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Abstract—Stochastic optimal control problems frequently arise
as motion control problems in the context of robotics. Unfortu-
nately, all existing approaches that guarantee arbitrary precision
suffer from the curse of dimensionality: the computational effort
invested by the algorithm grows exponentially fast with increasing
dimensionality of the state space of the underlying dynamic
system governing the robot. In this paper, we propose a novel
algorithm that utilizes compressed representations to efficiently
solve stochastic optimal control problems with arbitrary preci-
sion. The running time of the new algorithms scale linearly with
increasing dimensionality of the state space! The running time
also depends polynomially on the “rank” of the value function,
a measure that quantifies the intrinsic geometric complexity of
the value function, due to the geometry and physics embedded
in the problem instance at hand. The new algorithms are based
on the recent analysis and algorithms for tensor decomposition,
generalizing matrix decomposition algorithms, e.g., the singular
value decomposition, to three or more dimensions. In computa-
tional experiments, we show the computational effort of the new
algorithm also scales linearly with the discretization resolution
of the state space. We also demonstrate the new algorithm on
a problem involving the perching of an aircraft, represented
by a nonlinear non-holonomic longitudinal model with a seven-
dimensional state space, the full numerical solution to which
was not obtained before. In this example, we estimate that the
proposed algorithm runs more than seven orders of magnitude
faster, when compared to the naive value iteration.

I. INTRODUCTION

Motion control problems are embedded and essential in
many robotics problems. For example, consider an underwater
robot subject to intense underwater currents and disturbances,
tasked with docking to its station. The dynamics governing
the vehicle under these conditions can be represented by an
ordinary stochastic differential equation with substantial drift
and diffusion terms. Then, the motion control problem is
formulated by designing a suitable cost function that penalizes
forbidden states and rewards successful docking [26]. Such
stochastic optimal control problems are at the core of many
motion control problems of robotics [3, 8, 24], especially when
a robot with complex dynamics is operating in a complex
environment while subject to external disturbances, such as
airplanes operating under harsh weather conditions and high-
speed racing cars navigating on dirt roads, among many others.

Analytical solutions are available only for a handful of
stochastic optimal control problems, such as the case involving
linear dynamics and Gaussian noise [10]. However, most
practical instances of robot motion control problems lead to
nonlinear and non-holonomic dynamics with multi-modal non-

Gaussian noise characteristics; moreover, the geometry of the
workspace of the robot often implies non-convex state and
input constraints, to further complicate the matters [24]. Hence,
computationally-efficient numerical methods are required to
solve such instances of motion control problems.

Several numerical methods for this purpose were developed
during the past several decades. These approaches can be
divided into two categories. First, the indirect methods involve
deriving the sufficient conditions for optimality, which leads
to a boundary value problem for a special Partial Differential
Equation (PDE), called the Hamilton-Jacobi-Bellman (HJB)
equation. Then, the HJB equation is solved using suitable
numerical methods [1, 15]. Second, the direct methods con-
struct a sequence of Markov Decision Processes (MDPs), the
trajectories of which converge in distribution to the trajectories
of the original continuous stochastic optimal control problem.
Then, the resulting MDPs are solved to obtain an approximation
of the optimal policy for the original problem [13]. In both
methods, the algorithms utilize a state-space discretization,
often using a regular grid, which renders the number of discrete
states exponential in the dimensionality of the state space. This
issue is not unique to stochastic optimal control. Whenever
a grid-like uniform batch sampling is utilized to construct a
discrete approximation of an inherently continuous problem,
similar problems arise. For example, algorithms for motion
planning (for deterministic systems) or algorithms for Partially-
Observable Markov Decision Processes (POMDPs) are also in
this class, and they also face similar issues [24].

This computational intractability is known to be inherent
in the problem. In fact, even simple special cases of motion
planning (and motion control) problems are PSPACE-hard [5,
21]. Hence, in the worst case, the running time of the exact
algorithms are doomed to scale exponentially with increasing
number of dimensions. This phenomenon is known as the curse
of dimensionality, and it is embedded in almost all robotics
planning and control problems that involve either complex
robot dynamics or complex environments [14, 3].

Our contribution in this paper is a tensor-based value
iteration framework for overcoming the curse of dimensionality
associated in stochastic optimal control resulting from the direct
discretization using a regular grid. Our method is applicable
in a general optimal stochastic control setting, hence applies
to almost any regular dynamical system. The key idea is to
represent the stochastic control cost function at each iteration
in tensor-train format, and effectively perform value iteration



in this form. Tensor decompositions exploit low rank structure
commonly found in separable functions and allow us to
measure the complexity of a problem by the tensor ranks
involved instead of by its dimensionality.

In essence, the tensor decomposition allows us to represent
the value function in a compressed form, which is key to
performing value iteration in an efficient manner.

The tensor-based value iteration algorithm presented in this
paper exploits the properties of the tensor-train decomposition
to create an algorithm which has polynomial complexity in
dimension, linear complexity in the number of discretization
nodes in each dimension, and polynomial complexity in tensor
rank. Furthermore, the algorithm we employ is rank-adaptive
and allows us to guarantee a specified level of accuracy for
the solution of the stochastic optimal control problem. Only
very recently, efficient tensor decomposition algorithms were
proposed, and they were successfully utilized to overcome
the curse of dimensionality in many fields, such as machine
learning and data analysis [6].

