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Abstract—In this paper we point out an overlooked structure
of SLAM that distinguishes it from a generic nonlinear least
squares problem. The measurement function in most common
forms of SLAM is linear with respect to robot and features’
positions. Therefore, given an estimate for robot orientation, the
conditionally optimal estimate for the rest of state variables can
be easily obtained by solving a sparse linear-Gaussian estimation
problem. We propose an algorithm to exploit this intrinsic
property of SLAM by stripping the problem down to its nonlinear
core, while maintaining its natural sparsity. Our algorithm can
be used together with any Newton-based iterative solver and
is applicable to 2D/3D pose-graph and feature-based problems.
Our results suggest that iteratively solving the nonlinear core of
SLAM leads to a fast and reliable convergence as compared to
the state-of-the-art back-ends.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) has been
investigated for more than two decades [11]. Mathematically,
SLAM is modeled as a high-dimensional nonlinear estimation
problem whose goal is to find the “optimal” estimate for
robot poses and map using noisy measurements and uncertain
priors. The first successful solutions, posed SLAM as a fil-
tering problem [8]. It was revealed later that the smoothing
formulation brings not only accuracy, but also scalability,
through exploiting the sparse structure of SLAM. Perhaps the
most distinctive property of modern SLAM algorithms is the
exploitation of this natural sparsity [7].

Under the assumption of Gaussian noise and Gaussian
prior, finding the maximum likelihood (ML) and maximum
a posteriori (MAP) estimate in the smoothing form of SLAM
requires solving a nonlinear least squares (NLS) problem.
Given a sufficiently “good” initial guess, this problem can be
solved by employing iterative schemes such as Gauss-Newton
(GN). In each iteration of GN, the measurement function is
approximated by its first-order Taylor expansion around the
current estimate, followed by solving the resulting linear least
squares problem. GN and many other iterative solvers treat the
measurement function as a generic smooth nonlinear function
of states. However, the widely-used measurement model asso-
ciated to range-bearing sensors in 2D/3D feature-based/pose-
graph SLAM has a significant structure. This measurement
function is linear in robot and landmarks’ positions. Therefore
given the robot orientation θ, the optimal choice in ML or
MAP sense for positions p can be obtained by solving a sparse
linear least squares problem.

In the least squares literature, NLS problems with partially
linear residuals are called separable [2, 13]. In statistical
terms, such problems are sometimes called conditionally

linear-Gaussian state space models [9] since estimating the
linear variables, given the nonlinear ones and measurements
corrupted by Gaussian noise, corresponds to a linear-Gaussian
system.

Golub and Pereyra developed the original Variable Projec-
tion (VP) algorithm to solve general separable NLS problems
[12]. The main idea behind VP is to explicitly eliminate the
linear variables and solve the reduced NLS problem. This
technique has been applied to a wide range of applications.
Both theoretically [24] and empirically it has been shown that
compared to solving the full NLS problem, variable projection
techniques exhibit faster or equal convergence rate (see [13]
and references therein).

In this paper we show how different variable projection
algorithms can be applied to various forms of SLAM without
any restrictive assumption. Unfortunately these algorithms, in
their existing forms, are incapable of maintaining the sparse
structure of SLAM, and therefore lead to solutions with
cubic time complexity. To address this issue we propose an
equivalent variable projection algorithm that is capable of
exploiting both structures (i.e., separability and sparsity) at
the same time.

Notation

Throughout this paper bold lower-case and upper-case let-
ters are reserved for vectors and matrices, respectively. Sets
are shown by upper-case letters. |X | denotes the cardinality
of set X . I and 0 denote the identity and zero matrices with
appropriate sizes, respectively. Let vec(q1, . . . ,qn) denote the
column vector obtained by stacking qi’s. S1 � S2 means
S1 − S2 is positive-definite. Kronecker product is denoted
by ⊗. Euclidean norm is denoted by ‖ · ‖. The weighted
Euclidean norm of vector e with matrix W � 0 is denoted by
‖e‖W ,

√
e>W e. Finally diag(W1, . . . ,Wk) is the block-

diagonal matrix with matrices W1, . . . ,Wk as blocks on its
main diagonal.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Graphical Representation of SLAM

