taking the max of the two heuristics.
Dijkstra refers to Dijkstra’s algorithm (A* with zero heuristic).

Fig. 5: The environments used in the experimental evaluation.

Taking the max of the two heuristics produced only a very
modest improvement over using either one in isolation.

B. Adaptation to the home assistant scenario

We implemented the learning algorithm and applied it
to the aforementioned home-assistant scenario. We collected
the set of synthetic environments depicted in Fig. 5. Each
environment was annotated with between 12 and 15 locations,
and each location was tagged with between one and 10 tags
describing it. These tags consisted mostly of room types and

objects imagined to be present at the location.
This information was used to generate a feature vector

for each location in the following way. We created a set of
eight semantic clusters consisting of words associated with
prototypical locations. For instance, one cluster consisted of
the words {office, desk, chair, laptop}, and another consisted
of {garage, car, tools, shovel, ladder}. Each element in the
feature vector for a location then consisted of a semantic
overlap score between the tags assigned to the location and
one of the semantic clusters. This overlap score was computed
using a rudimentary semantic word similarity score, which
we defined as 1/(1 + d), where d denotes the minimum
tree distance between senses of the words in the WordNet
database [15]. Denoting this similarity score by S, the overlap
score was computed as follows. We first defined a raw overlap
score between word clusters C0 and C1:

RawOverlap(C0, C1) :=

1

2

(∑
x0∈C0

max
x1∈C1

S(x0, x1) +
∑

x1∈C1

max
x0∈C0

S(x0, x1)

)
.

The final overlap score was then defined as the following
normalized score:

Overlap(C0, C1) =
RawOverlap(C0, C1)

|C0|+ |C1| − RawOverlap(C0, C1)
.

For this experiment, we also modeled a preference for
short tours by assuming the demonstrator optimized the objec-
tive (14), as described in Sec. IV-B. We used the regularization
term R(w) := ‖w‖2 in the learning objective.

C. Learning results

In order to evaluate the generalization ability of the learning
algorithm, we first generated synthetic priors for each envi-
ronment. Three types of priors were generated for each envi-
ronment according to some simple rules. These are depicted
in Fig. 6. The priors were then used to generate expected-
time-optimal search tours, which were subsequently treated as
training data for our method, yielding five training paths for
each of the three scenarios.

It is important to emphasize the fact that we would not use
our method in this way in an actual application, since our key
assumption is that it is more difficult to obtain priors than
search paths. However, since we cannot evaluate the actual
efficiency of the search plans generated by our method without
knowing the true prior, we resort to the method of generating
plans from known priors for the purpose of evaluation only.

We evaluated our learning method on each scenario inde-
pendently by running leave-one-out cross-validation on each
training set. We first examined the convergence of the learning
optimization. Results are shown in Fig. 7. In summary, we wit-
nessed no convergence problems with appropriate step sizes.
The objective did oscillate significantly across iterations, but
this is typical and expected in nondifferentiable optimization.

The learning results were evaluated by computing the ratio
of the true score of the learned path to the true score of the best

Fig. 6: A depiction of the three types of synthetic prior used in
the evaluation. The radius of each circle is proportional to the
strength of the prior at its location. The prior is only depicted
for one of the five environments.

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 50 100
O

b
je

ct
iv

e
va

lu
e

Scenario 1

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 100 200

Scenario 2

-2
 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 50 100

Scenario 3

Fig. 7: Convergence of the learning objective for each of
three tested scenarios. Each plot shows the convergence of the
objective for all five cross-validation folds. For clarity, each
line plots the best objective found up to the current iteration.

path given the true parameters. To be more precise, each held-
out example consisted of an environment ê, a true prior Q̂ and
a true length coefficient α̂. Let w and α denote the parameters
learned for the corresponding cross-validation fold. Defining
the following quantities:

S(x,Q, α) := E[Td(x) | Q] + α

N−1∑
i=1

c(xi, xi+1) (15)

xl := argmin
x

S(x,Q(ê;w), α) (16)

our evaluation metric consisted of

S(xl, Q̂, α̂)

minx S(x, Q̂, α̂)
. (17)

These results are shown in Fig. 8. The learned column
indicates the result obtained by our learning method. Several
other baselines are provided for reference. greedy (oracle)
indicates the result obtained by greedily visiting the location
maximizing the prior-to-distance ratio, given the true prior.
greedy (learned) indicates the result using the same greedy
policy, but under the learned prior. blind is the cost of an
optimal tour of the environment, ignoring the prior. Finally,
reactive (cheating) is the reactive learning approach of [9]:
training an ID3 decision tree [16] to directly predict search
actions. The tree was pruned using a combination of max-
depth pruning and reduced error pruning, using the test set to
optimally prune the tree, thus giving this method an unfair

lea
rn

ed

gr
ee

dy
 (o

ra
cle

)

gr
ee

dy
 (l

ea
rn

ed
)

