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Abstract—This paper presents the Rapidly-exploring Adaptive
Search and Classification (ReASC) algorithm, a sampling-based
algorithm for planning the trajectories of mobile robots per-
forming real-time target search and classification tasks in the
field. The proposed algorithm incrementally builds up a tree of
solutions and evaluates the utility of each solution for identifying
targets in an environment. An optimistic approximation for the
classification utility is used, which reduces the computational cost
of evaluating trajectories and makes real-time adaptive planning
feasible. The proposed algorithm is tested on an autonomous
aquatic vehicle and are shown to outperform myopic methods
by up to 36% in a lake monitoring scenario.

I. INTRODUCTION

In a number of high-impact applications, including ocean
monitoring [31], aerial surveillance [5], and emergency re-
sponse [25], it is necessary to identify and classify a number
of initially unknown targets. Autonomous vehicles are well
suited for performing these search and classification tasks due
to their ability to go where it may be dangerous or impossible
for humans to go (e.g., underwater, disaster sites, and remote
locations) and to process large quantities of sensor data.
However, autonomous vehicles often have limited deployment
time, particularly in aquatic and aerial scenarios, and they must
return to refuel after a fixed mission time.

To effectively search for and classify targets with au-
tonomous vehicles during their limited deployment time, it is
beneficial to plan the trajectories of the vehicles to maximize
the chance of correctly classifying the largest possible number
of targets (see Figure 1). In addition, the vehicle can improve
its pre-planned trajectory by adapting as new information is
received (e.g., targets may be identified more quickly than
expected or be more difficult to identify than expected).

The adaptive planning problem described above is computa-
tionally difficult to solve (typically NP-hard or even P-SPACE
hard [28]). Many prior solutions have been limited to pre-
planned trajectories [3] or require computation exponential in
the size of the problem [30]. While a number of sampling-
based motion planning algorithms have been successfully
implemented on fielded systems [2, 12, 22], computational
limitations have prohibited complex search and classification
objectives from being optimized in real time in the field.

In this paper, we propose a sampling-based algorithm,
the Rapidly-exploring Adaptive Search and Classification
(ReASC) algorithm, that takes advantage of an optimistic
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Fig. 1. Visualization of the adaptive search and classification task to identify
uncertain targets in the environment (e.g., in surveillance and scientific data
collection applications). Solving this problem requires gathering information
about an area with high uncertainty in measurements. The proposed sampling-
based algorithm allows for real-time long-horizon planning in the field.

approximation of the classification accuracy of the pre-planned
path to make real-time field applications feasible. This ap-
proach allows the algorithm to incrementally build a tree of
trajectories for long-horizon planning and improved classifica-
tion. We implement the ReASC algorithm both in simulation
and in experiments using an autonomous aquatic surface
vehicle performing an aquatic monitoring task on a lake. The
main novelty of this paper is the development of the ReASC
algorithm that allows for long-horizon adaptive search and
classification on real-world platforms operating in the field.

The remainder of this paper is organized as follows. We
first discuss related work in adaptive planning and classifica-
tion to show the need for a scalable algorithm (Section II).
Next, we provide a formulation of the classification and
search problem (Section III). We then propose the ReASC
incremental sampling-based algorithm (Section IV), present
simulations showing its improved performance over greedy
methods (Section V), and discuss experimental results on an
autonomous surface vehicle performing an aquatic monitoring
task in a lake. Finally, we provide concluding remarks and
discuss avenues for future work (Section VII).

II. RELATED WORK

The proposed algorithm draws on work in sampling-
based motion planning (e.g., the RRT* algorithm [17] and



information-rich RRT [23]) and stochastic optimization [11]
to design algorithms capable of adaptive behavior in clas-
sification scenarios. Unlike prior work in sampling-based
motion planning, which typically deals with minimizing a cost
function given local constraints on traversability, the proposed
algorithm allows for optimizing a search and classification
reward function given a constraint on budget.