We demonstrate tensor-based value iteration on two numeri-
cal simulations. The first is a proof-of-concept linear-quadratic-
Gaussian control problem. In this problem we are able to
match the analytic solution computed using a continuous time
algebraic Riccati equation and achieve order of magnitude
gains over standard value iteration. Next, we solve a perching
problem and create a controller for an unpowered glider whose
goal is to perch on a horizontal string. This problem involves a
seven dimensional state space and a single control specifying
the actions of the glider elevator. We are able to solve the
problem when it is discretized in over 30 billion states on
a standard 2.0 GHz Macbook Air personal computer. Such
performance demonstrates the improvement of the state-of-the-
art, and increases the practicality of using optimal stochastic
control on a large class of problems.

II. PROBLEM DEFINITION AND BACKGROUND

In this section, we introduce the stochastic optimal control
problem, and describe the tensor decomposition algorithms.

A. Stochastic optimal control

Let us denote the set of integers and the set of reals by
Z and R, respectively. We will denote the set of all positive
real numbers by R+. Similarly, the set of positive integers
will be denoted by Z+. Let d, du, dw ∈ Z+, X ⊂ Rd and
U ⊂ Rdu be compact sets with smooth boundaries and non-
empty interiors, and {w(t) : t ≥ 0} be a dw-dimensional
Brownian motion defined on some probability space (Ω,F ,P),
where Ω is a sample space, F is a σ-algebra, and P is a
probability measure.

Consider a stochastic dynamical system of the following
differential form:

dx(t) = b(x(t), u(t))dt+ F (x(t), u(t))dw(t), (1)

where b : X × U → Rd and F : X × U → Rd×dw
are measurable, continuous, and bounded functions. Strictly

speaking, for any admissible control process1 {u(t) : t ≥ 0},
the solution to this differential form is a stochastic process
{x(t) : t ≥ 0} that solves the following integral equation:

x(t) = x(0) +

∫ t

0

b(x(τ), u(τ)) dτ +

∫ t

0

F (x(τ), u(τ)) dw(τ),

for all t with x(t) ∈ X , where the last term on the right
hand side is the usual Itô integral [17]; when the process
{x(t) : t ≥ 0} hits the boundary of X , the process stops, i.e.,
x(t) = x(T ) for all t ≥ T , where T is the time that x(T ) is
on the boundary of S.

A (Markov) control policy is a mapping µ : X → U that
assigns a control input to each state. For a given policy µ, we
define the first exit time as follows:

Tµ = inf{t : x(t) /∈ int(S) and dx(t) = b(x(t), u(t))dt

+F (x(t), u(t))dw(t), where u(t) = µ(x(t))}.
In other words, Tµ is the first time that the trajectory of the
system governed by the dynamics described by Equation (1)
hits the boundary of the set X , when it is under the influence
of a given control policy µ.

Then, the expected cost-to-go function under policy µ is a
mapping J : S → R defined as:

Jµ(z) = E
[ ∫ Tµ

0
e−γtg(x(t), µ(x(t))) dt+ h(x(Tµ))

∣∣ x(0) = z
]
, (2)

where 0 < γ < 1 is a discount factor, g : X × U → R and
h : X → R are measurable, continuous, and bounded functions,
called the cost rate function and the terminal cost function,
respectively. An optimal cost-to-go function J∗ : X → R is
such that

J∗(z) = inf
µ∈Π

Jµ(z), for all z ∈ X.

An optimal control policy µ∗ : X → U is such that Jµ∗(z) =
J∗(z) holds for all z ∈ X . The stochastic optimal control
problem is to compute an optimal policy, given the dynamics
described by Equation (1) and the cost function described by
Equation (2) . This paper aims to compute approximations of
the optimal cost-to-go function and the optimal control policy,
for any regular system of the form given in Equation (1). For
this purpose, we propose an algorithm that returns a policy µ
such that ‖Jµ − J∗‖∞ ≤ ε, for any given ε > 0.

Numerical methods for stochastic optimal control prob-
lems are often solved by analyzing the optimality conditions
proposed by Bellman (see [3]). The optimality conditions
take the form of a partial differential equation, called the
Hamilton-Jacobi-Bellman (HJB) equation, with boundary value
conditions. The solution to this boundary value problem is the
optimal cost-to-go function. Many numerical approaches to
stochastic optimal control discretize and solve the boundary

1Suppose the control process {u(t) : t ≥ 0} is defined on the same
probability space (Ω,F ,P) which the Wiener process {w(t) : t ≥ 0} is also
defined on. Then, {u(t) : t ≥ 0} is said to be admissible with respect to
{w(t) : t ≥ 0}, if there exists a filtration {Ft : t ≥ 0} defined on (Ω,F ,P)
such that u(t) is Ft-adapted and w(t) is an Ft-Wiener process. See [13] for
the precise measure theoretic definitions.



value problem for the HJB equation [1, 15]. This method is
usually called the indirect method.

The direct method is to discretize the dynamics described
by Equation (1) directly and solve the resulting discrete
optimization problem, where the cost function is a discretized
version of Equation (2). The resulting discrete problem is
a Markov Decision Problem (MDP), which can be solved
numerically using standard techniques, such as value iteration
(VI) or policy iteration [13].

