Nonlinear Graph Sparsification for SLAM

Mladen Mazuran Gian Diego Tipaldi

Luciano Spinello Wolfram Burgard

Department of Computer Science, University of Freiburg, Germany
{mazuran, tipaldi, spinello, burgard} @informatik.uni-freiburg.de

Abstract—In this paper we present a novel framework for
nonlinear graph sparsification in the context of simultaneous
localization and mapping. Our approach is formulated as a
convex minimization problem, where we select the set of non-
linear measurements that best approximate the original distri-
bution. In contrast to previous algorithms, our method does
not require a global linearization point and can be used with
any nonlinear measurement function. Experiments performed on
several publicly available datasets demonstrate that our method
outperforms the state of the art with respect to the Kullback-
Leibler divergence and the sparsity of the solution.

I. INTRODUCTION

In the past, graph-based optimization techniques have been
successfully employed to provide an effective solution to
the simultaneous localization and mapping (SLAM) problem.
By exploiting the sparse nature of the problem, researchers
have developed effective optimization algorithms to solve even
large-scale and challenging SLAM problems [11, 15, 17]. In
graph-based optimization techniques, the estimation problem
is associated with a factor graph, whose nodes represent
the variables to be estimated and whose factors represent
the measurements between the nodes. In most cases, the
observations have nonlinear measurements functions and are
affected by Gaussian noise. For such cases it can be shown
that performing inference on the factor graph representation is
equivalent to nonlinear least squares minimization [6].

Unfortunately, when the number of variables is very large,
the computational complexity of the estimation problem is
high. In such cases, it is possible to reduce the problem size
by eliminating a set of variables and minimizing the approx-
imation loss in a statistical sense. To reduce the approxima-
tion error, the information related to the eliminated variables
is preserved by marginalization. However, after successive
marginalizations, the information matrix of the estimation
problem becomes dense and sparsity enforcing methods need
to be used [16, 3, 23, 13]. Unfortunately, the marginalization
process relies on the linear Gaussian assumption and can
potentially introduce errors due to a suboptimal linearization
point.

In this paper, we address the nonlinear marginalization
and sparsification on factor graphs with Gaussian noise by
formulating an appropriate minimization problem. We seek
to find the mean and the covariances of a set of nonlinear
measurements that minimize the Kullback-Leibler Divergence
(KLD) of the approximate distribution with respect to the
original one. Our method has several advantages:

o The minimization problem is convex;
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Fig. 1. Conditional dependence graphs for the Intel dataset with 66.6% node
reduction using the three marginalization methods proposed in this paper.

o The approximation is performed locally, i.e., no global
linearization point is needed;

o The approach is general, i.e., any nonlinear measurement
function can be used;

o The solution preserves the block structure of the matrix;

e A closed form solution exists in some particular cases.

We present an extensive experimental evaluation of the
proposed method on several publicly available datasets. We
evaluate diverse sparsification and node reduction strategies
and compare them with respect to the state of the art. The
results demonstrate that our method significantly outperforms
the others in terms of the KLD and the sparseness of the
solution.

II. RELATED WORK

Many solutions to the SLAM problem rely on graph-
based minimization techniques, e.g., iSAM [15], g20 [17], or
stochastic gradient descent [19, 10]. With these approaches,
the dimension of the graph can grow unboundedly over time
thus increasing the computational complexity, which is not
desirable especially in the context of long-term operation of a
mobile robot.

Over the last decade, numerous efforts have been made to-
wards minimizing the computational requirements by reducing
the amount of nodes and edges in the graph. In the context
of filtering, Thrun et al. [21] introduced the sparse extended
information filter (SEIF). The authors enforced sparsity when-
ever a node is marginalized by keeping only the edges with the
largest entries (in terms of absolute value) in the information
matrix. Eustice et al. [8] provided a modification to SEIF
minimizing the differences between the SEIF estimate and
that of a non-sparsified filter. Vial et al. [23] further extended
SEIF by providing a method that ensures that the approximated
information is strictly conservative. They also noted that the
optimization need only be carried out on the Markov blanket of



the node to marginalize. Our approach is similar in spirit to the
one of Vial et al. but we are not restricted to the filtering setting
and we are able to recover nonlinear measurement functions.

