
Decoupled Representation of the Error and
Trajectory Estimates for Efficient Pose Estimation

Xing Zheng, Mingyang Li, and Anastasios I. Mourikis
Dept. of Electrical and Computer Engineering, University of California, Riverside

E-mail: {xzheng|mli|mourikis}@ece.ucr.edu

Abstract—In this paper we present a novel approach for
the parameterization of the trajectory of a moving platform,
which facilitates the development of real-time pose-estimation
methods. The key idea of the proposed approach is the decoupling
of the parameterization of the trajectory estimate from the
parameterization of the error in this estimate. Specifically, we
represent the trajectory estimate as usual, via a set of pose states,
each associated with a sensor reading (e.g., a laser scan or an
image). The novelty of our approach lies in the representation
of the estimation errors, for which we employ B-splines. This
decoupled formulation, which we term Decoupled Estimate-Error
Parameterization (DEEP) offers two key advantages. First, the
use of a pose-based representation of the trajectory allows us
to represent arbitrarily complex trajectories. Second, the use
of B-splines for error representation allows us to control the
computational complexity of an estimator, by selecting the density
of the knots of the B-spline. We empirically demonstrate that, in
the problem of visual-inertial localization, the DEEP formulation
leads to substantial computational gains, while incurring only a
small loss of estimation performance.

I. INTRODUCTION

In application domains such as mobile robotics, unmanned
aerial vehicles, and personal localization, the ability to ac-
curately estimate the position and orientation of a moving
platform in real time is crucial. As a result, substantial research
efforts have focused on the development of accurate and
computationally efficient localization algorithms. One of the
key challenges these algorithms seek to address is the high
dimensionality of the estimation problem at hand, which is
caused by (i) the large number of variables (e.g., feature
points) needed to model real-world environments, and (ii)
the number of variables (i.e., platform poses) required to
represent trajectories of long duration. In this work, we focus
on the latter issue, and propose a general method that can
significantly reduce computational cost, while incurring only
a small loss of accuracy.

We start by noting that the vast majority of practical
localization algorithms are linearization-based methods, which
typically rely on a variation of an extended Kalman filter
(EKF), or iterative minimization. In these methods the compu-
tational cost is a function of the dimension of the error-state
vector. For instance, this dimension defines the size of the
state-covariance matrix in an EKF, or the size of the Hessian
in Newton-minimization methods. In current practice, the
dimension of the estimator’s error-state is directly determined
by the number of poses in the trajectory, since one error-state
vector (consisting, for instance, of the errors in position and

orientation) is associated with each pose estimate. By contrast,
in this work, we propose a new paradigm, where the number
of poses included in the state vector, and the dimension of the
estimator’s error-state are decoupled.

To describe the main idea of the method, we point out
that any estimator that employs linearization relies on the
computation of (i) measurement residuals, and (ii) linearized
expressions showing the dependence of the residuals on the
estimation errors. The first step involves the state estimates,
while the second the state errors. The key insight here is
that we may use different representations for each of these.
Specifically, the state of a system at a certain time instant, t,
is expressed as x(t) = x̂(t)+x̃(t), where x̂(t) is the state esti-
mate, and x̃(t) is the error in this estimate. In order to represent
the estimates, we use the “traditional” representation, where
one pose vector (e.g., consisting of position and orientation)
is maintained for each time instant at which measurements
are available. This representation is preferable, as it makes
no assumptions on the form of the trajectory. On the other
hand, for the error-state x̃(t), we employ a continuous-time
representation using temporal B-spline functions. Since the
estimation errors are expressed as a function of the B-spline
control points, this in turn means that we can express all the
estimator Jacobians as a function of these parameters.

The key result that we demonstrate in this paper is that,
due to the nature of the estimation errors, a low-dimensional
B-spline representation suffices in order to describe the errors
well. Therefore, the estimator equations can be expressed in
terms of a small number of B-spline control points (which
now constitute the error-state vector of the estimator), leading
to a reduction in computational cost. We term the proposed
approach, in which a different representation is used for the
trajectory estimates and their errors, Decoupled Estimate-Error
Parameterization (DEEP).

The proposed formulation is a general one and can be
employed in several classes of estimation problems. One of
its key advantages is that it results in algorithms that can
easily adapt to the availability of computational resources in
a system. By reducing the dimension of the representation
used for the error state (e.g., by placing the B-spline knots
further apart in time), we can reduce the computational cost of
the estimator, while incurring a penalty in terms of estimation
accuracy (which, as shown in this paper, is only modest). Thus,
the proposed formulation can allows us to easily explore the
tradeoff between accuracy and computational cost, to select

the best option for a given application.
In order to demonstrate the DEEP formulation in a prac-

tical localization problem, we here present the design of an
estimator for 3D localization using visual and inertial mea-
surements. We start with one existing method in visual-inertial
localization, namely the multi-state-constraint Kalman filter
2.0 (MSCKF 2.0) [17], and re-formulate it using the proposed
DEEP framework. Through both Monte-Carlo simulations,
as well as real-world experiments, we show that this yields
substantial gains in computational efficiency, but only small
loss of accuracy. In our simulation tests, for example, the
approach is shown to reduce the computational cost (measured
in terms of the number of floating-point operations) by 89%,
while increasing the estimation errors by a mere 1%. Impor-
tantly, we demonstrate that the approach leads to a graceful
degradation of performance, as the dimensionality of the error
representation is reduced.