More precisely, an MDP is a tuple M = (S,A, P,G,H),
where S is the set of states, A is the set of actions, P (·|·, ·) :
S × S × A → [0, 1] is function that denotes the transition
probabilities satisfying

∑
s′ P (s′|s, a) = 1 for all s ∈ S and

all a ∈ A, G : S×A→ R is the immediate cost function, and
H : S → R is the terminal cost function. The MDP describes
the discrete stochastic dynamics and the cost associated with
its motion. When the process is at state s ∈ S and action
a ∈ A is applied, the next state of the process is s′ ∈ S
with probability P (s′|s, a). A policy is a mapping π : S → A
that associates each state with an action. Let {ξ : i ∈ N} be
the resulting (random) sequence of states, when action π(s)
is applied whenever the process is at state s. Then, the cost
associate with motion {ξ : i ∈ N} is defined as:∑N

i=0
G(ξi, π(ξi)) +H(ξN ),

where N is the time when the process terminates. The optimal
cost-to-go function and the optimal policy are defined similarly
to the continuous case.

The direct method, developed by Kushner and co-
workers [11, 12, 13], constructs a sequence of discrete MDPs
such that the optimal cost-to-go functions of the MDPs converge
uniformly to the cost-to-go functions of the original continuous-
time continuous-space problem.

Let {M` : `` ∈ N} be a sequence of MDPs, where M` =
(S`, A`, P`, G`, H`). Suppose S` ⊂ X and A` ⊂ U . Define
∂S` as the subset of S` that falls on the boundary of X .
Let {∆t` : ` ∈ N} be a sequence of functions, also called
holding times, in the following form: ∆t` : S` → R+. Let
{ξni : i ∈ N} be a (random) sequence of states that describe
the trajectory of M`. We use holding times as interpolation
intervals to generate a continuous-time trajectory from this
discrete trajectory as follows. With a slight abuse of notation,
let ξn : R≥0 → S denote the continuous-time function defined
as follows: ξn(τ) = ξni for all τ ∈ [t`it

`
i+1), where t`i =∑i−1

k=0 ∆t`(ξk). Let {u`i : i ∈ N} be a sequence of control
inputs, defined for all ` ∈ N. Then, we define the continuous
time interpolation of {u`i : i ∈ N} as u`(τ) = u`i for all
τ ∈ [t`i , t

`
i+1).

The following result by Kushner and co-workers character-
izes the conditions under which the trajectories of the discrete
MDPs converge to the trajectories of the original continuous-
time stochastic system.

Theorem 1 (See Theorem 10.4.1 in [13]). Suppose the
sequence {M` : ` ∈ N} of MDPs and the sequence
{∆t` : ` ∈ N} holding times satisfy the following conditions:

For any sequence of inputs {u`i : i ∈ N} and the resulting
sequence of trajectories {ξ`i : i ∈ N},
• for all z ∈ X ,

lim
`→∞

∆t`(z) = 0,

• for all z ∈ X and v ∈ U ,

lim
`→∞

E[ξ`i+1 − ξ`i | ξ`i = z, u`i = v]

∆t`(z)
= f(z, v),

lim
`→∞

Cov[ξ`i+1 − ξ`i | ξ`i = z, u`i = v]

∆t`(z)
= F (z, v),

Then, the sequence {(ξ`, u`) : ` ∈ N} of interpolations
converges in distribution to (x, u) that solves the integral
equation with differential form given by Equation (1). Let J∗`
denote the optimal cost-to-go function for the MDP M`. Then,
for all z ∈ S,

lim
`→∞

|J∗` (z)− J∗(z)| = 0.

The conditions of this theorem are often called the local
consistency conditions. Roughly speaking, the theorem states
that the trajectories of the discrete MDPs will converge to
the trajectories of the original continuous-time stochastic
dynamical system if the local consistency conditions are
satisfied. Furthermore, in that case, the optimal cost-to-go
functions of the discrete MDPs also converge to that of the
original stochastic optimal control problem. A discretization
that satisfies the local consistency conditions is called a
consistent discretization.

Once a consistent discretization is obtained, the direct method
is to utilize the standard dynamic programming algorithms,
such as value iteration or policy iteration [2]. Suppose this
discretization is obtained by choosing all states on a tensor
grid with resolution h, and the resulting set of all discrete
states is {zi : i ∈ I}. Then, for value iteration, the cost-to-go
function (also called the value function) is computed in an
iterative manner, by applying the following update function:
For all zi,

J
(k+1)
h (zi) = min

u

[
G(zi, u) + γh

∑
j

P (zj|zi, u)J
(k)
h (zj)

]
, (3)

where 0 < γh < 1 is a discount rate. In this case, the function
J

(k)
h is the approximation of the optimal cost-to-go function

(for the discrete MDP) in iteration k. The value iteration
algorithm guarantees that J (k)

h converges to the optimal cost-
to-go function for the discrete MDP as k →∞. Let us denote
the limit by Jh. Then, by Theorem 1, if the discretization is
consistent with the original continuous-time stochastic optimal
control problem, then the Jh also converges to the optimal
cost-to-go function for the continuous-time problem as h→ 0.

B. Low-rank tensor decompositions

Tensors are multidimensional arrays. In the context of this
work, a tensor arises when a multidimensional function is
evaluated on a tensor product grid of input values. For example,
the cost-to-go function arising from the direct solution method



can be interpreted as a tensor when the state space is discretized
according to a tensor product grid with resolution level h.
The primary challenge of the direct method then becomes
dealing with high dimensional tensor because of the curse of
dimensionality. To combat the curse of dimensionality we seek
to exploit the low rank structure and the separability of certain
functions to obtain compressed representations of tensors. Once
in compressed form, tensors can be used for computation in
many algorithms.