General adaptive decision making problems have been re-
cently studied in the context of stochastic optimization (e.g.,
optimization of objective functions that require an expectation
over measurements to compute). Example problems that have
been extended to allow for stochastic variants include cover-
ing [10], packing [7], and knapsack [8]. These prior works
have developed algorithms with guarantees on performance
in these domains. However, prior work has not demonstrated
extensions that take into account the trajectory constraints
inherent in robot motion planning.

The recent property of adaptive submodularity [11] has pro-
vided additional insight into stochastic optimization problems
by combining submodular optimization [18] with stochastic
objective functions. Algorithms that take advantage of this
property typically require computation exponential in the size
of the problem [30]. The proposed algorithm allows for
the application of scalable sampling-based techniques to the
optimization of stochastic objective functions.

Motion planning to optimize stochastic objectives is closely
related to the problem of adaptive sampling [32] and Bayesian
decision making [24]. In addition, the proposed work is
connected to research in active mapping problems [9]. Prior
work in these areas has focused on modeling the stochastic
objective and then employing greedy strategy for optimization.
Our work demonstrates that greedy algorithms often perform
poorly in the domains of interest.

Stochastic optimization problems can also be formulated us-
ing the POMDP architecture [19]. While the POMDP provides
a baseline for optimal performance in these domains, such
general solvers are notoriously difficult to scale when facing
large problem domains and long-horizon planning. Sampling-
based planners have previously been applied to related do-
mains in persistent monitoring [21] and motion planning under
uncertainty [4]. Alternative planners that operate in the high-
dimensional belief space have also been proposed [1, 16].
However, these prior algorithms are not directly applicable
to general search and classification objectives.

In our own prior work, we have examined the problems
of autonomous inspection [14] and bathymetric mapping [15]
using sampling-based planners. More recently, we developed a
general Rapidly-exploring Information Gathering (RIG) algo-
rithm [13] for maximizing information objectives with mobile
robots. The algorithm proposed in the current paper is based
on similar principles as RIG and RRT*, but it improves on
the existing algorithms’ capabilities by allowing for real-time
optimization of search and classification objective functions.
Thus, the proposed ReASC algorithm fills an important gap
that is not currently covered by existing algorithms: real-
time long-horizon optimization for search and classification

on fielded systems.

III. PROBLEM FORMULATION

The goal is to locate and classify some number of tar-
gets in the environment (e.g., biological phenomena in an
environmental monitoring scenario or targets of interest in
a surveillance scenario). For each discrete location x in the
environment X , there is some probability P (x) of a target
being in that location. An autonomous vehicle is equipped
with a sensor capable of determining the true classification of
all targets in a region surrounding its location. We denote a
positive realization for a random variable as x and a negative
realization as ¬x.

We assume there is some known false negative rate rneg =
P (¬Y | x) and false positive rate rpos = P (Y | ¬x). The
vehicle is constrained by a budget denoted as B (e.g., time,
fuel, or energy). We also assume that the total number of
targets is unknown, and we maintain a probability distribution
over each discrete location in the environment. We assume
that the probabilities of a target existing in different locations
are independent; however, extensions to dependencies between
targets is an interesting possible extension.

We denote the space of possible trajectories for an au-
tonomous vehicle as Ψ, and the cost (relative to the budget)
of executing each trajectory P ∈ Ψ as c(P). For the experi-
ments in this paper, we parametrize a trajectory by discrete
waypoints; however, extensions of the proposed algorithm
to continuous space are straightforward (see Section IV-D).
The vehicle receives measurements about the target’s location,
which we denote as Y ∈ Y , where Y is the space off
all possible measurements (i.e., true or false for all possible
locations in the environment).

At a time t and at each location x, we maintain an estimated
probability P (x) that a target exists in that location and
conversely a probability P (¬x) that no target exists in that
location. Given a reward for each successful classification Rs,
a penalty for each unsuccessful classification Rf , we will
ultimately choose to classify each location x as a target if:

RsP (x | Y ) ≥ RfP (¬x | Y ). (1)

Let X+ ⊆ X be the subset of the space that we choose
to classify as a location containing a target. Based on this
decision choice and a space of possible measurements Y , we
can formulate the expected reward function as:

R(P) = EY⊆Y

 ∑
x∈X+

RsP (x | Y )−RfP (¬x | Y )

 . (2)

For a trajectory P , we can calculate the posterior probability
P (x | Y ) for a given set of measurements Y using a standard
Bayesian update if we assume the prior P (x), the false
negative rate rneg , and false positive rate rpos are known.
Note that calculating R(P) exactly would require iterating
over the space of all possible measurements, which would
scale exponentially in the budget (i.e., the tree of all possible



measurements would expand with branching factor two). In
Section IV-C we propose an optimistic approximation of
expected reward to make this calculation feasible.