SLAM can naturally be represented by a simple directed
graph G = (V,E). Each state variable is mapped into a vertex
xi ∈ V , and each relative measurement is represented by an
edge ek , (ik,jk) ∈ E . Here (i,j) ∈ E corresponds to the
relative measurement from xi to xj . Suppose |V| = n + 1
and |E| = m. For pose-graphs we have n = np − 1 in which
np denotes the number of poses. Similarly, in feature-based
SLAM with nf features we have n = nf + np − 1. Due to



the relative nature of measurements in SLAM and without an
informative prior, we must define a global coordinates system
and anchor one of the nodes to it. Without loss of generality
we can assume x0 is the origin of our global coordinates
system. The reduced incidence matrix of G after anchoring
x0 to the origin (i.e., deleting the corresponding row from the
original incidence matrix) is denoted by A ∈ {−1,0,1}n×m.
For the kth edge ek = (ik,jk) ∈ E we have Aik,k = −1
and Ajk,k = 1. The remaining elements of A are all zero.
Similarly, A◦ ∈ {−1,0,1}n×n is the reduced incidence matrix
of the subgraph of G consisting only of robot poses and
odometry measurements. Note that A◦ has a fixed structure
and it is uniquely determined by the number of poses np.
Finally we define A` , A⊗ I` for ` ∈ Z≥2.

B. Measurement Model
The conventional state vector is usually defined as

vec(x1, . . . ,xn). For reasons that will become clear shortly, we
permute the standard state vector and define our state vector
as x , vec(p,θ). In 2D SLAM, p ∈ R2n is the vector of
x and y coordinates of robot poses and landmark positions,
and θ ∈ [−π, π)np−1 is the vector of robot orientations. Each
observation zij (from node i to node j) is corrupted by an
independently drawn additive Gaussian noise εij ∼ N (0,Σij),

zij = hij(xi,xj) + εij . (1)

The measurement function hij(·,·) for any (i,j) ∈ E has the
following form,

hij(xi,xj) =



[
δxij

δyij

]
= R(θi)

>(pj − pi) if j ∈ Sf ,

δxijδyij

δθij

 =

[
R(θi)

>(pj − pi)

wrap (θj − θi)

]
if j ∈ Sp.

(2)
where R(θi) ∈ SO(2)1 is the rotation matrix corresponding
to θi, wrap : R→ [−π,π) maps its argument to the equivalent
angle in [−π,π) and Sp and Sf are the disjoint sets of indices
of robot poses and features, respectively. Let us define

Rθ , diag
(
R(θk1), . . . ,R(θkm)

)
. (3)

Here ki is the index of robot pose making the ith observation.
zp and zθ denote the stacked vector of δxij and δyij , and
δθij measurements, respectively. We permute the measurement
vector accordingly to obtain z , vec(zp,zθ). Similarly, the
stacked vector of noise variables and its covariance matrix are
denoted by ε , vec(εp,εθ) and Σ, respectively. Therefore the
measurement model can be expressed in a compact form by

z = h(x) + ε, where ε ∼ N (0,Σ), (4)

p(z|x) = N (z;h(x),Σ).2 (5)

1Special orthogonal group.
2To simplify our notaions we denote random variables (e.g., z) and their

realisation in the same way.

Remark 1. Note that (2) admits both pose-graph and
feature-based SLAM problems as special cases. In pose-graph
SLAM Sf = ∅, while in feature-based SLAM relative pose
measurements are limited to odometry measurements.

According to (2), the stacked measurement function of
planar SLAM is given by

h(x) = H(θ)x ,

[
R>θ A>2 0

0 Λ>

]
x,

Λ =

{
A pose-graph,
A◦ feature-based.

(6)

Here we assume the correct regularization terms are applied
to the measurements [4]. In order to avoid redundancy in
our formulas we use this unified measurement function (6)
in the rest of the paper. Note that (6) can be rewritten as
h(x) = H1(θ)p + H2θ in which,

H1(θ) ,

[
R>θ A>2

0

]
, H2 ,

[
0

Λ>

]
. (7)

It is important to note that unlike H2, H1(θ) depends on θ.
Nevertheless, we drop the argument of H1 for the sake of
simplicity of our notation.

Remark 2. For the purpose of this paper, the measurement
model in 3D SLAM wtih SE(3)3 measurements is fairly
similar to that of planar SLAM. With a little abuse of notation,
the measurement function for 3D SLAM can be expressed as
h◦(x) = H◦1(θ)p + h◦2(θ) in which

H◦1(θ) ,

[
R>θ A>3

0

]
, h◦2(θ) ,

[
0

ψ(θ)

]
. (8)

Similar to our formulation of 2D SLAM, here p is the
stacked vector of robot positions, θ is the vector of robot
orientation (parametrised by quaternions or Euler angles), Rθ

is a block-diagonal matrix composed of R(θi) ∈ SO(3) and
ψ(θ) denotes relative robot orientations. The measurement
function and the corresponding error term (see e.g., [14])
are therefore linear in p. Without loosing any generality, for
simplicity of notation and due to space limitation here we
mainly focus on 2D SLAM.