II. RELATED WORK

Prior work on the topic of reducing the computational
complexity of localization and mapping is extensive, and
any attempt at presenting an overview within the limited
space available would be necessarily incomplete. At a high
level, most computation-reduction methods for EKF-based
algorithms propose either exact or approximate reformulations
of the estimator equations to reduce the computational cost
of updating the filter’s state-covariance matrix (see, e.g., [21,
11, 24, 8] and references therein). On the other hand, to
reduce the computational cost of graph-based methods, key
approaches have included exploiting the sparsity of the graph,
improving the computational characteristics of the minimiza-
tion algorithm, and focusing computation on only the relevant
parts of the graph (e.g., [13, 6, 12, 16]). By contrast, we
here focus on reducing dimensionality via changing the rep-
resentation of the error-state, which is conceptually different.
The DEEP formulation can, in principle, be employed with
any linearization-based method which maintains estimates of
a platform’s trajectory, including the ones mentioned above.

Our approach is more closely related to methods which
seek to reduce the number of poses included in the state
vector in localization. This is typically accomplished either by
simply using measurements less frequently, or by intelligently
selecting only a subset of keyframes to include in the estima-
tor [14, 22], or by pruning an already existing pose graph [15].
Our proposed approach differs in a key aspect: we do not aim
at reducing the number of poses included in the estimated
state vector. Instead, we decouple the representation of the
trajectory (which is still represented as a set of poses) from the
representation of the trajectory errors (which are represented
by B-splines), and aim at reducing the dimensionality of the
error state only. In our approach, the measurements recorded
from all poses are processed, using a reduced-dimension
representation for the pose errors. As a result, we avoid the loss
of information that occurs when a number of poses and their
associated measurements are discarded from the estimator.

The representation of the error states in localization has
been studied in a number of previous works, which focus
on addressing the fact that (most) orientation representations
involve differentiable manifolds [10, 27, 9, 28]. However, in all
these works, there exists a one-to-one correspondence between
the number of state estimates and error states, and thus these
approaches are not closely related to our work. The same holds
for works where new state parameterizations are proposed
(see, e.g. [5, 19]), resulting in a subsequent change in the
representation of the state errors.

The approaches most closely related to ours are those that
employ temporal basis functions to represent the trajectory
in continuous time. Earlier works using spline-based repre-
sentations of the trajectory can be found in [3, 2, 4]. The
methodology was formalized in [7], and has been employed
for pose estimation and calibration of rolling-shutter cameras
in [23], and for visual-inertial SLAM in [18]. This continuous-
time representation of the trajectory offers the advantage
that, by increasing the number of basis functions (and thus
the computational cost), one can model arbitrarily complex
trajectories. The key difference between the DEEP formulation
and the approach of the above works is that in the latter,
there exists a one-to-one correspondence between the number
of states in the representation (e.g., the B-spline parameters)
and the number of error states. By contrast, in our proposed
approach the dimensions of the estimated trajectory and of the
error state are decoupled, which allows us to model complex
trajectories at a lower computational cost (see Section V-B).

III. CONTINUOUS-TIME ERROR-STATE REPRESENTATION

In this section, we present the main idea of the DEEP
formulation, which relies on a low-dimensional, continuous-
time representation of the trajectory errors. As discussed in
Section I, our choice is to employ a B-spline representation
of the errors. Similarly to prior work [7], this is motivated by
the need to have temporal basis functions with local support
and simple analytical derivatives. In what follows, we briefly
present the B-spline representation of a function, and then
describe the way in which it is employed in our work.

A. B-Spline function representation

A B-spline function of degree k is a piecewise-polynomial
function of degree k, defined over an interval [t0, tn]. The
points ti, i = 0, . . . n, are termed the knots of the B-spline, and
in our work we assume that the knots are uniformly distributed
(i.e., we employ a uniform B-spline). We employ quadratic and
cubic B-splines. Over the time interval [ti, ti+1], a quadratic
B-spline function is given by [25]:

r2,i(u) =
1

2

[
u2 u 1

] 1 −2 1
−2 2 0
1 1 0

︸ ︷︷ ︸

B2(u)

 ci
ci+1

ci+2

 (1)

where u = (t− ti)/δt, δt = tn−t0
n . In the above equation, ci,

ci+1 and ci+2 are the parameters, termed control points, which
determine the form of the polynomial function. Similarly, a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.1

0

0.1

0.2

m
x

True traj.
Estimated traj.
Error traj.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1
−0.05

0
0.05

0.1

m

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.1

0

0.1

0.2

m

z

Time (sec)

Fig. 1. Example trajectory and estimation errors during a one-second long
interval of visual-inertial localization.

cubic B-spline function over the interval [ti, ti+1] is defined
as:

r3,i(u) =
1

2

[
u3 u2 u 1

]
−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

︸ ︷︷ ︸

B3(u)

ci

ci+1

ci+2

ci+3

(2)

The above equations define the B-spline functions in each
of the intervals between knots. The value of the function at
any time t ∈ [t0, tn) is given by:

r(t) =
[
0 Bk(u) 0

]
c (3)

= B̄k(t)c (4)

where k denotes the chosen degree of the B-spline, and c is the
vector containing all the control points ci, i = 0, . . . , n+k−1.
Note that the relationship between the function value, r(t), and
c is linear, which will be important for our formulation.

B. Key idea

B-splines are useful tools for representing (or approximat-
ing) a smooth function, a fact that motivated their use for
trajectory modeling in [7] and derivative approaches. In these
formulations, the dimension of the state vector, and therefore
the computational cost of the estimator, depends on the spacing
of the knots. When the knots are spaced closely in time, we
are able to model complex trajectories. However, using a large
number of knots increases the dimension of the state vector
and the computational requirements, which is a key drawback.
Moreover, since the required dimension of the knot vector
depends on the trajectory itself, it may be hard to make this
choice in advance (this is also discussed in [23]).