Given a way of approximating the expected reward R(P),
the goal is to optimize this reward given the budget and
trajectory constraints:

P∗ = argmax
P∈Ψ

R(P) s.t. c(P) ≤ B, (3)

where Ψ is the space of possible trajectories, B is a budget
(e.g., time, fuel, or energy), and R(P) is the expected reward
after executing trajectory P . This problem falls within the
broader class of informative path planning problems, which
are all at least NP-hard [30]. Thus, we focus our effort on
scalable approximations that take advantage of sampling to
make the required computation feasible.

IV. ADAPTIVE SEARCH AND CLASSIFICATION
ALGORITHM

We now describe the proposed ReASC sampling-based
algorithm for planning the trajectories of mobile robots per-
forming adaptive classification tasks. The key idea is to sample
the space of possible locations and build up a tree of possible
trajectories that maximize the expected reward. The algorithm
is inspired by the RIG [13] and RRT* [17] algorithms, which
are designed to optimize objectives that are deterministic
functions of the robot’s trajectory. To apply such techniques
to search and classification objectives, it is necessary to (1)
provide adaptive in-the-loop behavior as the belief distribution
is updated, and (2) approximate the expected reward of a
trajectory in an efficient manner. We now describe how we
fulfill these requirements.

A. Algorithm Outer Loop

The outer loop of the ReASC algorithm is described in
Algorithm 1. The outer loop begins with the full budget and
iterates until the robot has expended its entire budget. A
step size ∆ is specified by the user to determine how often
the vehicle should run the underlying planner. The user also
specifies the workspace X , the traversable space Xfree, the
initial belief P (x), and the starting configuration xstart of the
vehicle. Finally, an internal parameter r for the sampling-based
planner is needed to determine how many connections will be
made in the trajectory tree (see Section IV-B).

At each iteration, the vehicle runs a sampling-based planner
(Alg 1, Line 7) to generate a reward maximizing trajectory.
The trajectory is encoded in a tree of trajectories as described
below. After the reward maximizing trajectory is extracted
(Alg 1, Line 8), the vehicle executes the first step in this
trajectory (Alg 1, Line 10). Once the vehicle has reached its
new location, it receives a new measurement (Alg 1, Line
11) and updates the target belief distribution based on this
new information (Alg 1, line 12) using a Bayesian update.
Finally, the trajectory tree is updated (Alg 1, Line 13) such
that all solutions stemming from the previous configuration
are removed (see Section IV-B), and the expected reward at

Algorithm 1 Rapidly-exploring Adaptive Search and Classi-
fication (ReASC)

1: Input: Step size ∆, Budget B, Workspace X ,
Free space Xfree, Initial belief P (x), Start configura-
tion xstart, Near radius r

2: % Initialize budget, starting point, and tree
3: Rinit ← 0, Cinit ← 0, n← 〈xstart, Cinit, Rinit〉
4: Bcur ← B, xcur ← xstart, T ← (n, ∅)
5: while Bcur > ∆ do
6: % Run planner to determine next step
7: T = PlanStep(∆, Bcur,X ,Xfree, P (x),xcur, r)
8: P ← ExtractMaxRewardTrajectory(T )
9: % Execute step, receive measurement, update belief

10: xcur ← ExecuteTrajectoryStep(P,xcur)
11: Y ← ReceiveMeasurement(xcur)
12: P (x)← UpdateBelief(Y, P (x))
13: T ← UpdateTree(T , P (x),xcur)
14: Bcur = Bcur −∆
15: end while
16: % Classify targets and receive reward
17: R(P)← FindExpectedReward(P (x))

each node is updated to match the new belief distribution (see
Section IV-C). The next iteration then repeats this process.