Remark 3. This paper investigates SLAM problems with
standard SE(2) and SE(3) measurements for pose-graphs
and pose-point measurements in 2D and 3D for feature-
based problems. Such measurements can be obtained from
range-bearing sensors after a reparameterization of original
measurements (e.g., after performing scan-matching). These
models have become standard choices in the past few years.
However, such reparameterizations often involve nonlinear
transformation of original data which could introduce some
error in computing covariance matrices and even affect the
validity of the assumption of additive Gaussian noise. In the
context of our work, such transformations can be thought as
reparameterization performed to introduce separability. Note

3Special Euclidean group.



that directly using range-bearing measurements does not lead
to a separable NLS. Although here we do not consider a
specific choice of sensors, the use of inertial sensors in 3D
SLAM is common [19]. Therefore it is worth noting that
inertial measurements does not violate the separable structure
of SLAM as such measurements are linear in p (see e.g., [19]).

C. Point Estimation Criterion

In the Bayesian approach to SLAM x is modeled as a
random vector with prior p(x) = N (x;µx,Σx). The MAP
estimate is the maximizer of the posterior density (or the
minimizer of its negative log),

p(x|z) ∝ p(z|x) p(x). (9)

Therefore the MAP estimate x̂MAP is given by:

x̂MAP = argmin
x

(
‖z− h(x)‖2Σ−1 + ‖x− µx‖2Σ−1

x

)
. (10)

In the absence of an informative prior over x,4 one may seek
the maximizer of the likelihood function p(z|x) in order to
obtain the ML estimate x̂ML. Dropping the prior in (10) gives
x̂ML,

x̂ML = argmin
x

‖z− h(x)‖2Σ−1 . (11)

In the following sections we mainly focus on x̂ML as it is fairly
rare to have an informative prior over x in real applications.
Nevertheless, our approach can be straightforwardly general-
ized to the Bayesian formulation (10) as well. To simplify our
notation we denote the optimal estimate for any variable like
c with c?. Here c? is either ĉML or ĉMAP.

III. EXPLOITING SEPARABILITY IN SLAM

In the previous section we formulated the MAP and ML
estimation problems in SLAM as nonlinear least squares
problems. By further inspection of (7) one can see that the
nonlinearity is caused by the rotation matrices. Hence given
the robot orientations θ, measurements are linear in robot and
features’ positions p. Therefore given θ, the ML and MAP
estimates for p are obtained by solving linear least squares
problems. Such problems are often called separable NLS [13].
This special structure distinguishes SLAM from the general
NLS. Our main goal in this paper is to exploit this structure
in order to improve the performance of the current SLAM
algorithms.

A. Variable Projection

Variable projection (VP) is an algorithm proposed by Golub
and Pereyra to exploit this structure [12]. They proved that
under some regularity conditions, the solution of the original
problem (10) or (11) (for general separable NLS problems) can
be obtained using the following procedure (see [12, Theorem
2.1]). Here we explain how their approach can be applied to
SLAM.

4In this case, x is treated as the vector of unknown deterministic parameters
in the measurement model.

I. Find p?(θ), the closed-form expression for p as a func-
tion of θ that minimizes the original cost function in p.

II. Replace p with p?(θ) in the original problem and mini-
mize the new objective function in θ to obtain θ?. After
this step the optimal p? = p?(θ?) can be recovered
instantly.

Phase I – p?(θ): Let us start with the symmetric positive
definite square root of the noise precision matrix Σ−

1
2 � 0. To

simplify our notation, we express the weighted `2 norm min-
imization in (11) as the following unweighted least squares,

x? = argmin
x

‖z̃− H̃1p− H̃2θ‖2, (12)

in which z̃ , Σ−
1
2 z, H̃1 , Σ−

1
2 H1 and H̃2 , Σ−

1
2 H2. The

fact that the reduced incidence matrix is full rank in (weakly)
connected graphs results in the following lemma [17].

Lemma 1. In any SLAM problem with the measurement
models defined in Section II (including 2D/3D feature-based
or pose-graph) H̃1 is full column rank regardless of θ.

As mentioned before, given θ, (12) is a linear least squares
problem in p. Lemma 1 assures us that for any given θ, the
optimal choice for p as a function of θ is uniquely given by

p?(θ) , argmin
p

‖z̃− H̃1p− H̃2θ‖2 (13)

= H̃†1(z̃− H̃2θ), (14)

in which H̃†1 , (H̃>1 H̃1)
−1H̃>1 is the Moore-Penrose pseu-

doinverse of H̃1.