Recently, Kretzschmar et al. [16] proposed a information-
based criterion for determining which nodes to marginalize
in a graph-based minimization setting. They further employed
the Chow-Liu tree approximation [5] to sparsify the Markov
blanket of the marginalized nodes. Carlevaris-Bianco and
Eustice [3, 4] extended the previous work by introducing
Generic linear constraint (GLC) factors. GLCs are n-ary
edges of a factor graph, either dense or based on the Chow-Liu
tree, which approximate the information matrix of the Markov
blanket. With respect to those approaches, we explicitly con-
sider nonlinear measurement functions and provide a sound
mathematical framework based on convex minimization.

Huang et al. [13] approximated the dense information matrix
solving an /;-regularized minimization problem. They used
the alternating direction of multipliers method (ADMM) [2]
to solve the problem and determine a conservative and sparse
approximation. The approach, however, requires the informa-
tion matrix of the full graph. On the contrary, our approach
is local, in the sense that we directly operate on the Markov
blanket of the marginalized node. Moreover, we explicitely
consider nonlinear measurements and the block structure of
the state space, while they commit on a linearization point
and do not preserve the block structure.

Sparsification problems similar to the one presented in this
work have been considered in the machine learning commu-
nity, under the name of Sparse Inverse Covariance Selection
(SICS). Banerjee et al. [1] first introduced the problem of
estimating the sparsity pattern of an information matrix from
a dense covariance by regularizing it with an ¢; penalizer.
They showed that the dual problem has a simpler solution and
employed a block coordinate descent algorithm. The work has
been extended by Friedman et al. [9] with the introduction of
the Graphical Lasso. They modified the Lasso algorithm to
work directly on the primal problem and showed an improved
convergence speed.

Duchi et al. [7] extended the approach to deal with block
sparsity by introducing an ¢ o, regularization term. They solve
the resulting minimization problem using a projected gradient
descent algorithm. Schmidt et al. [20] introduced the projected
quasi newton algorithm (PQN) and showed its application to
block inverse covariance selection problems.

Our method shares some grounds with the block inverse
covariance selection problem with the difference being that we
aim to obtain a set of nonlinear measurements that approxi-
mate the target information, instead of a specific information
matrix.

III. NONLINEAR INVERSE COVARIANCE RECOVERY

In this section we describe our problem formulation for
nonlinear inverse covariance recovery. Suppose that we have
a multivariate normal distribution p(x), with mean g and
information matrix £2. Moreover, suppose that we have a set of
m independent nonlinear measurements z; with measurement

functions f;(x). These functions, for instance, can be derived
from a sensor model or can be defined by an expert user.

Given a linearization point over x and the nonlinear mea-
surements z;, we can estimate the first two standardized
moments of the distribution over x by maximum likelihood
inference. The two computed moments thus define a distri-
bution ¢(x), and, since a Gaussian is the maximum entropy
distribution defined by a mean and covariance, we will assume
g(x) to be normally distributed.

Our goal is to approximate p(x) with g¢(x) as well as
possible. This problem setting entails computing a mean v;
and an information matrix X; for each measurement z;. For
the mean, we compute v; = f;(u). It is clear that the set of
v; will maximize the likelihood of each observation.

Computing the information matrices of the measurements,
on the other hand, cannot always be done exactly. Let f(x)
and z be the vectors obtained by stacking all f;(x) and all of
the measurement random vectors, respectively. We define the
following matrices:

X, - 0
X=cov(z)'=]: . : (1)
H 0 Xom-
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Notice that X is block diagonal due to the assumption of
independence between nonlinear measurements.