To motivate the DEEP formulation proposed here, in Fig. 1
we present the trajectory (x-y-z position) of a platform during

a one-second long window from one of our simulations, which
involves localization using visual and inertial measurements.
Specifically, in these plots the blue solid lines represent
the true trajectory; the red dash-dotted lines represent the
trajectory estimate computed via inertial propagation in this
time interval, starting from an initial inaccurate estimate; and
the black dashed lines represent the errors in the estimates
(i.e., the difference between the true and estimated position).
The key point to notice in this plot is that, while the actual
trajectory is quite “complex” in this time interval, the functions
describing the estimation errors are much “smoother”. In
turn, this means that in order to obtain an accurate B-spline
approximation of the actual trajectory, a significantly larger
knot vector would be required, compared to that needed for a
B-spline approximation to the trajectory errors. Our approach
takes advantage of this observation.

Specifically, consider a platform equipped with propriocep-
tive sensors (e.g., an inertial measurement unit (IMU)) as well
as exteroceptive ones (e.g., a camera). Let us assume that
during a time interval [t0, tn], M exteroceptive measurements
are recorded (e.g., M images). In the DEEP formulation,
the estimator maintains an estimate for the platform states
(e.g., poses) corresponding to these M time instants, x̂i,
i = 1, . . .M . An initial estimate for each state is computed
via propagation (e.g., integration of the inertial measurements)
from the latest available pose, and updated as more measure-
ment information is processed. The novelty of our approach
lies in the representation of the errors. In particular, we model
the state error, x̃(t), t ∈ [t0, tn] via a B-spline representation.
As a result, the error in the estimate of the i-th pose, x̃i,
which is required in the derivation of the linearized residual
equations in the estimator, can be written as a linear function of
the control-point vector (see (3)). Since all linearized residuals
can be written in terms of this vector, it constitutes the “error-
state vector” of the estimator.

If the number of knots needed to accurately describe the
trajectory errors is smaller than M , then the dimension of the
error-state vector in the DEEP formulation will be smaller than
that of the “traditional” approach in which M pose errors are
explicitly represented. As shown in the following sections, at
least for the problem of visual-inertial localization, we can use
a number of knots that is significantly smaller than M (e.g.,
five to ten times smaller), without incurring significant loss
of estimation accuracy. The justification for this lies in the
fact that, as shown in Fig. 1, the estimation errors tend to be
“smooth” over short periods of time. Moreover, we note that
the “complexity” of the estimation error is, to a large extent,
independent from the complexity of the trajectory itself. This
is useful, since it allows us to choose the knot density without
having prior knowledge of the trajectory.

IV. VISUAL-INERTIAL ODOMETRY IN THE DEEP
FORMULATION

We now describe a visual-inertial localization algorithm that
employs the DEEP approach described in the preceding sec-
tion. Visual-inertial localization is a problem that has recently

attracted significant research interest, as the miniaturization
of visual and inertial sensors has rendered them ideal for
pose estimation in small-scale systems (e.g., smartphones and
micro aerial vehicles). The algorithm we describe here is an
adaptation of the MSCKF 2.0 algorithm [20, 17] that utilizes
the DEEP framework. The MSCKF 2.0 has been shown in
prior work to outperform alternative methods for visual-inertial
odometry, and thus can be used as a benchmark for examining
the performance of the DEEP formulation.

In the original MSCKF estimator, the state vector consists
of a sliding window of M camera poses, which correspond
to the time instants the last M images were recorded. The
key characteristic of the approach is that all measurements
of each feature are used simultaneously once the feature is
lost from tracking, to apply constraints on the poses of the
sliding window. The DEEP-MSCKF estimator we describe
here follows the same approach.

A. Formulation

Consider a platform equipped with an IMU and a monocular
camera, moving in an area populated with naturally-occurring
point features, whose coordinates are not known a priori. Our
goal is to estimate the position and orientation of the platform
with respect to a global coordinate frame, {G}, using the
inertial measurements and observations of these features. To
derive the estimator’s equations, we affix a coordinate frame
{I} to the IMU, and a coordinate frame {C} to the camera.
We here assume that the camera is intrinsically calibrated, and
the relative rotation and translation between {I} and {C} are
known.

The IMU state at time-step k is described by the vector:

xIk =
[
Ik
G q̄T GpT

k
GvT

k bT
gk

bT
ak

]T
(5)

where Ik
G q̄ is the unit quaternion [29] representing the rotation

from the global frame {G} to the IMU frame {I} at time-
step k, Gpk and Gvk are the IMU position and velocity
in the global frame, and bgk and bak

are the gyroscope
and accelerometer biases, respectively, which are modeled as
Gaussian random-walk processes.

The error in the estimate of the IMU state (5) is defined
as [17]:

x̃Ik =
[
Gθ̃

T

k
Gp̃T

k
GṽT

k b̃T
gk

b̃T
ak

]T
(6)

where the standard additive error definition is used for the
position, velocity and biases (i.e., if ŷ is the estimate of a
variable y, the estimation error is defined as ỹ = y−ŷ), while
for the orientation errors we use a minimal 3-dimensional
representation, defined by the equation:

Ik
G q̄ ≈ Ik

G
ˆ̄q⊗

[
1
2
Gθ̃k

1

]
(7)

where ⊗ denotes quaternion multiplication.