Scenario 1

bli
nd

re
ac

tiv
e
(c

he
at

ing
)

Scenario 2

lea
rn

ed

gr
ee

dy
 (o

ra
cle

)

gr
ee

dy
 (l

ea
rn

ed
)

bli
nd

re
ac

tiv
e
(c

he
at

ing
)

Scenario 3

lea
rn

ed

gr
ee

dy
 (o

ra
cle

)

gr
ee

dy
 (l

ea
rn

ed
)

bli
nd

re
ac

tiv
e
(c

he
at

ing
)

 1

 1.5

 2

Fig. 8: Results of cross-validation experiment. Box plots show
median, min, max, and quartile values across folds—as there
were only five folds, each box plot line corresponds to an
actual trial value. See text for details.

advantage. The features used were discretized versions of
those used in our method.

The results show that in a majority of the trials, the true
cost of the optimal plan under the learned parameters came
within 10% of the cost of the optimal plan given the true
parameters and was always within 50%. By comparison, the
median performance of the greedy (oracle) policy, despite
knowing the true parameters, varies to within 15% to 25% of
the best possible cost. The other baselines show that both the
learning and optimal planning components are critical: if we
learn without planning optimally or vice-versa, performance is
poor. The poor performance of reactive policy learning shows
that learning suffers if it cannot take into account the future
consequences of actions.

Qualitative results taken from scenario 2 are shown in Fig. 9.
These specific examples were chosen because the search
paths are simple enough to visualize clearly. We observe a
strong correlation between the learned and held-out priors,
and the search paths generated from the learned priors appear
intuitive. In the top figure, for instance, the path begins in
the kitchen and proceeds in a generally clockwise direction.
Although the bathroom and bedroom collectively have the
highest probability of containing the target, a few less-likely
locations are visited opportunistically on the way.

VII. CONCLUSION

We have demonstrated a method for learning to efficiently
locate targets from demonstrated search paths, and we have
improved on existing methods to solve the associated inference
problem of planning expected-time-optimal search tours by
proposing novel heuristics for heuristic-driven search. Al-
though our method is inspired by and similar to max-margin
structured prediction methods in practice, it differs in crucial
ways. We have elucidated some of these differences and pro-
posed alternate motivations for our approach. Experimentally,
we applied our method to a home-assistant robot scenario. We
validated our performance gains in the planning problem, the

Fig. 9: Visualization of selected learning results evaluated on
held-out data from scenario 2. Each location is circled with a
dashed circle indicating the strength of the held-out prior there
and a solid circle indicating the strength of the prior inferred
by learning, with area proportional to the prior strength. The
optimal search path given the learned prior is also shown.

convergence of our learning method, and the generalization
performance of the learning results. The search paths generated
by the learning method were observed to be nearly as efficient
as optimal paths given the latent prior.

There are several other potential applications of this work
that we would like to explore. We envision applications in
large-scale, outdoor, and potentially hostile environments; sce-
narios such as rescue operations and finding explosives come
to mind. On the theoretical side, we believe that this work
raises a number of interesting questions for future research as
well; particularly, the fact that the method combines aspects
of both normalized and unnormalized energy-based methods
is interesting and warrants further contemplation.

ACKNOWLEDGMENTS

This work was conducted (in part) through collaborative
participation in the Robotics Consortium sponsored by the
U.S Army Research Laboratory under the Collaborative Tech-
nology Alliance Program, Cooperative Agreement W911NF-
10-2-0016. This work was supported in part by ONR under
MURI grant ‘Reasoning in Reduced Information Spaces’ (no.
N00014-09-1-1052).

REFERENCES

[1] Ravindra K Ahuja, Thomas L Magnanti, and James B
Orlin. Network flows: theory, algorithms, and applica-
tions, chapter 4. Prentice Hall, 1993.

[2] Richard Bellman. On a routing problem. Technical
report, DTIC Document, 1956.

[3] Dimitri P Bertsekas. Nonlinear programming. 1999.
[4] Milton C Chew. A sequential search procedure. The

Annals of Mathematical Statistics, 38(2):494–502, 1967.
[5] Michael Collins. Discriminative training methods for

hidden Markov models: Theory and experiments with
perceptron algorithms. In Proceedings of the ACL-02
conference on Empirical methods in natural language
processing-Volume 10, pages 1–8. Association for Com-
putational Linguistics, 2002.