We compute the measurement information matrix X that
minimizes the Kullback-Leibler divergence between p(x) and
q(x)

X = argmin Dk (p(x)|q(x))
Xex

=argmin (A"XA, =) —logdet (ATXA), (2)
XeXx

where ATX A is the information matrix associated to the
distribution ¢(x), (-, ) denotes the matrix scalar product, and
X is the set of block diagonal positive semi-definite matrices.

We will assume A to be full rank with at least as many rows
as columns, and 2 to be invertible, with inverse Q=3
We will explore the problem of a singular €2 in Section IV-A.

In general, it is hard to compute a closed-form solution to
problem (2). However, the following proposition ensures that
it is at least possible to guarantee global convergence to its
global optimum.

Proposition 1. Problem (2) is a convex optimization problem.

Proof: The matrix ATXA can be factored as sum of

symmetric matrices weighted on the variables X = [2;;], ;:

ATXA =) 2 ATI'A + AT (3943 A
i j>i
= ZIHG” + Zl’ijGij = G(X). 3)
i J>i

Here, J¥ denotes the single entry matrix with 1 at position
(i,j) and 0 in all other entries, while G;; = G}, by



construction. Furthermore, this result also implies that

(ATXA,X) = 2 (Gy;, B) =c"vec(X), (4
jzi
where vec(-) denotes the vectorization operator and c is the
vector of coefficients implicitly defined by the sum.
If we take into account that —log z = log !, problem (2)
can be expressed as

minimize ¢’ vec(X) + logdet G(X)™*
subject to G(X) = 0 )
X >o0.

This, together with the observation that G(X) is a sum of
symmetric matrices weighted by the optimization variables,
ensures that (2) is an instance of the MAXDET problem [22]
and therefore is convex. ]

A. Solving the optimization problem

The convexity of (2) allows us to efficiently and always
compute the X that globally minimizes the KLD. Furthermore,
we note that log det G(X) provides a natural barrier function
for the positive definiteness of the approximating information
matrix so long as X is positive definite, while the block
diagonal structure of X is maintained by only optimizing with
respect to the variables on the block diagonal.

Nevertheless, the definite positiveness of X needs to be
maintained. In order to efficiently optimize the cost function
while remaining in the feasible set, we use the Limited-
memory Projected Quasi-Newton algorithm (PQN) [20]. Being
a modification of the L-BFGS algorithm [18], PQN allows to
achieve super-linear convergence without the quadratic mem-
ory requirements of a Hessian-based method. To be efficient,
PQN requires a fast computation of the Euclidean projection
onto the constraint set and a fast computation of the gradient.

For the first requirement, the projection function is:

P(X) = argmin|| X — Y|%, (6)
Y>0

where || - | represents the Frobenius norm. For an arbi-
trary symmetric matrix X this problem can be solved in
closed form [12] by taking the eigendecomposition X =
V diag()\;)VT and computing:

P(X) = V diag(max{0, \;}) V7. (7)

Since in our case X is block diagonal, this process can be
carried out independently for each block, resulting in a very
efficient linear-time projection.

The second requirement of PQN is the ability to compute
the gradient of the cost function. In our case, a closed form
expression exists:

0X,;
where {-}; denotes the i-th diagonal block of the enclosed ma-

trix. The full gradient is obtained by stacking the vectorization
of (8) forall i € {1,...,m}.

_ {A [2 — (ATXA)”} AT}_, (8)

2

Furthermore, when A is square, PQN is not required, as a
closed form solution to (2) exists:

0Dkr,
0X;
= X, = ({AZAT}) 7,

={AZA" -X""'} =0 9)
(10)

Since A is a full-rank square matrix by assumption, AXA”
is positive definite by construction. Every principal minor of
a positive definite matrix is positive, therefore {AEAT}Z. is
also positive definite, implying X; >~ 0 and hence X > 0.
The computation of (8) and (10) might be very expensive
for large matrices. Fortunately, we are only interested in
computing the blocks on the main diagonal. For any Y, we

have:
{AYAT} =33 A, YAl
7 ] L

which can be computed very efficiently if A is sparse. Tlo
recover the gradient (8) we set Y = ¥ — (ATXA) .
Similarly, to recover the closed-form solution (10) we set
Y =3.