B. State vector of the DEEP-MSCKF

The estimated state vector of the DEEP-MSCKF contains
an estimate for the current IMU state, and for the poses at the
time instants the latest M images were recorded:

x̂k =
[
x̂T
Ik

π̂T
k−1 π̂T

k−2 · · · π̂T
k−M

]T
(8)

where π̂i = [IiG ˆ̄qT Gp̂
T
i]

T , for i = k − M, . . . , k − 1, are
the estimates of the IMU poses at the time instants the last M
images were recorded.

The above state vector is identical to the state vector of the
MSCKF 2.0 formulation. The difference lies in the representa-
tion of the errors in the M poses included in the estimated state
vector. Specifically, instead of maintaining an individual error
state for each of the M poses, in the DEEP formulation we
model the position and orientation errors in the time interval
these M poses were recorded by B-spline functions. The
error-state of the DEEP-MSCKF therefore contains the control
points of these B-splines. Specifically, the error-state vector at
time-step k is defined as:

x̃k=[b̃
T
gk

b̃T
ak

cTpk
cTpk−N

· · · cTpk−nN︸ ︷︷ ︸
xT
pk

cTθk
cTθk−N

· · · cTθk−(n−1)N︸ ︷︷ ︸
x
θT
k

]T

(9)

where cpj , j = k − Nn, k − Nn + N, .., k and cθj , j =
k − (n − 1)N, k − (n − 2)N, .., k are 3 × 1 control-point
vectors used to represent the position and orientation errors,
respectively. To simplify the presentation, we here assume
that a new knot is introduced every N camera images (note
however, that having the knot interval be an integer multiple
of the image period is not a strict requirement). In effect, N
here is a “decimation factor”, which determines the number
of knots needed to cover the time interval in which the latest
M images were recorded. Increasing N results in smaller size
of the error-state vector (and thus lower computational cost),
and vice versa. Note that in (9) the number of position control
points is larger than the number of orientation control points
by one. This is due to the fact that in our implementation we
employ a quadratic B-spline to represent the orientation errors,
and a cubic B-spline to represent the position errors. This
choice was dictated by the fact that the IMU accelerometer
provides measurements of the second-order derivative of the
position, while the gyroscope provides measurements of the
first-order derivative of the orientation.

With this representation, the errors of each individual pose
in the estimated state vector in (8) are expressed as:

Gθ̃j = Bθ(tj)xθk
(10)

Gp̃j = Bp(tj)xpk
(11)

where Bθ(tj) = kron(B̄2(tj), I3) and Bp(tj) =
kron(B̄3(tj), I3), with kron denoting the Kronecker matrix
product, and I3 the 3× 3 identity matrix. Moreover, we note
that the errors in the velocity can also be written as a linear

function of the control points:
Gṽj = B(1)

p (tj)xpk
(12)

where B
(1)
p (tj) is the time-derivative of Bp(tj).

C. State augmentation

The DEEP-MSCKF filter proceeds as follows: let us con-
sider that at time-step k (i.e., time tk) a filter update is
performed (see Section IV-D). From that point on, the esti-
mator uses the IMU measurements for propagating the IMU
state estimate x̂I , using the integration equations described
in [17]. Every time a new image is recorded, a new pose
estimate π̂j is included in the estimated state vector (8), but
the error-state, and corresponding covariance matrix, remains
unchanged. A new set of control points is introduced in the
error-state vector (9) at time tk+N , i.e, once N images have
been recorded. At this time, the error-state is augmented by
including the vector:

x̃new =
[
b̃T
gk+N

b̃T
ak+N

cTpk+N
cTθk+N

]T
(13)

which consists of the errors of the IMU biases at the current
time, as well as the control points needed for representing the
position and orientation errors in the time interval [tk, tk+N].

To complete the augmentation, we must also augment the
covariance matrix of the EKF. To this end, we must compute
the covariance matrix of x̃new, as well as its cross-correlation
with the other error-states. We begin with the expression
relating the IMU-pose errors at time tk+N and tk:

x̃Ik+N
= ΦI(tk+N , tk)x̃Ik +wk (14)

where wk is the process-noise error, which is zero-mean
Gaussian with covariance matrix Qk. The computation of
ΦI(tk+N , tk) and Qk is described in [17]. To obtain an
expression relating x̃new with the remaining terms in the error-
state vector of the DEEP-MSCKF, we note that the IMU-
state errors can be written as linear functions of the error-
state, owing to the properties of the B-spline representation
(see (10)-(12)):

x̃Ik = Ξ1x̃k (15)

x̃Ik+N
=

[
Ξ2 Ξ3

] [x̃new

x̃k

]
(16)

Using the above equations, along with (14), and solving for
x̃new, we obtain:

x̃new = Ξ†
2 (ΦI(tk+N , tk)Ξ1 −Ξ3) x̃k +Ξ†

2wk

where Ξ†
2 is the pseudoinverse of Ξ2. Denoting A =

Ξ†
2 (ΦI(tk+N , tk)Ξ1 −Ξ3), we can now write the covariance

matrix of the augmented error-state:

Pk+N |k =

[
APk|kA

T +Ξ†
2QkΞ

†T
2 APk|k

Pk|kA
T Pk|k

]
(17)

where Pk|k is the covariance matrix of the error-state vector
after the update at time step k. As a final step, we remove
from the error-state and the covariance matrix the terms

corresponding to the IMU biases at time-step k, as these are
no longer necessary.

D. Update

Once the error-state augmentation is complete, we proceed
to process the feature measurements from the camera. Specif-
ically, we process all measurements from features that (i) are
no longer being tracked at time step k + N , or (ii) are still
being tracked at time step k+N , but their oldest measurements
were recorded during the time interval corresponding to the
oldest available knots. The latter is necessary, since in the
MSCKF after each update the oldest states (i.e., the oldest
control points in this case) are removed, to maintain a sliding
window of bounded length.