After the budget has been expended, the vehicle makes
the final decision on which locations to classify as target
and non-target using Equation 1. The final expected reward
is then calculated by simply dropping the expectation over
measurements in Equation 2 and using the updated belief.
If the algorithm has successfully optimized the objective, the
resulting expected reward will be higher than those produced
by competing methods.

B. Sampling-based Re-planning

The core of the ReASC algorithm uses a sampling-based
motion planner to determine the next action for the robot to
take (Alg 1, Line 7). This core PlanStep function is described
in Algorithm 2. The algorithm begins by initializing the node
and edge list using the tree from the previous iteration (Alg
2, Line 4). Samples are then taken of the workspace (Alg 2,
Line 7), and the nearest node in the tree is determined (Alg 2,
Line 8). We note that samples can be taken using a uniform
distribution or using some informed distribution that biases
towards areas of higher expected reward. The development of
a more informed sampling distribution is an interesting avenue
for future work.

Once the nearest point to the new sample is identified, a
feasible point in the configuration is identified by running
the Steer function [17] that extends the existing point in the
tree towards the new point. All points within some user-
specified radius r are then retrieved (Alg 2, Line 11) and
also extended towards the feasible point (Alg 2, Line 14).
Nearest neighbor checking can be performed using a KD-tree,
which allows for efficient computation in large trees. Each
connection is checked for collision (Alg 2, Line 15), and then



Algorithm 2 Function: PlanStep
1: Input: Step size ∆, Budget B, Workspace X ,

Free space Xfree, Belief P (x), Start configuration xstart,
Near radius r, Initial tree Ti(Vinit, Einit)

2: Output: Final tree Tf
3: % Initialize node list, edge list, and closed list
4: V ← Vinit, Vclosed ← ∅, E ← Einit

5: while not terminated do
6: % Sample vehicle conf. space and find nearest node
7: xsamp ← Sample(X )
8: nnearest ← Nearest(xsamp, V \ Vclosed)
9: xfeasible ← Steer(xnnearest

,xsamp,∆)
10: % Find near points to be extended
11: Nnear ← Near(xfeasible, V \ Vclosed, r)
12: for all nnear ∈ Nnear do
13: % Extend towards new point
14: xnew ← Steer(xnnear

,xfeasible,∆)
15: if NoCollision(xnnear

,xnew,Xfree) then
16: % Calculate new reward and cost
17: Rnew ← EstimateReward(Rnnear ,xnew, P (x))

18: c(xnew)← EvaluateCost(xnnear
,xnew)

19: Cnew ← Cnnear
+ c(xnew)

20: nnew ← 〈xnew, Cnew, Rnew〉
21: if PRUNE(nnew) then
22: Delete nnew
23: else
24: % Add edges and node
25: E ← E ∪ {(nnear, nnew}, V ← V ∪ {nnew}
26: % Add to closed list if budget exceeded
27: if Cnew > B then
28: Vclosed ← Vclosed ∪ {nnew}
29: end if
30: end if
31: end if
32: end for
33: end while
34: % Extract trajectory tree
35: Tf = (V,E)

the expected reward (Alg 2, Line 17) and cost (Alg 2, Line
18) are estimated for the new trajectory. The new trajectory is
generated by taking the new point and traversing backwards
down the tree back to the starting point. We note that the cost
here represents the amount of budget used and, unlike in many
motion planning problems, is not being directly optimized (i.e.,
expected reward is being optimized). As described above, it is
not straightforward to calculate this expected reward efficiently
because it requires iterating over an exponential number of
possible observations. We describe an approximation method
below in Section IV-C.