Y

IV. APPLICATIONS TO SLAM SPARSIFICATION

In this section, we show how the general framework in-
troduced in the previous section can be used for SLAM
problems. In particular, we consider the problem of node
marginalization and edge sparsification in the context of 2D
graph-based SLAM. Without loss of generality, we assume
that there exists a node removal method that specifies which
node to marginalize. This includes strategies such as the work
of Kretschmar et al. [16], or strategies based on the Euclidean
distance [14].

The nonlinear functions f;(x) that we consider in this
work belong to the SE(2) group and represent the rigid
transformations between two poses. In order to obtain the
SE(2) approximation, we perform the following steps:

1) We extract the Markov blanket of the node to be

marginalized in the original graph;

2) We optimize the nodes in the Markov blanket using only
measurements within the blanket, thus obtaining a local
linearization point;

3) We marginalize the node to be removed by computing
its Schur complement;

4) We select a set of virtual measurements to be used in
the approximation;

5) We solve (2) by using the Jacobian of the measurements
evaluated at the local linearization point and the Schur
complement;

We use the Markov blanket to approximate the non-
linearities of the original problem as closely as possible.
This particular choice has the advantage that the procedure is
independent of the global linearization point and can be carried
out without needing to optimize the full graph beforehand.
We select the virtual measurements according to the sparsity
pattern that we want to maintain on the Markov blanket. This
may be a fully dense set of n(n—1) connections or the output



of the method presented in Section IV-B. Either way, once the
sparsity pattern is known, we can compute the Jacobian A
evaluated at the local linearization point and solve (2).

Finally, we propagate the solution of (2) into the original
graph by replacing the measurements within the Markov
blanket with the newly compute ones.

A. Handling Rank Deficient Information Matrices

In Section III, we assumed the information matrix €2 to be
invertible. Unfortunately, when dealing with problems such as
variable marginalization, this is often not the case. From a
SLAM perspective, this implies that the Markov blanket lacks
a rigid transformation edge to the world reference frame.

In such a scenario, €2 has k null eigenvalues, where k is the
dimensionality of a rigid transformation, e.g., 3 for SE(2) and 6
for SE(3). If © has n rows, the distribution of p(x) is actually
an (n — k)-dimensional multivariate normal embedded in an
n-dimensional space. Therefore, we propose to project p(x)
and ¢(x) onto the (n — k)-dimensional informative subspace
and to compare the resulting (n— k)-dimensional distributions.

We compute an (n— k) X n projection matrix II by stacking
the transpose of the eigenvectors of {2 corresponding to the
nonzero eigenvalues. Since €2 is a symmetric real-valued
matrix its eigendecomposition = UAUT is real-valued and
always exists:

T
Q=UAU" = [U, O"] {8 AOJ PIJIO ] (12)

The projection matrix IT acts as a linear operator to project
any arbitrary information matrix ¥ onto the lower dimensional
space by computing TIWIIT. To account for singular infor-
mation matrices, we apply the following substitutions into (2):

A ATIT
AL

13)
(14)

This, however, does not guarantee that ¢(x) is an (n — k)-
dimensional distribution embedded in an n-dimensional space.
We enforce this property by artificially limiting the rank of the
Jacobian matrix A, i.e., by avoiding to put any edge relating
a pose to the world reference frame.

The same efficient implementation for computing the gra-
dient can also be applied in the low rank case by substituting

—1
Y =117 [2 _ (HATXAHT) } I into (11).

B. Selecting the Virtual Measurements

To sparsify the Markov blanket, one needs to define the size
of X and the structure of A. In this paper, we propose two
strategies to select the virtual measurements: tree-based and
subgraph-based.