The update equations of the DEEP-MSCKF estimator fol-
low closely those of the original MSCKF, with essentially
the only difference being the way in which Jacobians are
computed. Specifically, let us we denote the measurement of
feature i from the j-th pose as:

zij = h(πj ,
Gpfi) + nij (18)

where nij is zero-mean white Gaussian noise with covariance
matrix σ2I2, and Gpfi is the feature position in the global
frame. Considering a feature that has been observed in m
images, the first step in the update process is to employ all its
measurements to obtain an estimate of its position, Gp̂fi , via
triangulation. Next, we proceed to compute the residuals for
all m measurements:

rij=zij − h(π̂j ,
Gp̂fi) (19)

All these residuals are stacked in a block vector ri, whose
block elements are rij . To derive the EKF Jacobians, we begin
by linearizing each of the above residuals:

rij≃Hπij π̃j+Hfij
Gp̃fi+nij (20)

where π̃j is the error in the j-th pose estimate, Gp̃fi is the
feature position error, and Hπij and Hfij are the Jacobians
of the measurement function with respect to the IMU pose
and feature position, respectively. Employing the B-spline
representation of the errors, we can write π̃j as a linear
function of the error-state:

π̃j =

[
Gθ̃j
Gp̃j

]
=

[
Bθ(tj)x̃θk+N

Bp(tj)x̃pk+N

]
= Bjx̃k+N

Therefore, (20) becomes:

rij≃HπijBjx̃k+N+Hfij
Gp̃fi+nij (21)

and by stacking all m residuals we obtain:

ri≃Hci x̃k+N+Hfi
Gp̃fi+ni (22)

where Hci is a matrix with block rows HπijBj , Hfi is a
matrix with block rows Hfij , and ni is a block vector with
elements nij . Based on the linearized expression in (22), the
update proceeds as in the original MSCKF, i.e., by removing
Gp̃fi from the linearized expression. To achieve this, we define

a matrix Vi whose columns form a basis for the left nullspace
of Hfi , and define roi as:

roi = VT
i ri ≃ Ho

i x̃k+N + no
i (23)

where Ho
i = VT

i Hci and no
i = VT

i ni. For computational
efficiency, we can compute roi and Ho

i without explicitly com-
puting Vi [20]. Once roi and Ho

i are computed, we proceed
by performing a Mahalanobis gating test to reject outliers, and
features whose residuals pass the test are employed in an EKF
update, analogously to [20], to compute the state correction
and the updated covariance matrix. Once the correction to
the position and orientation knot parameters is computed in
this way, we proceed to compute the pose corrections by
employing (10)-(12), and subsequently these pose corrections
are applied to the estimates in the state vector (8). After the
update is complete, the oldest control points are removed from
the error-state vector, similarly to the original MSCKF.

As discussed in [20], the computational complexity of
the MSCKF estimator is linear in the number of features,
and cubic in the size of the state vector. This remains true
in the DEEP formulation of the MSCKF, where now the
computational complexity is cubic in the size of the error-state
vector (9). We therefore see that by changing the frequency at
which new knots are introduced (i.e., changing N), the com-
putational cost of the estimator will be significantly impacted.
As knots are placed more sparsely (i.e., N is increased), the
size of the error-state vector and the computational cost of the
estimator will decrease. However, placing knots more sparsely
also reduces the fidelity with which the trajectory can be
described, and this degrades accuracy. The key result, which
we experimentally demonstrate in Sections V and VI, is that
while with increasing N the reduction in computational cost
is rapid, the loss of accuracy is only modest.

E. Ensuring consistency

As the analysis of [17] has shown, the performance of the
MSCKF estimator can be significantly improved by computing
the filter Jacobians in a way that ensures that the linearized
system model has observability properties matching those of
the underlying nonlinear system (i.e., the global pose and
yaw are unobservable). In [17] it was shown that this can
be achieved if the Jacobians are evaluated using a single
estimate for each of the position and velocity states (the first
available one). The resulting estimator, termed MSCKF 2.0,
has improved accuracy and consistency1. We here follow a
similar approach to improve the performance of the DEEP-
MSCKF.

Specifically, similarly to [17], we use the same estimate for
each position and velocity state when evaluating all Jacobians
that involve it. However, for the DEEP-MSCKF approach,
an additional modification is needed. It can be shown that
to maintain the appropriate observability properties of the
linearized system model, the position and velocity estimates

1A recursive estimator is termed consistent when the ensemble mean of the
estimation errors is zero, and their ensemble covariance matrix is equal to the
one reported by the estimator [1].

used in Jacobian evaluation must conform to a B-spline model
of the trajectory [30]. Therefore, prior to each update we
perform a local B-spline fitting of the new segment of the
trajectory, and then use the resulting estimates in evaluating
all Jacobians involving these states. We stress that, similarly
to [17], these estimates are only used in order to evaluate the
Jacobians, and are not used in computing residuals.

V. SIMULATIONS

In this section we present the results from two sets of
Monte-Carlo simulations to demonstrate the performance of
the DEEP formulation of the MSCKF algorithm. In our
simulator, we generate trajectories emulating a platform (e.g., a
handheld device) moving in a building-sized environment, in a
trajectory that involves significant rotations and accelerations.
In each Monte-Carlo trial a 3-minute, approximately 260-m
long trajectory is generated, as well as feature tracks and
inertial measurements with characteristics matching those that
we observe in real-world datasets. Specifically, the images
are available at 20 Hz, IMU measurements at 100 Hz, and
the average feature-track length is 7.4 frames. In each trial,
different feature positions and different noise realizations are
used. The noise parameters match those of the sensors found
on a LG Nexus 4 mobile device.