[6] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A
formal basis for the heuristic determination of minimum
cost paths. Systems Science and Cybernetics, IEEE
Transactions on, 4(2):100–107, 1968.

[7] E.T. Jaynes. Information theory and statistical mechanics.
The Physical Review, 106(4):620–630, 1957.

[8] Dominik Joho and Wolfram Burgard. Searching for
objects: Combining multiple cues to object locations
using a maximum entropy model. In Robotics and
Automation (ICRA), 2010 IEEE International Conference
on, pages 723–728. IEEE, 2010.

[9] Dominik Joho, Martin Senk, and Wolfram Burgard.
Learning search heuristics for finding objects in struc-
tured environments. Robotics and Autonomous Systems,
59(5):319–328, 2011.

[10] Thomas Kollar and Nicholas Roy. Utilizing object-
object and object-scene context when planning to find
things. In Robotics and Automation, 2009. ICRA’09.
IEEE International Conference on, pages 2168–2173.
IEEE, 2009.

[11] John Lafferty, Andrew McCallum, and Fernando Pereira.
Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proceedings of
the 18th International Conference on Machine Learning,
2001.

[12] Haye Lau, Shoudong Huang, and Gamini Dissanayake.
Optimal search for multiple targets in a built environ-
ment. In Intelligent Robots and Systems, 2005.(IROS
2005). 2005 IEEE/RSJ International Conference on,
pages 3740–3745. IEEE, 2005.

[13] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato,
and F Huang. A tutorial on energy-based learning. In
Predicting structured data. MIT Press, 2006.

[14] Markku Lukka. On the optimal searching tracks for a
moving target. SIAM Journal on Applied Mathematics,
32(1):126–132, 1977.

[15] George A. Miller. Wordnet: A lexical database for
english. Communications of the ACM, 38(11):39–41,
1995.

[16] J. Ross Quinlan. Induction of decision trees. Machine

learning, 1(1):81–106, 1986.
[17] Nathan D Ratliff, J Andrew Bagnell, and Martin A

Zinkevich. Maximum margin planning. In Proceedings of
the 23rd international conference on Machine learning,
pages 729–736. ACM, 2006.

[18] Nathan D Ratliff, David Silver, and J Andrew Bagnell.
Learning to search: Functional gradient techniques for
imitation learning. Autonomous Robots, 27(1):25–53,
2009.

[19] Alejandro Sarmiento, Rafael Murrieta-Cid, and Seth
Hutchinson. An efficient motion strategy to compute
expected-time locally optimal continuous search paths
in known environments. Advanced Robotics, 23(12-13):
1533–1560, 2009.

[20] Lawrence D Stone. Theory of optimal search. Academic
Press New York, 1975.

[21] Ben Taskar, Carlos Guestrin, and Daphne Koller.
Max-margin markov networks. In S. Thrun, L.K.
Saul, and B. Schölkopf, editors, Advances in Neu-
ral Information Processing Systems 16, pages 25–32.
MIT Press, 2004. URL http://papers.nips.cc/paper/
2397-max-margin-markov-networks.pdf.

[22] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hof-
mann, and Yasemin Altun. Large margin methods for
structured and interdependent output variables. In Jour-
nal of Machine Learning Research, pages 1453–1484,
2005.

[23] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and
Anind K. Dey. Maximum entropy inverse reinforcement
learning. In Proc. AAAI, pages 1433–1438, 2008.

[24] Brian D. Ziebart, Nathan Ratliff, Garratt Gallagher,
Christoph Mertz, Kevin Peterson, J. Andrew Bagnell,
Martial Hebert, Anind K. Dey, and Siddhartha Srinivasa.
Planning-based prediction for pedestrians. In Proc. of
the International Conference on Intelligent Robotsi and
Systems, 2009.

http://papers.nips.cc/paper/2397-max-margin-markov-networks.pdf
http://papers.nips.cc/paper/2397-max-margin-markov-networks.pdf

	Introduction
	Method overview
	The inference objective
	The learning objective
	The form of the prior
	The latent prior assumption

	Planning optimal search tours
	Optimization via graph search
	Incorporating relaxations as heuristics
	Obtaining heuristics via relaxations

	Learning details
	Gradient-based optimization
	Incorporating additional preferences

	Related work
	Structured prediction and energy-based methods
	Unnormalized EBMs
	Normalized EBMs

	Other learning approaches
	Planning optimal search tours

	Experiments
	Planner evaluation
	Adaptation to the home assistant scenario
	Learning results

	Conclusion