Once a new node in the tree is generated, we check if an
existing node already exists nearby with lower cost and higher
expected reward. If such a node exists, the new node is pruned

because it is unlikely to be included in the final trajectory
(Alg 2, Line 21). For alternative methods of pruning, including
those that lead to asymptotic optimality, readers are directed to
our prior work [13]. If a node is not pruned, it may also have
cost exceeding the budget, in which case it is added to the
“closed list” of nodes that should no longer be extended (Alg
2, Line 28). If the node is valid, it is connected to its parent
node by updating the edge list (Alg 2, Line 25). The resulting
tree formed by these nodes and edges encodes a rich space
of trajectories for optimizing the expected reward function.
The maximum reward trajectory can easily be extracted by
looking at expected reward on the leafs of the tree and tracing
the trajectory back to the root.

Once the motion planner is run, and the vehicle has taken
a step in the environment, the trajectory tree does not need to
be thrown away. Instead, it is straightforward to prune away
all nodes that stem from the original vehicle configuration that
are no longer valid. To do this, we simply set the updated tree
to the subtree beginning at the new vehicle location xcur. In
addition, the expected reward estimates on all nodes need to be
reset and recalculated using the updated belief. This operation
only requires a single traversal of the tree if the optimistic
approximation of expected reward is used (see Section IV-C),
and thus only requires O(N) computation. This operation
provides the UpdateTree function in Line 12 of Algorithm 1.

C. Optimistic Approximation of Expected Reward

A key step in executing the ReASC algorithm is efficiently
estimating the expected reward for a trajectory (Alg 2, Line
17). When a new node is generated, the algorithm must
reconstruct the trajectory P back to the root of the tree by
traversing the edge list. This trajectory is then used to estimate
the value of R(P), which is then stored with the node. The
exact solution to R(P) (shown in Equation 2) requires calcu-
lating an expectation over all possible measurements. Such an
expectation would require enumerating over an exponentially
increasing number of measurement outcomes as the length of
the trajectory (i.e., the nodes along the path back to the root)
increases. To see this, note that at each point in the trajectory,
the vehicle can receive either a false or true measurement of
the target location, which creates a branching factor of two.
Thus, the exact solution would require up to O(2L), where
L is the number of nodes tracing back to the root. As the
density of the tree and the length of the trajectories increases,
this computation will quickly grow infeasible.

Since our goal is to generate long-horizon trajectories, we
need an approximation strategy for the expected reward that
reduces the necessary computation. We employ an optimistic
approximation of the expected reward that provides an a
practical approximation (similar to [26]). This upper bound
is found by choosing only optimistic measurements that move
the target beliefs towards higher certainty about the locations
of the targets. If the vehicle moves to a location x where the
probability of a target P (x) > 0.5, we assume that the vehicle
will receive a positive measurement. The posterior probability



Location x1: Prior > 0.5, Sensor Noise 0.2 

P(x1) = 0.6

Y1 = true

P(x1|Y1) = 0.86

Y1 = false

P(x1|Y1) = 0.27

Y2 = true

P(x2|Y1,Y2) = 0.96

Y2 = false

P(x1|Y1,Y2) = 0.6

Y2 = false

P(x1|Y1,Y2) = 0.09

Y2 = true

P(x1|Y1,Y2) = 0.6

(a) Prior above 0.5 (assume positive measurements)

Location x1: Prior < 0.5, Sensor Noise 0.2 

P(x1) = 0.4

Y1 = true

P(x1|Y1) = 0.73

Y1 = false

P(x1|Y1) = 0.14

Y2 = true

P(x2|Y1,Y2) = 0.91

Y2 = false

P(x1|Y1,Y2) = 0.4

Y2 = false

P(x1|Y1,Y2) = 0.04

Y2 = true

P(x1|Y1,Y2) = 0.4

(b) Prior below 0.5 (assume negative measurements)

Fig. 2. Visualization of the optimistic approximation of expected reward. The proposed approximation method chooses the emboldened path through the
measurement tree, which provides an optimistic estimate of the final uncertainty. This method reduces the required computation from exponential to linear in
the number of nodes in the trajectory.