A. DEEP formulation vs. MSCKF 2.0

We begin by comparing the proposed DEEP formulation
of the MSCKF to the “standard”, pose-based formulation
in [17]. Since the DEEP-MSCKF is derived by employing
an approximate representation of the errors, we expect the
MSCKF 2.0 to attain the highest estimation accuracy. Our goal
is to examine the tradeoff between the loss of accuracy and the
computational gains as N changes. All estimators process the
same data, and the sliding-window length at each time instant
is equal to the current longest feature track (with a maximum
allowable length corresponding 3 sec, or 60 poses).

The performance metrics we compute are (i) the root-mean-
squared errors (RMSE) for the position and orientation, (ii)
the computational cost of the methods, expressed in terms of
number of floating-point operations (flops) needed for each
augmentation/update cycle, and (iii) the normalized estimation
error squared (NEES) for the pose errors. If we denote the
pose error at time step k as x̃p(k) and the corresponding
6 × 6 covariance matrix reported by the filter by Pp(k), the
NEES at this time instant is defined as x̃p(k)

TP−1
p (k)x̃p(k).

Examining the NEES gives an insight into the magnitude of
the unmodeled errors incurred by the DEEP parameteriza-
tion. Specifically, if significant unmodeled errors exist, the
covariance matrix reported by the estimator will be smaller
than the covariance matrix of the actual errors (i.e., the
estimator will be inconsistent [1]), and the NEES will increase.
In a consistent estimator, the expected value of the pose
NEES should equal six. Thus, by examining the deviation
of the average NEES from this value, we can evaluate the
significance of the unmodeled errors.

0 20 40 60 80 100 120 140 160 180
0

0.5

1

de
g

Orientation RMSE

0 20 40 60 80 100 120 140 160 180
0

0.5

1

m

Time (sec)

Position RMSE

0 20 40 60 80 100 120 140 160 180
0

20

40
IMU Pose NEES

MSCKF 2.0
N=1
N=5
N=10
N=15

Fig. 2. Simulation results: the position and orientation RMSE, as well as the
IMU-pose NEES over time. Plots are averages over 100 Monte-Carlo trials.
The compared methods are the MSCKF 2.0 (blue dash-dotted line), and the
DEEP-MSCKF with N = 1 (red dotted line), N = 5 (black dash-dotted
line), N = 10 (green dashed line), and N = 15 (magenta solid line).

Fig. 2 shows the RMSE as well as the pose NEES for
the different methods, averaged over 100 Monte-Carlo tri-
als. In this plot, we compare the MSCKF 2.0 method to
the DEEP-MSCKF, using values for the “decimation factor”
N = 1, 5, 10, 15. From these plots, we can observe that up to
N = 10, the average performance of the DEEP formulation
is almost indistinguishable to that of the pose-based MSCKF
formulation, while the estimation accuracy is noticeably lower
for N = 15. To explore these results in more detail, in Table I
we show the average RMSE and NEES for all algorithms,
averaged over all Monte-Carlo trials and all time. Moreover,
in this table we include the average flops for the different
algorithms, expressed as a percentage of the flops needed in
the MSCKF 2.0.

From the results of Table I we can clearly see that, as
the knot density decreases in the DEEP-MSCKF (i.e., as N
increases), the computational cost of the algorithm decreases
rapidly, while the estimation errors increase slowly. For in-
stance, when N = 5, we achieve 89% savings in computation,
while incurring an approximately 1% increase in RMSE.
Moreover, note that for values up to N = 10, the NEES
remains close to the “ideal” value of 6. This indicates that
the unmodelled errors resulting from the DEEP formulation
are sufficiently small.

B. DEEP formulation vs. B-spline trajectory parameterization

We next compare the performance of the proposed DEEP
formulation to a version of the MSCKF estimator that employs
the temporal basis function (TBF) formulation of [18, 7, 23].
The latter estimator is similar to the one presented in Sec-
tion IV, with the difference that the trajectory itself, rather than
just the errors, are modeled by B-splines. This comparison is
informative as both these approaches have practically identical

TABLE I
SIMULATION RESULTS: MSCKF 2.0 VS. DEEP-MSCKF FOR VARYING N

MSCKF
2.0

DEEP-MSCKF
N=1 N=5 N=10 N=15

Orientation
RMSE (deg)

0.577 0.578 0.577 0.596 0.657

Position
RMSE (m)

0.505 0.504 0.509 0.529 0.585

NEES 6.63 6.38 6.36 6.68 8.41

Flops 100% 112.45% 11.18% 6.20% 4.83%

TABLE II
SIMULATION RESULTS: DEEP VS. TBF FORMULATION

N=1 N=3 N=5
DEEP TBF DEEP TBF DEEP TBF

Orientation
RMSE (deg)

0.569 0.563 0.563 0.577 0.572 0.821

Position
RMSE (m)

0.491 0.491 0.485 0.631 0.501 2.166

NEES 6.24 6.40 6.16 11.66 6.24 67.86

computational cost, since for the same value of N they involve
error-state vectors of the same size.

Table II shows the results of 100 Monte-Carlo simulations,
comparing the two approaches for N ranging between one
and five. We can observe that the two parameterizations have
similar results when N = 1, but the performance of the
TBF approach degrades rapidly for larger values of N . When
N = 5, the position RMSE of the TBF formulation is more
than quadruple that of the DEEP. Moreover, the NEES of the
TBF formulation is larger than its ideal value by an order of
magnitude.