Remark 4. Although we do not require any special structure
in Σ, here we point out an interesting property of spherical
noise covariance matrices. Let us denote the covariance matrix
of the translational component of the ith measurement with
Σi
p. An interesting special case emerges when Σi

p is spherical,
i.e., Σi

p = σip
2
I2. Noting that Rθ is orthogonal, it is easy to

show that in such SLAM problems H̃>1 H̃1 is proportional to
L2 , L ⊗ I2 = A2A

>
2 in which L is the reduced Laplacian

matrix of graph G. A similar structure exists in 3D SLAM
problems with spherical noise covariance matrices.

Phase II – Reduced NLS: By substituting p in the original
objective function (12) with p?(θ) in (14) and solving the
resulting optimization problem we obtain θ? , argminθ g(θ)
where

g(θ) , ‖(I− H̃1H̃
†
1)(z̃− H̃2θ)‖2. (15)

Note that g(·) is a function of only robot headings θ, while
the original optimization problem (12) was over both p and
θ. Therefore we have reduced the parameter space from
R2n×[−π,π)np−1 to [−π,π)np−1. Pθ , H̃1H̃

†
1 is the orthog-

onal projection onto range(H̃1), while P⊥θ , I− H̃1H̃
†
1 is its

orthogonal complement. Let us define rvp , P⊥θ (z̃−H̃2θ). In
order to solve (15) using Newton-based NLS solvers we need
to compute the Jacobian matrix of rvp, i.e., Jvp , ∂

∂θ rvp.
Computing Jvp requires differentiating pseudoinverses (H̃†1),
and therefore is more complex than computing the Jacobian



Algorithm 1 SLAM solver based on [16]
1: repeat
2: Compute the full QR factorization of H̃1 (18)
3: Recover p? by solving R1 p?(θ(i)) = Q>

1 (z̃− H̃2θ(i))
4: Compute the modified Jacobian matrix (19) (see [17])
5: Construct the normal equations for the reduced problem
6: Solve the normal equations to obtain δθ(i)
7: θ(i+1) ← θ(i) + δθ(i)
8: until convergence
9: p? ← p?(θ?) according to (14)

matrix of the original full problem, i.e., J , ∂
∂xr in which

r , z−h(x). One way to avoid this complexity is to approx-
imate Jvp using finite differences (see [13] and the references
therein). Here we use the exact analytical expression for Jvp

which was derived by Golub and Pereyra [12].
Computing Jvp: First note that (15) has a slightly more

general form compared to the case which was originally
considered by [12] in that we have an additional term, linear
with respect to θ in our residual, i.e., −H̃2 θ. We can show
that the jth column of Jvp is given by,

[Jvp]·,j =−

(
(P⊥θ

∂H̃1

∂θj
H̃†1) + (P⊥θ

∂H̃1

∂θj
H̃†1)

>

)
(z̃− H̃2 θ)

−P⊥θ [H̃2]·,j . (16)

After finding θ? , argmin g(θ) using an iterative NLS solver
such as GN, we can recover the optimal p? according to (14),
i.e., by solving (H̃>1 H̃1)p

? = H̃>1 (z̃−H̃2θ
?). In general, VP

iterations are computationally much more expensive than GN
iterations on the full problem. Therefore directly applying VP
to SLAM does not lead to an efficient solver.

B. Kaufman’s Algorithm

In [16] Kaufman proposed to approximate the jth column
of Jvp according to

[JK
vp]·,j ,−

(
P⊥θ

∂H̃1

∂θj
H̃†1

)
(z̃− H̃2 θ)−P⊥θ [H̃2]·,j . (17)

The term ignored in JK
vp has been theoretically and practically

shown to be negligible in small-residual problems in terms of
the convergence rate of GN [16, 24]. Kaufman’s simplification
reduces the time per iteration of VP up to 25% [24]. Con-
sequently Kaufman’s method has become the standard way
of approaching separable NLS problems in many fields [13].
Algorithm 1 summarizes a SLAM solver based on an efficient
implementation of VP using Kaufman’s modification. This
algorithm relies on the full QR decomposition of H̃1,

H̃1 = QR =
[
Q1 Q2

] [R1

0

]
, (18)

in which the columns of Q1 and Q2 form orthonormal bases
for range(H̃1) and null(H̃>1 ), respectively. In [17] we show
that the normal equations associated to the residual-Jacobian
ordered pair (rvp,JK

vp) is identical to that of (Q>2 rvp,Q
>
2 JK

vp)

given below,

Q>2 rvp = Q>2 (z̃− H̃2θ)

[Q>2 JK
vp]·,j = −Q>2

(
∂H̃1

∂θj
p?(θ) + [H̃2]·,j

)
. (19)

IV. SPARSE VARIABLE PROJECTION

In the previous section we explained how Algorithm 1
exploits the separable structure of SLAM. At first glance,
applying this algorithm to SLAM may appear to be compu-
tationally advantageous as it reduces the size of the normal
equations from (2n + np) to only np. However, the normal
equations of the reduced problem in SLAM is dense in general.
Hence VP, as implemented in Algorithm 1, does not lead to a
scalable algorithm as we would need O(n3p) time per iteration
just for solving the resulting dense linear system. Therefore it
is sensible to ask whether we can exploit separability without
giving up the intrinsic sparse structure of SLAM?