Tensor decompositions are compressed representations of
multidimensional arrays. These decompositions are multidi-
mensional dimensional analogues of the SVD in the sense that
they allow us to represent an array with far fewer elements
than its total size. The complexity of algorithms dealing with
such representations are dominated by the rank of the tensor,
and they retain polynomial, and often linear, complexity with
dimensions. The rank of a tensor is defined differently by the
different tensor decompositions, and it may grow with problem
dimension, and in this paper we use the tensor-train (TT) [18]
decomposition because it is guaranteed to exist and algorithms
for its computation have strong guarantees.

Separation of variables plays an important role in all
tensor representations, and this fact is illuminated by first
considering continuous analogues of tensor decompositions.
Specifically, the continuous analogue of a tensor decomposition
is a representation of a multidimensional function as a separable
function, or by sums of products of one dimensional functions.
The representation of a multidimensional function f : Rd → R
in tensor-train format is

f(x1, . . . , xd) =

r0∑
α0=1

. . .

rd∑
αd=1

f
(α0,α1)
1 (x1) . . . f

(αd−1,αd)
d (xd),

In the TT decomposition, there are distinct tensor ranks rk ∈ Z+

for each dimension, with boundary conditions r0 = rd = 1.
Furthermore, for each dimension Fk = {f (αk−1,αk)

k : αk−1 ∈
[1, . . . , rk−1], αk ∈ [1, . . . , rk]} represents a set of one
dimensional functions of the kth variable. The tensor-train
decomposition differs from other tensor decomposition by al-
lowing a greater variety of interaction between the functions in
neighboring sets Fk,Fk+1. Thus, each rank rk, for 0 < k < d,
specifies the number of functions of the kth and k + 1th
dimensional variables that interact with each other.

Transitioning back from a multidimensional function to a
multidimensional array involves discretizing each dimension
i into a set Xi = {xi[1], . . . , xi[ni]} of ni ∈ Z+ points. Now
let F : X1 × . . . × Xd → R be a tensor with elements
F [i1, . . . , id] = f (x1[i1], . . . , xd[id]) . In the array setting,
each set Fk can be represented as a three dimensional array
Fk, called a core, where each element of each core is equal
to Fk[αk−1, ik, αk] = f

(αk−1,αk)
k (xi[ik]). Each element of the

tensor F represented in TT format can then be computed with
a sequence of matrix products

F [i1, i2, . . . , id] = F1[:, i1, :]F2[:, i2, :] . . . Fd[:, id, :].

The ranks of a TT decomposition are bounded by the ranks
of each unfolding matrix of the tensor. For example, rank rk

guaranteed to be not higher than the rank of the
∏k
i=1 ni ×∏d

i=k+1 ni unfolding matrix F k[i1, . . . , ik; ik+1, . . . , id]. The
proof of this statement is constructive and results in an
algorithm which allows one to decompose a tensor into its TT
representation by a sequence of singular value decompositions
(SVD) [18]. This algorithm also allows us to compute an
approximation F̃ to F with a specified accuracy ε, i.e., we
can compute an approximation such that

∣∣∣∣∣∣F̃ − F ∣∣∣∣∣∣
F
≤ ε ||F ||.

Furthermore, this computation can be performed in O(dnr2)
operations, where for simplicity we let nk = n and rk = r.

The SVD based compression algorithm requires access
to every element of the tensor. In high dimensions, this
requirement means that the TT-SVD algorithm is infeasible.
To remedy this problem [19] replaces the SVD with a
CUR/Skeleton/Cross approximation. Recall that the skeleton
decomposition [25] of an m× n rank r matrix A can written
as A = A[:, C]A[I, C]†A[C, :], where I is a set of rows with
|I| ≥ r and C is a set of columns with |C| ≥ r.

In the context of matrices, we see that this decomposition
only requires access to particular rows and columns of A.
Similarly, in the TT-cross [19] algorithm, only access to
particular fibers of the tensor are required. The TT-cross
algorithm can also achieve ε-level accuracy; however, it
requires the specification of upper bounds to each rk. If
the upper bounds are set too low, then errors will occur in
the approximation; however, if the upper bounds are set too
high then evaluation of too many elements will be required.
When specified correctly, this algorithm requires evaluation
of O(dnr3) tensor elements. Rank-adaptive versions of this
algorithm exist and can be found in [23].

Numerical computations with tensors in the TT-format can be
readily performed. For example, adding two tensors with ranks
rk = r results in a tensor whose ranks are r̂ = 2r and requires
virtually no operations. Element-wise multiplication results
in a tensor whose ranks are r̂ = r2 and requires O(dnr4)
operations. Even though the rank of a tensor grows after
performing addition and multiplication, an approximation with
ε-level accuracy often remains rank r. A procedure which
“rounds” a TT decomposition to one with smaller rank with a
prescribed level of accuracy ε is called TT-rounding and can
be performed in O(dnr2) operations [19].

III. ALGORITHM DESCRIPTION

We now propose a framework for tensor-based value iteration
based upon representing the cost function of the stochastic con-
trol problem in tensor-train format. The key to this framework
is recognizing that the direct method for solving stochastic
control problems often requires a tensor product discretization
of the state space. Following this discretization all functions
defined on a continuous domain become represented on the
discrete domain. These functions include the cost function, the
policy, the drift function, and the diffusion function. Each of
these functions can be interpreted as either a tensor or a vector
with tensor elements. For example, the cost-to-go function (or
the value function) is a tensor, and the drift function can be



interpreted as a d-dimensional vector with each element of the
vector being a tensor.