Two important conclusions can be drawn from these results.
First, it becomes clear that the good performance of the
DEEP approach cannot be attributed to the use of a “smooth”
trajectory in the simulator. If that were the case, then a B-spline
representation of the trajectory (which is used in the TBF
approach) would suffice, and would also yield good results.
Second, we can see that the decoupling of the representation
of trajectory estimates from that of the trajectory errors,
which is the key novelty of the DEEP formulation, yields
added representational power, compared to a standard B-spline
representation of the trajectory. Since the trajectory estimates
are represented by a set of poses, no assumption on the form of
the trajectory itself is imposed, and this leads to the favorable
accuracy-computation tradeoff observed in Table I.

VI. REAL-WORLD EXPERIMENT

We next present the results of a real-world experiment, in
which a camera/IMU platform was mounted on a car driven in
a residential area of Riverside, CA. The trajectory length was
5km, driven in 20 min, and sample images from the experiment
are shown in Fig. 4. Shi-Tomasi features were extracted from
images [26], and normalized cross-correlation was used for

−600 −400 −200 0 200 400
−1000

−800

−600

−400

−200

0

200

West−East (m)

N
or

th
−

S
ou

th
 (

m
)

Ground truth
MSCKF 2.0
N = 1
N = 5
N = 10
N = 15

Fig. 3. Real-world experiment: trajectory estimates. The compared methods
are the MSCKF 2.0 (dashed cyan line), and the DEEP-MSCKF with N = 1
(red dash-dotted line), N = 5 (black dotted line), N = 10 (green dashed
line), and N = 15 (magenta dashed line). The solid blue line represents the
ground truth trajectory.

Fig. 4. Sample images recorded during the experiment.

feature matching. All feature tracks were extracted in a pre-
processing step, and used by all the algorithms compared, to
ensure that all methods use exactly the same measurements.

Fig. 3 shows the trajectory estimated by the MSCKF 2.0
and the DEEP-MSCKF with N ranging from 1 to 15. The
trajectory is plotted on a map of the area, along with the
ground-truth trajectory provided by a high-precision GPS/INS
solution. Moreover, in Fig. 5 we plot the position errors
(distance between the computed estimates and ground truth)
throughout the trajectory. Table III lists the average position
errors throughout the trajectory, as well as the computational
cost of the DEEP formulation with different values of N as
a percentage of the cost of the MSCKF 2.0. We can observe
that, as in the simulation results presented in the preceding
section, the DEEP-MSCKF formulation results in accuracy
that is similar to that of the MSCKF 2.0 algorithm, but
has significantly lower computational cost when N ≥ 5. In
fact, for this specific dataset, the smallest average errors are
obtained by the DEEP-MSCKF with N = 5. This is due to

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30
Position Errors

Time (sec)

m

N =1
N =5
N =10
N =15
MSCKF 2.0

Fig. 5. Real-world experiment: position errors of the MSCKF 2.0 and the
DEEP-MSCKF for increasing N .

the stochastic nature of the noise, and we expect that if several
experiments were conducted, the accuracy would decrease
monotonically with N , as in the Monte-Carlo simulations.

TABLE III
REAL-WORLD EXPERIMENT: DEEP-MSCKF VS. MSCKF 2.0

MSCKF 2.0 N=1 N=5 N=10 N=15

Avg. position
error (m)

13.01 13.20 10.65 16.29 12.20

Flops 100% 104.23% 7.71% 4.17% 3.26%

VII. CONCLUSION

In this paper, we have presented a novel formulation for the
representation of the trajectory in pose-estimation problems.
The key idea of the proposed DEEP approach is the decoupling
of the representation of the trajectory estimates from that of
the trajectory errors. Specifically, for the former a general,
pose-based representation is employed, which imposes no
assumptions on the form of the trajectory. On the other hand,
for the latter a B-spline representation is used. This makes
it possible to reduce the dimensionality of an estimator’s
error-state vector, simply by lowering the frequency at which
knots are introduced. This general approach is used to design
a novel visual-inertial odometry algorithm, which we term
DEEP-MSCKF. By comparing the performance of this method
to the “traditional” pose-based MSCKF formulation of [17],
we demonstrate that the DEEP formulation yields substantial
gains in computational efficiency, while resulting in only small
loss of accuracy.

ACKNOWLEDGMENTS

This work was supported by the National Science Founda-
tion (grant no. IIS-1117957, IIS-1253314 and IIS-1316934).

REFERENCES

[1] Yaakov Bar-Shalom, Thiagalingam Kirubarajan, and X.-
Rong Li. Estimation with Applications to Tracking and
Navigation. John Wiley & Sons, Inc., New York, NY,
USA, 2002.

[2] Charles Bibby and Ian Reid. A hybrid SLAM represen-
tation for dynamic marine environments. In Proceedings
of the IEEE International Conference on Robotics and
Automation, pages 257–264, May 2010.

[3] Michael Bosse and Robert Zlot. Continuous 3D scan-
matching with a spinning 2D laser. In Proceedings
of the IEEE International Conference on Robotics and
Automation, pages 4312–4319, Anchorage, AK, May
2009.

[4] Michael Bosse, Robert Zlot, and Paul Flick. Zebedee:
Design of a spring-mounted 3-D range sensor with
application to mobile mapping. IEEE Transactions on
Robotics, 28(5):1104–1119, 2012.

[5] Javier Civera, Andrew J. Davison, and J. M. Martinez
Montiel. Inverse depth parametrization for monocular
SLAM. IEEE Transactions on Robotics, 24(5):932–945,
Oct. 2008.