Barham and Drane [1] proposed an intuitive algorithm to
solve separable NLS problems. It has been shown that their
algorithm and Kaufman’s modification in VP produce iden-
tical steps (assuming infinite-precision arithmetic) [22, 24].
Although Barham and Drane’s algorithm does not preserve
sparsity, it can be restructured to do so as shown below.
Consider the normal equations of the original problem,

J̃>J̃ δx(i) = −J̃>r̃. (20)

Here δx(i) , vec(δp(i),δθ(i)) denotes the ith GN direction, r̃

is the residual vector r̃ , Σ−
1
2 r and J̃ , ∂

∂x r̃, both evaluated
at x(i). Let H , J̃>J̃ be the approximated Hessian. Note
that J̃ can be divided into two blocks, J̃ = [J̃p J̃θ] in which
J̃p , ∂

∂p r̃ and J̃θ , ∂
∂θ r̃. Therefore we can expand (20) as[

Hp Hp,θ

H>p,θ Hθ

][
δp(i)

δθ(i)

]
=

[
−J̃>p r̃

−J̃>θ r̃

]
. (21)

One can eliminate δp(i) from (21) to obtain a smaller linear
system in terms of δθ(i). This can be achieved using the Schur
complement of H with respect to Hp.(
Hθ −H>p,θH−1p Hp,θ

)
δθ(i) =

(
−J̃>θ +H>p,θH−1p J̃>p

)
r̃.

(22)

Solving (22) gives us δθ(i). It should be clear that using this
solution to recover δp(i) from (21) leads to the standard GN
direction for the original cost function. Barham and Drane
proposed to ignore δp(i) of (21) and instead compute the
conditionally optimal p(i+1) given θ(i+1) = θ(i) + δθ(i) using
(14) [1]. This can be achieved by solving the following sparse
linear system,

(H̃>1 H̃1)p(i+1) = H̃>1

(
z̃− H̃2θ(i+1)

)
. (23)

Repeating this procedure until convergence leads to a sequence
of steps for which the cost function (11) has zero gradient with
respect to p along the path. This algorithm is summarized
in Algorithm 2. The equivalence between Algorithm 1 and
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Fig. 1. In this figure we see the contour lines of a simplified version of SLAM
cost function. The point in the middle is the optimal solution. The gray curve
is p?(θ); a function that maps any given θ to the corresponding conditionally
optimal estimate for p. The cost function has zero gradient with respect to
p along this curve. The blue vector shows the ith step of Algorithm 1—
which is identical to the ith step of Algorithm 2 and Algorithm 3. The red
vector is the GN step obtained by starting from xi. Algorithm 3 corrects this
intermediate step by projecting the obtained solution back on p?(θ) (dashed
line). Note that Algorithm 1 computes the blue vector directly by performing
a GN iteration on the reduced problem (15) with cubic time complexity.
However our indirect approach in Algorithm 3 enables us to retain the sparse
structure of the original problem.

Algorithm 2 can be verified by expanding the normal equations
of the reduced problem associated to Kaufman’s Jacobian (17).
Now recall that our goal is to find a way to simultaneously
benefit from the sparsity and separability of SLAM. Unfortu-
nately, the reduced linear system (i.e., the Schur complement)
in (22) is dense in general. But note that in each iteration
of Algorithm 2, the solution of the reduced system (22) is
identical to the δθ(i) obtained from solving the full system
(21). Therefore, instead of eliminating variables using Schur
complement, the same outcome can be achieved by solving
the sparse full system (21), discarding the obtained δp(i) and
instead computing the conditionally optimal p(i+1) according
to (23). Our proposed algorithm is summarized in Algorithm 3.

It is of utmost importance to note that our proposed al-
gorithm produces (mathematically) identical steps to those of
Algorithm 1 and Algorithm 2. However, unlike Algorithm 1
and Algorithm 2, we only need to solve sparse linear systems
in each iteration of our method which leads to a crucial
computational benefit. Also note that Algorithm 3 can be
easily implemented by a simple modification of existing state-
of-the-art back-ends. In fact, we only need to solve (23) using
e.g., a sparse Cholesky solver. Figure 1 illustrates how our
proposed algorithm works.