P (x | Y ) is then calculated based on a Bayesian update from
the corresponding measurement:

P (x | Y ) = ηP (x)P (Y | x), (4)

where η is a normalizing constant. Conversely, if P (x) < 0.5,
we assume that the vehicle will receive a negative measure-
ment:

P (x | ¬Y ) = ηP (x)P (¬Y | x). (5)

By applying this approximation to all nodes in the trajectory,
we can calculate an estimate of the expected reward gained by
trajectory P in O(L) time. Letting XP+ ⊆ X be the subset of
locations visited by P where the posterior P (x | Y ) is above
the decision threshold, we have an estimate of the increase in
expected reward R̄ for trajectory P:

R̄(P) =
∑

x∈XP+

RsP (x | Y )−RfP (¬x | Y ). (6)

This approximation does not require looking at the exponen-
tial number of possible of outcomes (see Figure 2 for a visual-
ization). The intuitive justification of this approximation is that
it effectively estimates the expected reduction of probability
mass around the high uncertainty situation where P (x) = 0.5.
In the case of P (x) = 0.5, the vehicle is forced to make a risky
decision that could result in an high penalty. Conversely, cases
where P (x) ≈ 0 or P (x) ≈ 1, the vehicle is making a near-
certain decision, which will result in high likelihood of reward
and low likelihood of penalty. In the following section, we
demonstrate that this method provides improved performance
over greedy methods in both simulations and experiments.

D. Discrete and Continuous Variants

The general formulation of the ReASC algorithm is capable
of operating in continuous space, similar to other sampling-
based motion planning algorithms. However, it is important
to note that the discrete planning problem is also challenging
in search and classification domains (i.e., still at least NP-
hard [29]). This is an important distinction from the classical
shortest path problem, which can be solved efficiently using
Dijkstra’s algorithm or A* search. For search and classification
objectives, it is not possible to use A* heuristics to reduce the
search space. This is due to the dependence of the reward
on the prior trajectory. In contrast, the ReASC algorithm uses
the optimistic approximation to estimate the reward on each
node and can be applied to objectives with dependencies on
the prior trajectory.

In some scenarios it may be beneficial to plan in a discrete
space (e.g., when the possible locations of the vehicle are
limited by environmental conditions). In this case, a discrete
variant of the ReASC algorithm can be formulated by restrict-
ing the nodes on the tree to discrete locations. When a sample
is taken, nodes on the tree are extended towards the new node.
In the discrete variant, these extended nodes then have their
locations rounded to the nearest discrete point. The discrete
variant also has the advantage that the tree will not become
overly dense and lead to a blowup in computational cost.

V. SIMULATIONS AND EXPERIMENTS

A. Data-driven Simulations

We now discuss simulations and experiments validating
the proposed ReASC search and classification algorithm. The
simulations were run on a single desktop with a 3.2 GHz
Intel i7 processor with 9 GB of RAM. The ReASC algorithm
was implemented in C++ on Ubuntu Linux. Nearest neighbor



queries were provided by the Open Motion Planning Library
(OMPL) [6]. The algorithm was terminated after taking 1000
samples, which led to completion in approximately 0.01
seconds.

The simulations use depth and temperature data from
a portion of Puddingstone Lake in San Dimas, CA
(Lat. 34.088854◦, Lon. -117.810667◦). Measurements of depth
and temperature were collected using an autonomous aquatic
vehicle (described in Section VI). The vehicle ran a 45 minute
survey of the lake, and linear interpolation was used to gener-
ate a temperature and depth map for the entire area of interest
(see Figure 5). The vehicle’s goal was to identify target regions
within a pre-specified depth and temperature. Locating areas
within a pre-specified interval has direct relevance to scientific
research objectives (e.g., organisms of interest typically live
in areas of certain depth and temperature) and surveillance
applications (e.g., locating submarines at pre-specified depths).

For these experiments, the target depth was set to d = 7±
1 meters, and the target temperature was set to T = 9.6 ±
1 degrees C. The area of interest was divided into a 10 ×
10 discrete map of cells, and a total of 16 of these cells fit
within the temperature and depth threshold. Thus, performance
is determined by how many correct identifications the vehicle
can make (16 being perfect). One unit of reward is given for
a correct target classification, and one unit is subtracted for an
incorrect classification.