One previous work has taken advantage of this tensor
structure to some degree. In [9], an algorithm based on solving
HJB PDEs using the canonical decomposition was proposed.
However, the method was applied to particular optimization
formulations which can be structured as a linear HJB, which
constrains it to control affine drift and control-independent
diffusion terms. We do not make any assumptions on the
dynamics other than the standard regularity assumptions. Our
example in Section V-B does not meet the requirements
for a linear HJB directly. Hence, it can not be addressed
by the method proposed in [9]. Furthermore, the canonical
decomposition used in [9] does not allow existence guarantees
and strong analytical results. Instead, our proposed framework
is more general because it depends on the direct method,
which is capable of handling a wide variety of dynamics and
cost functions. In the direct method, we represent the cost
function obtained at each iteration of VI in tensor-train format;
therefore, we avoid evaluating the expensive optimization
problem specified in Equation (3) at every state zi. While
there exist approximate dynamic programming [4, 20] methods
which can be also used with VI, the proposed framework has
the additional feature that we can specify the error ε incurred.

We now describe two algorithms which utilize tensor
decompositions to perform this update. The first is completely
general and can be applied to a wide variety of problems
including those with non-quadratic cost, non-additive control,
discounted infinite horizon cost, finite horizon cost, etc. The
second algorithm shows how using tensors for a specific class
of stochastic optimal control problems can yield to further
analytic simplifications of the value iteration algorithm.

A. Interpolation approach

The first approach relies on interpolation using TT-cross,
and it provides a general solution to the problem defined by (1)
and (2). As we will see, its efficiency depends upon the rank
of the cost function. Suppose that J (k)

h is expressed in TT
format and is of rank r̂. Under such a scenario we are able
to evaluate the right hand side of (3) for any zi. Thus we
can view J

(k+1)
h as a tensor whose elements can be computed

by solving the corresponding minimization problem. In this
case, we can use the TT-cross based interpolation procedure
to build an ε-level approximation to J (k+1)

h by evaluating the
right hand side of (3) only at certain fibers of J (k+1)

h . Using
these element-wise evaluations we can perform an approximate
VI update to obtain a new estimate for the cost function. This
procedure can be repeated each iteration at a complexity of
O(dnr̂3) evaluations of (3) where n is typically O(1/h). The
full tensor-based value iteration algorithm is shown in 1.

The update step 4 treats the VI update (3) as a black box
function into which one feeds a state zi and obtains an updated
cost. The TT-cross algorithm takes as inputs a blackbox
function and an accuracy parameter, and it returns the full new
tensor. For any given state zi we can then obtain the optimal

Algorithm 1 Tensor-based Value Iteration (TVI)
Require: Termination criterion δmax; TT-cross accuracy ε;

Initial cost function Ĵ (0)
h

Ensure: Residual δ = ‖Ĵ (k)
h − Ĵ (k−1)

h ‖2 < δmax
1: δ = δmax + 1.
2: k = 0
3: while δ > δmax do
4: Ĵ

(k+1)
h = TT-cross ((3), ε)

5: k = k + 1
6: δ = ‖Ĵ (k)

h − Ĵ (k−1)
h ‖2

7: end while

control as the minimizer of (3). Both simulation examples in
Section V are solved using this interpolation approach.

B. Analytical approach

Although the interpolation algorithm described above is valid
for the general stochastic control problem specified by (1)
and (2), certain specific problem setups offer an opportunity
for avoiding interpolation at each VI step. Avoiding TT based
interpolation removes the need for adaptive rank determination
and can lead to more efficient computational routines. Here
we outline how one can perform all the operations required
in a VI update step in TT format for one example of a
specific optimization problem setup. Suppose that we have a
problem that has diffusion dominated dynamics, linear-additive
control, quadratic state and control costs, and an invertible
control penalty. Furthermore, suppose that we have obtained
TT representations of both the drift and diffusion dynamics
and we consider a discounted infinite horizon problem

min
u(t)

lim
T→∞

E

[∫ T

0

e−βt
(
x(t)TQx(t) + u(t)TRu(t)

)
dt

]
s.t dx = b(x(t))dt+ Bu(t)dt+ F (x(t))dw,

for discount rate 0 < β < 1, state penalty Q ∈ Rd×d, control
penalty R ∈ Rdu×du , and control coefficient B ∈ Rd×du .
Consider now that F (x) is diagonal and recall that for a
tensor discretization with resolution h, diffusion dominance
requires F (x)2

ii − h |[Bu(x)]i| − h |b(x)i| > 0 for i = 1 . . . d.
A general LQG problem, such as the example in Section V-A,
can potentially fall into this framework for a sufficiently strong
diffusion.

One locally consistent discretization resulting in the opti-
mization problem (3) is

p(x, x± eih |u ) =
F 2(x)ii ± h (b(x)i + [Bu(x)]i)

Q(x)

Q(x) = 2tr
(
F 2(x)

)
, ∆th =

h2

Q(x)
, γh = e−β∆th

G(x, u) = ∆th
(
x(t)TQx(t) + u(t)TRu(t)

)
Under this discretization the control which minimizes the RHS
of (3) is

u∗(x) = −γh
2h

R−1BT J̃ (k)(x) (4)



where

J̃ (k)(x) =


J

(k)
h (x+ e1h)− J (k)

h (x− e1h)
...