Remark 5. Note that (10) is also a separable NLS problem.
Therefore Algorithm 3 can be easily modified to find the
MAP estimate assuming a Gaussian prior over x is available.
Nevertheless, here we address the Bayesian formulation from
a slightly different angle that gives us new insights into the
structure of SLAM. The posterior density p(p,θ|z) can be
factored according to

p(p,θ|z) = p(θ|z) p(p|θ, z). (24)

Using the Bayes rule we have p(p|θ, z) ∝ p(z|x) p(p|θ).
From the fact that the measurement function is linear in
p it readily follows that a Gaussian prior over x results
in a Gaussian p(p|θ,z) = N (p;µ◦θ,Σ

◦
θ). The mean and

covariance matrix of this distribution are computed in [17].
Although in general the original posterior distribution p(p,θ|z)
may be far from being Gaussian (e.g., multi-modal, skewed,
etc), recovering the optimal p given θ reduces to a simple
linear-Gaussian estimation problem. Such problems are often
called conditionally linear-Gaussian. By definition the MAP
estimate is the maximizer of the posterior distribution (24),

x? = argmax
p,θ

p(θ|z) p(p|θ,z). (25)

It is easy to see that for any given θ, maximizing the product
above implies maximizing p(p|θ,z) with respect to p,

p?(θ) = argmax
p

p(p|θ,z) = µ◦θ. (26)

As in any Gaussian density, the mean of p(p|θ,z) is equal to
its mode, and therefore µ◦θ is the solution of (26). Maximizing
p(p,θ|z) subject to p = µ◦θ is equivalent to a NLS problem
that can be solved like before. After obtaining the MAP
estimate for θ we can recover p? by evaluating (26) at θ?.
In practice we should use the approach taken in Algorithm 3
in order to retain the sparsity of SLAM.

V. RESULTS

In this section we report the performance of the proposed
algorithm on both synthetic and real datasets. We used g2o’s
implementation of GN [18]. CHOLMOD [6] is used as the linear
solver with the default choice of fill-reducing permutation.
We implemented Algorithm 3 (VP)5 in C++. An Intel Core
i5-2400 CPU operating at 3.1GHz is used for all of the
experiments in this paper. We verified the equivalence between
the iterations of Algorithm 1, Algorithm 2 and Algorithm 3
numerically. We used g2o’s 2D simulator to create Manhattan-
like pose-graph datasets. This simulator creates a random walk
in plane with 1 meter forward motion or 90◦ rotation per step.
The valid sensor range for scan matching is between 1 and 5
meters within the 135◦ field of view. In reality, scan matching
is an expensive operation. Therefore extracting each and every
(potential) loop closure is practically intractable. We imitate
this practical limitation by imposing an upper bound on the
degree of each vertex in the simulator.

We generated five test suites, each of which is com-
posed of 100 randomly generated datasets with 104 poses
per dataset. Each test suite corresponds to a fixed noise
level α ∈ {1, . . . ,5}. Noise covariance for each suite is
Σα = (0.01α)2I. For each dataset we performed 50 iterations
of different solvers. Solvers are initialized using odometry
data. The outcome of each run is one of the followings.
(i) Global Min: the global minimizer is found within 50 itera-
tions, (ii) Local Min: a local minimizer (other than the global
minimizer) is found within 50 iterations, or (iii) Not Converged:
the solver has not converged to a solution before 50 iterations.

Table I summarizes the results obtained under different
noise levels. Although in few instances VP outperformed GN,
in general the two algorithms exhibit comparable performances

5In this section VP refers to our proposed algorithm, not to be confused
with the original or Kaufman’s VP algorithms.



Algorithm 2 SLAM solver based on [1]
1: repeat
2: Construct the normal equations (21)
3: Eliminate δp(i) using the Schur complement (22)
4: Solve (22) to obtain δθ(i)
5: θ(i+1) ← θ(i) + δθ(i)
6: p(i+1) ← p?(θ(i+1)) according to (23)
7: until convergence

Algorithm 3 Proposed Algorithm
1: repeat
2: Construct the normal equations (21)
3: Use the sparse Cholesky solver to solve (21)
4: θ(i+1) ← θ(i) + δθ(i)
5: p(i+1) ← p?(θ(i+1)) according to (23) using the sparse

Cholesky solver
6: until convergence
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(a) α = 1 (spherical).
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(b) α = 1 (non-spherical).
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(c) α = 2 (spherical).
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(d) α = 2 (non-spherical).