For the tree-based approximation, we extend the Chow-
Liu tree (CLT) [5] approximation to handle rank deficient
information matrices. The approximation is computed by
finding the maximum spanning tree of the mutual information
graph, i.e., a weighted graph whose edges represent the mutual

information between the connecting nodes. In such a scenario,
the mutual information:

1 det (Q” — Qijﬂilﬂxi)
I(x;,%x;) = —=1 39—
(X ’ XJ) 2 o8 det ﬂ”

5)

is not well defined, since €2;; — Qijﬂgjlﬂjl- is a null matrix.
This is the case because the mutual information formula
requires €2;;, €255, and 2;; to be obtained by marginalizing
all x5, with k ¢ {4, j}. Thus, a further Schur complement will
yield a null matrix due to gauge freedom.

To address this problem, Carlevaris-Bianco and Eustice [3]
adopted the Tikhonov-regularized matrix X +¢1I, with e = 1,
when computing the determinant of a singular matrix X.

However, computing (15) between each pair of variables
requires a quadratic number of Schur complements, hence a
quintic computational complexity in the number of nodes. To
reduce this complexity, we propose to compute the covariance
form of the mutual information

1 det ﬁ]ii det ZA:jj
- IOg — == -
2 i ;zy:|

det | -
t|3

(16)

I(Xi7Xj) =

Ji <37

where 3 = (Q + ¢I)~! is the inverse of the Tikhonov-
regularized information matrix €2. For the efficient compu-
tation of the inverse, we employ the Cholesky decomposition.

For the subgraph-based approximation, we extend the
Chow-Liu tree by adding additional chords to the spanning
tree. Although finding the best spanning subgraph is an NP-
hard problem, we employ a greedy heuristic and leverage
on the “information never hurts” principle. We consider the
subgraphs obtained by adding the chords with the highest
mutual information. We choose the number of chords as a fixed
proportion of the number of edges in the spanning tree. This
allows us to maintain a set of edges which grows linearly with
respect to the number of nodes, thus avoiding the quadratic
fill-in of full marginalization.

When using a tree approximation, we can solve (2) in closed
form. Let k£ be the dimensionality of a measurement, and n
the number of random variables. The Jacobian matrix A is
a (n — 1)k x nk matrix. Under the projection IT, AII” is
square and full rank, hence invertible and (10) can be used. The
subgraph-based approximation, on the other hand, cannot be
computed in closed form as the matrix A remains rectangular
even when projected. For these problems we adopt the PQN-
based iterative solver.

C. Computing the Initial Guess for PON

For an efficient usage of PQN, we need to provide an initial
guess close to the optimal solution. In case of non-redundant
edges, the maximum likelihood information matrix ATX A
has the block structure:

S, ALX A =k

ATXAY = 17
(Al - (G HL w
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Fig. 2. Online sparsification results. Each graph represents the KLD as a function of the time step for the five methods considered. Notice that “SE2-Dense”
and “SE2-Subgraph” overlap most of the time and hence it is difficult to distinguish the differences.

where {-};; denotes the (i, j)-th block of the enclosed matrix
and x denotes the row index in A of the unique measurement
relating random variables j and k.

If equality between A7X A and €2 can be achieved and all
of the entries A;; are invertible, the following holds:

X, =A QA (18)

Even in the case that equality cannot be achieved, we can use
(18) to provide an initial guess X. If the resulting X, is either
indefinite or not symmetric, we apply (7) to the symmetric
matrix closest to (18) [12].

V. EXPERIMENTS

We implemented our method by relying on g0 [17] as
an optimization back-end and we evaluate its practical ef-
fectiveness against GLC [3] on 2D datasets. We devise three
different test scenarios: a fully online marginalization method,
a periodic batch method and a full batch method.