J
(k)
h (x+ edh)− J (k)

h (x− edh)


Using these expressions we have the following update for the
cost function

J
(k+1)
h (x) = ∆th

(
xTQx+

γ2

4h2
J̃(k)(x)T b(k)u

)
+ γh

d∑
i=1

[
F 2(x)ii + h

(
b(x)i −

γ

2h
[b(k)u ]i

)]
J
(k)
h (x+ eih)

− γh

d∑
i=1

[
F 2(x)ii − h

(
b(x)i −

γ

2h
[b(k)u ]i

)]
J
(k)
h (x− eih),

where b(k)
u (x) = γ

2hBR−1BT J̃ (k)(x). Suppose that the ranks
rank(J

(k)
h ) = r̂, and note that each element of b(k)

u is actually
a tensor and comes from a linear combination of the elements
of J̃ (k). Adding tensors in TT format requires no operations
but results in tensors with ranks which are the sum of the
ranks of each element of the sum. To remove this rank growth,
rounding is required after every addition, and the overall cost to
compute the entire vector b(k)

u (x) is O(nr̂3d3), with the result
typically also being rank r̂. Here, J̃ (k)(x) may be thought of
as a vector of d dimensional tensors, and if we already have
J

(k)
h in TT format, the computation of each element of J̃ (k)(x)

only requires the manipulation of the corresponding core of
J

(k)
h . Therefore,the computation of J̃ (k)(x) requires O(dnr̂2)

operations. After this process, the ranks of J̃ (k)(x) remain
equal to r̂. Finally, the rest of the operations involved in the
update are either addition or element-wise multiplication, and
their complexity has been stated previously. Thus, we see that
each update can be performed using algebraic operations in
TT-format with a controlled error tolerance.

IV. ANALYSIS

Let Ĵ (k)
h denote the approximation of the cost-to-go function

in the TT format obtained after k iterations using a grid with
resolution h. Recall that Ju∗h denotes the optimal cost-to-go
function with the same resolution. Our main theoretical result
bounds the error between these quantities and the computational
effort invested by the proposed algorithms.

Theorem 2. When the proposed interpolation method are run
for k iterations on a grid with resolution h, and TT-cross
accuracy ε, the number of computational operations performed
by the algorithm is O(kdr3/h) and the resulting approximation
error satisfies:

||Ĵ (k)
h − Ju∗h || ≤ ε

(
Rmax+γ

1−γ

)
+ γk+1ε||J̃ (0)

h ||+ γk||J̃ (0)
h − Ju∗h ||.

Proof: Let Ĵ (k)
h specify the cost function in TT format

obtained by performing k iterations of ε-level accuracy VI.
Let Ju∗h indicate the solution of the optimal stochastic control
problem using the direct method with discretization resolution
h. We seek to bound the difference between these two tensors

ε = ||Ĵ (k)
h −Ju∗h ||F . To determine the error ε, we first consider

the error introduced at each iteration of VI.
Let Rmax = max

u(x),x
r(x, u(x)), J̃ (k)

h be a cost function

approximation obtained by performing exact VI for k iter-
ations, J (k+1)

h be a cost function approximation obtained by
performing approximate VI for k iterations followed by a single
iteration of exact VI, and P be the probability transition matrix
of the Markov process. The difference between Ĵ

(k+1)
h and

J̃
(k+1)
h can then be bounded by

||Ĵ (k+1)
h − J̃ (k+1)

h || = ||Ĵ (k+1)
h − J (k+1)

h + J
(k+1)
h − J̃ (k+1)

h ||
≤ ||Ĵ (k+1)

h − J (k+1)
h ||+ ||J (k+1)

h − J̃ (k+1)
h ||

≤ ε||J (k+1)
h ||+ ||γPĴ (k)

h − γPJ̃ (k+1)
h ||

≤ ε||Rmax + γPĴ
(k)
h ||+ γ||Ĵ (k)

h − J̃ (k)
h ||

≤ Rmaxε+ εγ||Ĵ (k)
h ||+ γ||Ĵ (k)

h − J̃ (k)
h ||

≤ Rmaxε+ εγ||Ĵ (k)
h ||+ γ

(
Rmaxε+ εγ||Ĵ (k−1)

h ||+ γ||Ĵ (k−1)
h − J̃ (k−1)

h ||
)
,

where the first inequality follows from the triangle inequality,
the third inequality follows from contraction, and the fourth
inequality follows from the fact that all eigenvalues of P are
less than or equal to one. Continuing all the way to k = 0 we
can bound the error as

||Ĵ (k+1)
h − J̃ (k+1)

h || ≤{
Rmaxε

∑k
i=0 γ

k−i + εγ
∑k
i=1 Ĵ

(i)
h γk−i + γk+1εJ̃

(0)
h , if k ≥ 0 .

εJ
(0)
∗ , otherwise.

which simplifies to

||Ĵ (k+1)
h −J̃ (k+1)

h || ≤
{
ε
(
Rmax+γ

1−γ

)
+ γk+1εJ̃

(0)
h , if n ≥ 0 .

εJ
(0)
∗ , otherwise.