Fig. 3. Overall run time for converging to MLE as a function of edge density under different noise models. In Figure 3d, GN failed to converge to MLE in
8 scenarios (33− 40). Note that the “100% loop closure density” refers to the 100th scenario in which all of the loop closures of a realistic sparse SLAM
problem with |V| = 50,000 and |E| = 173,000 are included—not the complete graph.
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Fig. 2. Average number of iterations performed to converge to the global
minimum (ML estimate) under different noise levels (α). For each noise level,
100 random datasets with 104 poses has been generated. The error bars show
the 95% confidence interval. The increasing length of error bars is partly due
to the decreasing number of successful samples (see Table I). Note that there
is a one-to-one correspondence between iterations of Algorithm 3 and those
of Algorithm 1 performed on the reduced problem (15).

in terms of converging to the optimal solution. As expected,
both algorithms tend to converge to local minima as α in-
creases; a “good” initial guess is crucial for converging to
the optimal solution. Nevertheless, according to Table I our
algorithm significantly outperforms GN in avoiding divergence
(or extremely slow convergence). Therefore, as reported by
other researchers in various fields [13], VP iterations lead to a
faster and more reliable convergence than solving the full NLS
problem. As any other iterative solver, using VP can lead to a
local minimizer other than MLE. This can be avoided by using
a “sufficiently good” initial guess [15]. It is worth noting that
in the case of converging to local minima, the results obtained
by both solvers were generally inaccurate and far from the
optimal estimate. Out of the 500 simulations used in Table I
and II, there are 89 cases for which both GN and VP converge

to local minima. In 38 of those instances, GN and VP converge
to the same local minimum. Furthermore, in 74 of those (89)
cases, the local minima found by GN and VP are both at
least 10% larger than the true minimum. In addition to the
results shown in Table I, we performed another experiment
by generating random initial guesses in a neighbourhood of
MLE. Random initial guesses were generated by sampling
uniformly from the surface of hyperspheres centered at the
global minimum with different radii. As in Table I, we did not
observe a statistically significant difference in the tendency of
VP and GN for converging to local minima.

Table II shows the results obtained by Levenberg-Marquardt
(LM) and a trust-region version of Algorithm 3 using LM
(VP-LM). For both solvers we use g2o’s default settings
(e.g., strategy to update the damping parameter). Due to the
slow progress of LM, here we report the results after both
50 and 100 iterations. According to Table II, LM exhibits
extremely slow convergence while the performance of VP-
LM is comparable to that of GN and VP. That being said, the
success rates of GN and VP are slightly higher than VP-LM.

Figure 2 shows the average number of iterations performed
to converge to the optimal solution under different noise levels.
It clearly indicates that the proposed algorithm can converge
to the optimal solution in less number of iterations than GN.
To correctly interpret this result, it is crucial to note that
there is a one-to-one correspondence between iterations of
Algorithm 3 and those of Algorithm 1 performed on the
reduced problem (15). This observation is consistent with
numerous reports from other researchers who apply variable
projection to separable NLS problems in other contexts [13].

Reducing the number of iterations does not necessarily re-
duce the total computation time as each VP iteration is usually
more costly than that of GN. More specifically for SLAM,



original VP [12], Kaufman’s approach [16] (Algorithm 1)
and Barham and Drane’s method [1] (Algorithm 2) are all
significantly slower than the state-of-the-art SLAM solvers
since they are all incapable of exploiting sparsity. Unlike
these algorithms, Algorithm 3 is designed to retain the sparse
structure of SLAM. Nevertheless, recall that in each iteration
of our algorithm, compared to GN, we have an additional (but
smaller) sparse linear system to solve. Therefore each iteration
of our algorithm is still slightly more expensive than that of
GN. Informally speaking, Figure 2 indicates that by exploiting
the separable structure of SLAM we can achieve more effective
iterations at the cost of solving an additional sparse linear
system in each iteration.

Consequently we conducted another experiment to compare
the overall run time of VP and GN. For this purpose, first we
created a Manhattan-like random walk with 5 × 104 poses.
Four pose-graph datasets were created based on this random
walk by simulating noisy measurements for the following
noise models: (i) α = 1, (ii) α = 2, (iii) Non-spherical
noise covariance matrix with standard deviations similar to
α = 1 and (iv) Non-spherical noise covariance matrix with
standard deviations similar to α = 2. To study the effect of
edge density on the overall run time we created 100 scenarios
based on each simulated dataset. The ith scenario contains
odometry edges plus i percent of the loop closures of the
original simulation (including the ones that were included
in the (i − 1)th scenario). Note that the original simulation
is a realistic sparse SLAM problem with a density similar
to commonly used benchmarks. Loop closures are selected
randomly (i.e., with no particular order) to achieve realistic
and balanced scenarios.