An initial probability map was determined based on the 45
minute survey (shown in Figure 5). Areas that were not ob-
served by the survey were estimated using linear interpolation.
Each of the discrete areas was then assigned a probability of
being within the threshold based on an exponential decay from
the target threshold. The resulting probability map provided an
initial estimate for P (x).

A simulated autonomous vehicle was tasked with moving
through the area of interest and refining the initial probability
map. The vehicle received simulated measurements of the
target depth and temperature. We set false positive and false
negative rates to different values to model a sensors with
varying noise levels. The proposed ReASC algorithm was
compared to (1) a random method that moves to each adjacent
cell with uniform probability, and (2) a greedy method that
calculates the exact 1-step reward and moves to the cell with
the highest reward [32].

The results in Figure 3 demonstrate that the ReASC algo-
rithm outperforms the greedy and random methods for varying
budgets and false positive/negative rates. The advantage over
greedy is particularly pronounced with larger budgets because
the greedy method becomes trapped in a local maximal
reward and is unable to escape to areas of higher reward.
In such cases, as much as a 36% improvement can be seen
with the proposed methods. These simulations demonstrate
the advantage of long-horizon planning using sampling-based
methods with reward approximation.

To decouple the benefit of long-horizon planning from the
accuracy of the approximation method, we also compare to a
variant of ReASC that uses Monte Carlo sampling to estimate

the expected reward. The Monte Carlo method simulates K
possible measurement combinations along a candidate trajec-
tory and estimates the expected reward by averaging rewards
over these measurement configurations. This method provides
an estimate of expected reward that becomes more accurate
with increasing running time. In these simulations, we set
K = 200, which yielded an average replanning time of 0.98
seconds (approximately the upper limit on what would be rea-
sonable replanning time in the aquatic monitoring scenario).1

In contrast, ReASC with the optimistic approximation had an
average replanning time of 0.01 seconds. Figure 3 shows that
the optimistic approximation slightly outperforms the Monte
Carlo approximation, which demonstrates the effectiveness of
the proposed approximation approach.

VI. EXPERIMENTS WITH AUTONOMOUS AQUATIC
SURFACE VEHICLE

We now demonstrate our proposed approach using a lake
monitoring scenario with an autonomous aquatic surface vehi-
cle. The Ecomapper vehicle (www.ysi.com/ecomapper) shown
in Figure 4 is propeller driven and moves at speeds up to 2
knots. It is equipped with a GPS unit and a Doppler Velocity
Log (DVL), which provide localization and depth sensing
capabilities for the vehicle. The vehicle communicates with a
ground station through a standard 802.11 wireless connection.
The vehicle measures the temperature using a thermometer
and the depth using the DVL at its current location. The
Ecomapper is capable of diving to depths of 100 meters;
however, in these experiments, it acted as a surface vehicle to
provide safer testing of the proposed algorithm. The vehicle
houses a front-end computer running Windows and a back-
end Linux computer with a 1.6 GHz Intel Atom processor
and 1 GB of RAM. The back-end computer ran the proposed
algorithm onboard in real time. Experiments were conducted
at Puddingstone Lake in San Dimas, CA.

Implementing the proposed algorithm required interfacing
with the vehicle’s front-end and back-end computers and
translating the waypoints given by the algorithm to command
actions for the propellers. The back-end computer, running
Robot Operating System (ROS) [27], received measurements
from the sensors (using a Python parser) and ran the ReASC
planner (implemented in C++). The ReASC planner on the
back-end computer generated waypoints and sent them via
ethernet to the front-end computer. The front-end computer,
packaged standard with the YSI Ecomapper vehicle, used
YSI’s proprietary waypoint following algorithm to execute the
waypoints. The YSI waypoint following algorithm adjusts for
winds and currents that would otherwise force the vehicle to
deviate from its specified trajectory. This system architecture
allows ReASC to be integrated with existing control software
operating in real-time on the aquatic vehicle.