(5)
Utilizing this total error we can finally make a statement

about the convergence of the TT-cross approximation to the true
solution Ju∗h by using the triangle inequality ||Ĵ (k)

h − Ju∗h || ≤
||Ĵ (k)

h −J̃
(k)
h ||+||J̃

(k)
h −Ju∗h || ≤ ε

(
Rmax+γ

1−γ

)
+γk+1ε||J̃ (0)

h ||+
γk||J̃ (0)

h −Ju∗h ||. The total computational cost is O
(
kdr3/h

)
,

which was already argued in Section III-A.
A few remarks are in order. First, notice that the error

term can be set arbitrary close to zero, by choosing ε and h
small enough and k large enough. Thus, by also Theorem 1,
we conclude that the proposed algorithm solves the original
continuous-time stochastic optimal control problem with arbi-
trary precision. Second, notice that the computational effort
invested by the algorithm scales linearly with the dimensionality
of the state space! Compare this result with the exponential
increase in complexity for standard value iteration on a naive
discretization of the state space. Furthermore, the error bound
decreases rapidly with increasing number of VI iterations (k).
The computational effort also scales with rank (r), which
quantifies the ’complexity’ of the problem instance at hand.
Notice that this scaling is also polynomial. Finally, let us note
that the non-interpolation, analytical, method also achieves the
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Fig. 1. Simulation of state and control variables under an interpolated
control policy found from tensor-based value iteration applied to the LQG
example with parameters h = 10−2 and ε = 10−3. A maximum error of
3.1 × 10−2 is achieved across each variable and all time. The grey traces
represent realizations of the controlled process.

same error bound. For the example presented in Section III-B,
the computational effort is O(kd3r̂3/h) as discussed in the
same section.

V. SIMULATION EXAMPLES

In this section we show the performance of tensor-based
value iteration on two problems. The first is a two dimensional
linear-quadratic-Gaussian optimization problem, and the second
is seven-dimensional problem seeking to find a controller which
will allow a glider to perch on a horizontal string.

A. Linear-Quadratic-Gaussian (LQG) stochastic control

We seek a feedback policy µ for the solution of an infinite
horizon linear quadratic Gaussian (LQG) optimization problem
with a two dimensional state space (x, vx)

min
u(t)

limT→∞ E
[ ∫ T

0
x(t)2 + vx(t)2 + u(t)2dt|(x(0), vx(0)) = z

]
subject to dx = vxdt, dvx = u(t)dt+ 10−1dw,

for all z ∈ [−1, 1]2 such that u(t) = µ(x(t)) are control real-
izations. Infinite horizon LQG problems have analytic solutions
which can be determined analytically by solving the related
continuous time algebraic Riccati equation (CARE). Reflective
boundary conditions are chosen [13] for the implementation
of the direct method. Because the boundary conditions are
only specified in the direct method, we expect to see a small
deviation between the solutions of the direct and analytical
methods.

Tensor-based value iteration is performed using an inter-
polation scheme based on TT-cross for various discretization
levels h and for various error tolerances ε. Recall that each
dimension is discretized into n = 2

h nodes, and that the
total number of discretized states is n2 = 4

h2 . Solution
verification is performed in two steps. First, the state and control
trajectories of the simulated system starting from z = (0.5, 0.5)
resulting from the direct and analytic methods are compared.
These time traces are shown for h = .03125 or n = 64
and ε = 10−3 in Figure 1, where we obtain a maximum
error maxt [max [|x− x∗|, |vx − v∗x|, |u− u∗|]] = 3.1× 10−2,
where x, vx, u denote the mean position, velocity and controls
computed with tensor-based value iteration, and and x∗, v∗x, u

∗

denote the states and controls of the analytical solution.
Second, we compare of the norm of the cost function

defined by ||J∗|| =
(∫

(J∗(z))2
dz
) 1

2

for the analytical and
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Fig. 2. Norm of the LQG objective obtained with h = 10−2 for varying levels
of ε as a function of total number of optimization solutions. For reference,
the analytical solution is provided by the thick black line.
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Fig. 3. Average number of states visited by the TT-cross algorithm over the
course of VI as a function of discretization level for the LQG problem.

direct methods. The norm J∗(z) for the analytical solution
is computed with a uniform quadrature rule on 160, 000
quadrature nodes. The norm of the cost function in the direct
method is computed as ||J∗|| ≈ ||Jh(z)||F /

√
n2, where n

is the number of discretization nodes used in each direction.
Figure 2 shows a trace of this cost for h = 10−3 for various
ε values as a function of the total number of minimization
problems (3) solved. The slightly underestimated value of ||J∗||
obtained through the numerical solutions may be attributed to
boundary conditions. In this Figure, we can also see order of
magnitude gains for the same cost function norm; for example,
using ε = 10−1 rather than ε = 10−12 results in achieving
a cost function norm of 1.4 with an order of magnitude less
evaluations. Since the results of VI with ε = 10−12 are almost
equivalent (see Section IV), these results suggest more than
an order of magnitude gains over exact VI. The result also
suggests that future work on ε-adaptive algorithms could focus
their adaptation of ε when the VI algorithm begins to converge.

Finally, we can see linear growth in the average number of
states visited per iteration of VI in Figure 3. Exact VI would
result in quadratic growth in the number of states visited. For
example, when n = 250 the total number of discretized states,
and therefore the number of states visited each iteration with
exact VI, is 62, 500. However, tensor-based VI with ε = 10−3

visits approximately 12, 000 states on average per iteration.