In the full online setting, we adopt the node removal strategy
described by Carlevaris-Bianco and Eustice [4, Alg. 3]. The

graph is created online and we marginalize the recently added
node in case it is spatially redundant. In the full batch setting,
we consider the full graph and we marginalize all the spatially
redundant nodes one after another. In the periodic batch
method, we regularly perform a full batch sparsification of the
last 100 nodes collected. To simulate the spatial redundancy,
we only keep one node every ¢ time steps.

The first two strategies represent typical approaches for
online graph sparsification. We chose the last strategy to
compare our approach when the linearization point for GLC
is the closest to the optimal solution.

For each experiment, we compare the KLD of the sparse
solution with the full, non-marginalized graph. For the online
and periodic batch case, we need to account for edges that
connect a new node with an already marginalized one. We
replace, in both the approximate and the baseline graph, the
original edge with an edge to the closest node and propagate
the measurement accordingly.

We evaluated the proposed approach on five SLAM datasets:
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Fig. 3. Periodic batch sparsification results. Each graph represents the KLD as a function of the time step for the five methods considered.

TABLE I
EXPERIMENTAL DATASETS

[ Dataset | # Nodes | # Edges | Fill-in |

Duderstadt Center (2D) 545 1800 1.32%
EECS Building (2D) 615 2134 1.25%
Intel Research 943 1833 0.52%
MIT Killian 5489 7626 0.069%
Manhattan 3500 5596 0.12%

Duderstadt Center, EECS Building, Intel Research, MIT Kil-
lian and Manhattan. Given the 2D nature of our approach,
we considered the Duderstadt Center and EECS Building
dataset projected onto the SE(2) manifold. Table I provides
an overview of the characteristics of each dataset.

We considered four levels of node reduction for each
scenario, keeping one node every two, three, four or five nodes.
In the comparison, we evaluated our approach using a set of
dense measurements (SE2-Dense), a subgraph with twice the
number of edges of the spanning trees (SE2-Subgraph) and the
Chow-Liu tree (SE2-Tree). For GLC, we consider the dense

version (GLC-Dense) and the Chow-Liu tree one (GLC-Tree).

Fig. 2 depicts the KLD results for the full online strategy.
In this scenario, SE2-Dense and SE2-Subgraph obtain near-
optimal results with a KLD close to zero in all the cases.
Moreover, SE2-Tree is always better than GLC-Tree and even
better than GLC-Dense in some cases. The dense and subgraph
approaches are a viable choice in this case, since all strategies
maintain a sparse information matrix, with about 1% increase
in fill-in between the tree and the dense approach.

Fig. 3 shows the KLD results for the periodic batch spar-
sification scenario. We omitted SE2-Dense in this compari-
son, given its computational requirements for large Markov
blankets. In such cases, the number of variables considered is
typically too high for practical computation. This is not the
case when using SE2-Subgraph, since the number of variable
is linear in the number of nodes. The saw-tooth behavior of
the graphs is due to the periodic marginalization.

In general, the SE2 approaches obtain better performance
than the corresponding GLC equivalents. In Manhattan, GLC
is slightly better, due to the characteristic of the data. The