[6] Frank Dellaert. Square root SAM. In Proceedings of
Robotics: Science and Systems, Cambridge, MA, June
2005.

[7] Paul Furgale, Timothy D. Barfoot, and Gabe Sibley.
Continuous-time batch estimation using temporal basis
functions. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 2088–
2095, May 2012.

[8] Jose Guivant and Eduardo Nebot. Optimization of the
simultaneous localization and map building algorithm
for real time implementation. IEEE Transactions on
Robotics and Automation, 17(3):242–257, June 2001.

[9] Seungwoong Gwak, Junggon Kim, and Frank Chongwoo
Park. Numerical optimization on the Euclidean group
with applications to camera calibration. IEEE Trans-
actions on Robotics and Automation, 19(1):65–74, Feb
2003.

[10] Christoph Hertzberg, René Wagner, Udo Frese, and Lutz
Schröder. Integrating generic sensor fusion algorithms
with sound state representations through encapsulation
of manifolds. Information Fusion, 14(1):57–77, January
2013.

[11] Simon J. Julier. A sparse weight Kalman filter approach
to simultaneous localisation and map building. In Pro-
ceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1251–1256,
Maui, HI, Oct. 29-Nov. 3 2001.

[12] Michael Kaess, Ananth Ranganathan, and Frank Dellaert.
iSAM: Incremental smoothing and mapping. IEEE
Transactions on Robotics, 24(6):1365 –1378, Dec. 2008.

[13] Michael Kaess, Hordur Johannsson, Richard Roberts,
Viorela Ila, John Leonard, and Frank Dellaert. iSAM2:
Incremental smoothing and mapping with fluid relin-

earization and incremental variable reordering. In
Proceedings of the IEEE International Conference on
Robotics and Automation, pages 3281–3288, May 2011.

[14] Georg Klein and David Murray. Parallel tracking and
mapping for small AR workspaces. In Proceedings of
the IEEE and ACM International Symposium on Mixed
and Augmented Reality, Nara, Japan, November 2007.

[15] Henrik Kretzschmar, Cyrill Stachniss, and Giorgio
Grisetti. Efficient information-theoretic graph pruning
for graph-based SLAM with laser range finders. In
Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 865–
871, Sept 2011.

[16] Rainer Kummerle, Giorgio Grisetti, Hauke Strasdat, Kurt
Konolige, and Wolfram Burgard. g2o: A general frame-
work for graph optimization. In Proceedings of the IEEE
International Conference on Robotics and Automation,
pages 3607–3613, Shanghai, China, May 2011.

[17] Mingyang Li and Anastasios I. Mourikis. High-precision,
consistent EKF-based visual-inertial odometry. Interna-
tional Journal of Robotics Research, 32(6):690–711, May
2013.

[18] Steven Lovegrove, Alonso Patron-Perez, and Gabe Sib-
ley. Spline fusion: A continuous-time representation for
visual-inertial fusion with application to rolling shutter
cameras. In Proceedings of the British Machine Vision
Conference. BMVA Press, 2013.

[19] Agostino Martinelli, Viet Nguyen, Nicola Tomatis, and
Roland Siegwart. A relative map approach to SLAM
based on shift and rotation invariants. Robotics and
Autonomous Systems, 55(1):50–61, January 2007.

[20] Anastasios I. Mourikis and Stergios I. Roumeliotis. A
multi-state constraint Kalman filter for vision-aided iner-
tial navigation. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 3565–
3572, Rome, Italy, Apr. 2007.

[21] Esha D. Nerurkar and Stergios I. Roumeliotis. Power-
SLAM: a linear-complexity, anytime algorithm for
SLAM. International Journal of Robotics Research, 30
(6):772–788, May 2011.

[22] Esha D. Nerurkar, Kejian J. Wu, and Stergios I. Roumeli-
otis. C-KLAM: Constrained keyframe-based localization
and mapping. In Proceedings of the Workshop on Multi-
View Geometry in Robotics, held in conjunction with
the Robotics: Science and Systems conference, Berlin,
Germany, June 2013.

[23] Luc Oth, Paul Furgale, Laurent Kneip, and Roland Sieg-
wart. Rolling shutter camera calibration. In Proceedings
of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1360–
1367, Portland, OR, June 2013.

[24] Lina M. Paz, José Guivant, Juan D. Tardós, and José
Neira. Divide and conquer: EKF SLAM in O(n). IEEE
Transactions on Robotics, 24(5):1107 –1120, Oct. 2008.

[25] David Salomon. Computer Graphics and Geometric
Modeling. Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 1st edition, 1999.
[26] Jianbo Shi and Carlo Tomasi. Good features to track. In

Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 593–600, Seattle, WA, 1994.

[27] Malcolm D. Shuster. A survey of attitude representations.
Journal of the Astronautical Sciences, 41:439–517, Oc-
tober 1993.

[28] Hannes Sommer, Cédric Pradalier, and Paul Furgale.
Automatic differentiation on differentiable manifolds as
a tool for robotics. In Proceedings of the International

Symposium of Robotics Research, Singapore, 2013.
[29] Nikolas Trawny and Stergios I. Roumeliotis. Indirect

Kalman filter for 3D attitude estimation. Technical
Report 2005-002, Dept. of Computer Science & En-
gineering, University of Minnesota, Minneapolis, MN,
Mar. 2005.

[30] Xing Zheng, Mingyang Li, and A. I. Mourikis. Decou-
pled representation of the error and trajectory estimates
for efficient pose estimation: Supplemental materials.
Technical report, University of California, Riverside,
2015.