B. Perching

We now apply the tensor-based value iteration (Algorithm
1) on a seven dimensional stochastic control problem modeling
an unpowered glider attempting to perch on a horizontal
string [7, 22, 16]. The glider is described by flat-plate model
in a two dimensional plane involving seven state variables
(x, y, θ, φ, vx, vy, θ̇) specifying its x-position, y-position, angle
of attack, elevator angle, horizontal speed, vertical speed, and
the rate of change of the angle of attack respectively. The input



control is the rate of change of the elevator angle u = φ̇. A
successful perch is defined by a horizontal velocity between
0 and 2 m/s, a vertical velocity between -1 and -3 m/s, and
the x and y positions of the glider within a 5cm radius of the
perch. Under these conditions, the experimental aircraft in [7]
can attach to the string. For a diagram of this glider refer to
either [22] or [16]. To achieve a perch, we solve the following
optimization problem:

J∗(z) = min
u(t)

E
[ ∫ T

0

x̄TQx̄+ 0.1u2dt+ x̄(T )TQf x̄(T )
]

subject to

xw = [x− lwcθ, y − lwsθ], ẋw = [ẋ+ lwθ̇sθ, ẏ − lwθ̇cθ]
xe = [x− lcθ − le, cθ+φ, y − lsθ − lesθ+φ]

ẋe = [ẋ+ lθ̇sθ + le(θ̇ + u)sθ+φ, ẏ − lθ̇cθ − le(θ̇ + u)cθ+φ]

αw = θ − tan−1(ẏw, ẋw), αe = θ + φ− tan−1(ẏe, ẋe)

fw = ρSw|ẋw|2 sin(αw), fe = ρSe|ẋe|2 sin(αe)

mẍ = −fwsθ − fesθ+φ + Fdw

mÿ = fwcθ + fecθ+φ −mg + Fdw

Iθ̈ = −fwlw − fe(lcφ + le) + Fdw

where ρ is the density of air, m is the mass of the glider, I is
the moment of inertia of the glider, Sw and Se are the surface
areas of the wing and tail control surfaces, l is the length from
the center of gravity to the elevator, lw is the half chord of the
wing, le is the half chord of the elevator, cγ denotes cos(γ),
and sγ denotes sin(γ). The parameters of the model are chosen
to be the same as those in [22]

Our setup differs slightly from that reported in [16]. We have
added a stochastic diffusion term to model external disturbances,
and we solve for a global policy that provides a control for
each state value. However, the diffusion term is specified as
F = 10−4 to obtain a problem instance that is similar to the one
found in the literature. The state penalties in our cost function
differ slightly from those in the literature, and they were chosen
to obtain the desired behavior of our glider. We have chosen
Qf = diag(600, 400, 1

9 ,
1
9 , 1, 1,

1
9 ) and Q = diag(20, 50, 10,

1, 1, 11).
The direct method requires the discretization of the state

space. To this end, we we first restrict our state space to a
hypercube bounded by x ∈ [−4, 0], y ∈ [−1, 1], θ ∈ [−π2 , π2 ],
φ ∈ [− 2π

9 ,
2π
9 ], vx ∈ [0, 7], vy ∈ [−5, 5], and θ̇ ∈ [−10, 10].

We uniformly discretize each variable into 32 states, resulting
in a discrete state space of 3.4× 1010 states. We use ε = 0.1.

Figure 4 illustrates the state trajectories of a simulation.
These results match qualitatively with those reported in the
literature. This controller is successful, because the position of
the glider enters the blue ellipse indicating a 5cm radius from
the perching string, the horizontal velocity is approximately 0
m/s, and the vertical velocity is -2m/s, at the end. This vertical
speed is in the middle of the range required for the perch.

Finally, the cost function is indeed low rank, and Figure 5
shows the average number of states evaluated per value iteration.
For example, when n = 16 the total number of discretized states
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Fig. 4. Simulated state variables under the control policy found from
tensor-based value iteration applied to the perching optimization problem
with parameters n = 32, 3.4× 1010 total states, and ε = 10−1. The thick
black line segments in the top panel indicate the glider’s angle of attack, and
the blue circle indicates the region which the perching mechanism of [7]
requires.
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is n7 ≈ 2.7× 108 of which approximately 104 are used every
iteration. At the other extreme, when n = 64 the total number
of discretized states is 4.4× 1012 of which approximately 105

are used each iteration. Therefore, we see gains between four
and seven orders of magnitude per iteration of VI. In fact, the
gains in this problem are large enough that this problem can
be solved on a personal computer with a 2 GHz Intel Core i7
processor and 8 GB of RAM.

VI. CONCLUSION

We have proposed, analyzed, and demonstrated a tensor-
based value iteration algorithm which mitigates the curse
of dimensionality that is associated with stochastic control
problems, by taking advantage of the low-rank structure
embedded in the value function of the problem. Through
theoretical and computational analysis, we have verified and
demonstrated an algorithm that achieves several orders of
magnitude improvement when compared to the standard,
discretization-based stochastic optimal control algorithms.
The benefits are substantial enough that the computational
requirements for both obtaining and storing the solutions are
met by a personal computer in challenging examples, such
as the longitudinal aircraft perching control. Since the direct
method can also be applied in estimation problems, our future
work will focus on utilizing the framework described here
to that effect. Overall, our approach provides a flexible and
scalable framework for use in a variety of optimal stochastic
control and estimation problem instances that were previously
considered intractable.
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