Dataset Node reduction KLD Fill-in
GLC-Tree SE2-Tree SE2-Subgraph | GLC-Tree SE2-Tree SE2-Subgraph
50% 1.328 1.307 0.975 1.48% 1.41% 2.24%
66.6% 1.556 1.695 1.179 2.18% 2.14% 3.11%
Duderstadt (2D) 75% 1.963 2233 1.628 2.89% 2.77% 3.92%
80% 4014 2.870 1.809 3.40% 3.38% 4.84%
50% 1.996 2.519 1.672 1.99% 1.87% 2.91%
66.6% 2.907 3.770 3.006 3.12% 2.99% 4.58%
EECS (2D) 75% 4.253 6.180 4.200 4.35% 3.94% 6.28%
80% 5.064 7.322 4.677 5.59% 5.00% 8.16%
50% 46.84 55.79 17.36 0.88% 0.88 % 1.22%
Intel 66.6% 43.70 52.95 22.72 1.27% 1.27% 1.77%
75% 39.70 48.78 19.30 1.65% 1.63% 2.25%
80% 41.39 50.02 18.37 1.91% 1.92% 2.66%
50% 74.36 75.06 0.53 0.13% 0.13% 0.17%
Killian 66.6% 151.41 154.02 46.16 0.18% 0.18% 0.25%
75% 74.69 76.52 17.61 0.24% 0.24% 0.34%
80% 128.79 132.90 40.54 0.29% 0.29 % 0.40%
50% 163.06 213.37 3243 0.26 % 0.26 % 0.38%
Manhattan 66.6% 155.69 172.46 46.29 0.40% 0.39 % 0.62%
75% 142.13 159.35 61.73 0.54% 0.52% 0.78%
80% 141.49 154.11 60.51 0.65% 0.64 % 0.95%
TABLE II
GLOBAL SPARSIFICATION RESULTS
g.ra.ph contains many small consecutlYe IOF)I)S,' creatlpg very Dense Subgraph
rigid Markov blankets. Hence, the linearization points are - -
close to the optimal solution, favoring GLC over SE2. SE2- kY £
Subgraph outperforms GLC-Tree, and is generally better or N L
comparable to GLC-Dense. With respect to the fill-in, SE2- 2 X . \
Subgraph produces a much sparser graph, with a maximum = D >
increase of about 4%. In contrast, GLC-Dense produces a 9 . N
denser graph, with a fill-in increase of about 22%. E’ \ W

Finally, Table II presents the numeric results in terms of AN RN
KLD and fill-in for the batch sparsification test. As in the s b
periodic batch case, we do not report the results of GLC- - ~
Dense and SE2-Dense due to the computation requirements. "

The batch scenario is the most favorable to GLC, since the = \r\,& -
linearization point is close to the optimal one. Nevertheless, £ i A \

the results of SE2-Tree and GLC-Tree are comparable. The 2a) TN

clear winner in terms of KLD is the SE2-Subgraph method, as %

it achieves significant reduction in KLD with only an increase 2 N

of about 3% in fill-in. b %

Although GLC-Tree and SE2-Tree both rely on the Chow- ’ o N
Liu tree to compute a sparsity pattern, each time a node is AN
marginalized both methods provide a different approximation B ==
of the information matrix. In subsequent marginalizations, they ! _-ii " T
may produce different Chow-Liu trees: this explains the differ- =
ence in fill-in between the two methods, as the connectivity of £ I .
each node depends on which edges were selected in the tree. E i- — \

To visually convey the performance of SE2-Subgraph with ;3 I..I
respect to a dense marginalization, we depict in Fig. 4 1 .
the sparsity pattern of the resulting information matrix after Ll .
marginalization. The figure shows that the proposed subgraph Y
approach is able to produce a highly sparse approximation Fig. 4. Sparsity pattern of the Manhattan dataset with 80% reduction. The

even in the most challenging batch scenario. Despite being
very sparse, SE2-Subgraph produces the closest approximation
to the original distribution in terms of KLD.

figure shows the fill-in of the information matrix for the dense and subgraph-
based marginalization using the three strategies.



VI. CONCLUSION

In this paper, we presented a novel approach to non-linear
graph sparsification. Our approach is formulated as a convex
minimization problem that finds the set of nonlinear mea-
surements that best approximate the original distribution. Our
technique has the advantage of not requiring a global lineariza-
tion point and can be used with any nonlinear measurement
function. We presented extensive experiments carried out on
publicly available datasets and demonstrated the effectiveness
of our approach. We quantified the algorithm performance
in the SLAM context by sparsifing maps in an online and
in a periodic batch fashion. In both cases, our technique
outperforms state-of-the-art methods by closely recovering the
original distribution and producing highly sparse graphs.
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