1We note that an exhaustive method for calculating the expected reward is
not feasible because the total number of possible observation combinations
for observing N points would be 2N . Typically, greater than 25 points are
observed along a candidate trajectory in the lake.

www.ysi.com/ecomapper
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Fig. 3. Simulation results for the proposed algorithm compared to a myopic (greedy) heuristic and a random walk method. The proposed ReASC sampling-
based algorithm consistently outperforms the baseline algorithms for varying budgets and false sensing rates. Variants of ReASC are shown with a Monte
Carlo reward approximation method and with the proposed optimistic reward approximation method. Error bars are one SEM.

Fig. 4. Ecomapper propeller-driven AUV used as a surface vehicle for
lake monitoring experiments with the proposed ReASC adaptive classification
algorithm.

As in the simulated experiments, an initial probability map
was generated, and the vehicle was tasked with refining that
map. In these experiments, we only use the depth target of
d = 7± 1 meters due to better reproducibility on the vehicle.
The initial and final probability maps, along with the trajectory
executed by the vehicle, is shown in Figure 6. The vehicle

trajectory has some circular turns, which is an artifact of the
waypoint following controller.

The initial probability map predicted that 38 regions were
within the target depth range. After executing the 10 minute
mission on the vehicle, 10 of those target regions were found
by the sensor to be outside the target range. The remaining
28 regions were determined by the sensor to be within the
target range. With a relatively short mission (compared to
the 45 minute survey), the proposed algorithm was able to
determine that 26% of the locations predicted to be within the
target range by the survey were likely erroneous. This proof-
of-concept experiment demonstrates the proposed ReASC al-
gorithm running onboard an autonomous aquatic vehicle using
existing hardware.

VII. CONCLUSIONS AND FUTURE WORK

This paper has shown that it is possible to implement long-
horizon planning for search and classification tasks in real time
on a fielded aquatic vehicle. The proposed ReASC algorithm
combines motion planning techniques with an optimistic ap-
proximation strategy for expected reward to allow for real-time
optimization of search and classification objective functions.
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Fig. 5. Initial 45 minute survey performed by an autonomous aquatic vehicle (left). The vehicle measured depth and temperature at its current location. The
depth (center) and temperature (right) maps are interpolated for areas that were not directly observed.
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(c) Executed Trajectory

Fig. 6. Probability map generated from the initial survey (left), refined probability map after executing a 10 minute mission (center), and vehicle trajectory
executed by the ReASC algorithm (right). The vehicle is able to identify that 10 of the locations predicted by the initial survey to be within the target range
are outside this range (based on the observed sensor data). Image is best viewed in color.

The resulting techniques were validated both in simulation
and on an autonomous surface vehicle performing a target
classification task in a lake.

There are a number of lessons learned from the experiments.
It is clear that the computation on existing aquatic vehicles
is sufficient to run sampling-based planners. One issue that
remains is translating waypoints in 2D or 3D space into
control actions for the vehicle. A number of existing waypoint
controllers are not designed for densely packed waypoints,
and additional work is needed to ensure that the trajectories
are executed in an efficient manner (e.g., do not contain
unnecessary loops). Another important observation from the
experiments is that testing becomes challenging when the
vehicle is performing adaptive behaviors. In some cases, the
vehicle did not properly execute the trajectory, and the reasons
were difficult to debug. Methods for verification and validation
of controllers that include replanning would help to diagnose
these problems before they occur.

The results in this paper open up a number of interesting
areas for algorithmic future work. It would be worthwhile to
explore the applicability of state-of-the-art POMDP solvers
that utilize sampling-based methods (e.g., [20]) to the domains
of interest. We showed that naive Monte Carlo estimation

methods do not perform competitively relative to running time,
but more sophisticated approaches may yield improved results.
Of theoretical interest is an analysis of the asymptotic opti-
mality of the proposed approaches. Algorithms like RRT* [17]
and RIG [13] are asymptotically optimal given conservative
pruning strategies. To show similar properties for the ReASC
algorithm, it would be necessary to bound the approximation
accuracy of the optimistic strategy.

Experimental future work includes implementation of the
proposed algorithm on autonomous underwater vehicles. A
particularly interesting scenario to examine is the use of the
proposed algorithm for underwater inspection and intervention
in marine structures. Overall, the proposed techniques have
opened the door to scalable, long-term planning in domains
with high uncertainty.
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