Figure 3 shows the total run time as a function of loop
closure density for each noise model. According to Figure 3,
in the vast majority of cases, VP has been faster than GN. This
shows that in those cases, reducing the number of iterations has
paid off the additional cost paid for each iteration. In a small
fraction of scenarios we observe minor difference between the
run times. There are also a limited number of individual cases
where GN is slightly faster than VP. This situation happens
mainly in extremely sparse scenarios, in which the initial guess
based on odometry is already close to MLE and thus GN can
find the solution in 2-3 iterations. Such scenarios are often
too sparse to be considered as realistic cases. Figure 3 also
indicates that using VP becomes more beneficial (in terms of
the overall run time) as noise level increases. This conclusion
is consistent with what we saw earlier in Figure 2.

Datasets with spherical noise covariance matrices possess
an additional structure that can be exploited to significantly
reduce the cost per iteration of Algorithm 3. Recall that in
each iteration of our algorithm we need to solve an additional
linear system to recover the conditionally-optimal estimate of
linear variables. The cost of this extra step is dominated by
the Cholesky factorization of H̃>1 H̃1 in (23). According to
Remark 4, this term is constant (i.e., independent of the current
estimate) when the noise covariance matrix is spherical. Thus,
the Cholesky factorization needs to be done only once in such
problems (i.e., for the first iteration). In the rest of iterations

TABLE I
OUTCOME (%) OF GN AND VP AFTER 50 ITERATIONS UNDER DIFFERENT

NOISE LEVELS.

Noise Level Solver Global Min Local Min Not Converged

α = 1
GN 100 0 0
VP 100 0 0

α = 2
GN 91 8 1
VP 94 6 0

α = 3
GN 76 16 8
VP 78 19 3

α = 4
GN 56 36 8
VP 57 41 2

α = 5
GN 37 50 13
VP 39 60 1

TABLE II
OUTCOME (%) OF LM AND VP-LM AFTER 50 & 100 ITERATIONS UNDER

DIFFERENT NOISE LEVELS.

Noise Level Solver Global Min Local Min Not Converged

50 iter. 100 iter. 50 iter. 100 iter. 50 iter. 100 iter.

α = 1
LM 53 79 10 7 37 14

VP-LM 97 97 3 3 0 0

α = 2
LM 17 41 22 13 61 46

VP-LM 90 90 10 10 0 0

α = 3
LM 9 18 18 25 73 57

VP-LM 72 73 27 27 1 0

α = 4
LM 1 8 15 24 84 68

VP-LM 48 48 49 52 3 0

α = 5
LM 2 6 16 24 82 0

VP-LM 32 33 63 66 5 1

we only need to solve sparse triangular linear systems by
forward and backward substitutions in order to recover the
conditionally-optimal p. As illustrated by Figure 3, this trick
can significantly reduce the cost per iteration and overall run
time of our algorithm.

We also used a number of publicly available datasets to
evaluate the performance of the proposed algorithm. Table III
provides the number of iterations performed to find the optimal
solution, as well as the average of total computation time
over 10 runs. Starting from the odometry initial guess, both
algorithms are able to converge to MLE. This is true for most
of the existing real datasets, although as seen in Table I for
simulated datasets, a bad initial guess can cause VP and GN to
converge to (different) local minimizers of the cost function.
The datasets listed in Table III span the most common forms of
SLAM (2D/3D real/synthetic pose-graphs). As expected, VP
converges to the optimal estimate in less number of iterations
than GN (up to 50%). In most cases VP also outperforms GN
in terms of the total computation time (up to 30%). Small
datasets and accurate measurements make the SLAM problem
less challenging in terms of convergence [3]. In such cases,
the computational benefits of exploiting the separable structure
of SLAM can be less than more challenging scenarios. This
conclusion is consistent with what we saw earlier in Figure 3.

VI. RELATED WORKS

An extensive survey of VP applications can be found in
[13, 25]. A theoretical analysis on the convergence properties
of variable projection methods is due to Ruhe and Wedin
[24]. The high-dimensional state space of SLAM is one
of its distinctive features in comparison with many other
applications of VP.



TABLE III
SUMMARY OF RESULTS FOR SOME OF THE PUBLICLY AVAILABLE REAL

AND SYNTHETIC DATASETS.

Dataset |V| |E| Solver # Iter. Time (s)

City10K 10,000 20,678
GN 7 0.45023
VP 4 0.31845

Manhattan 3,500 5,598
GN 6 0.08757
VP 4 0.07687

Intel 943 1,837
GN 3 0.01759
VP 2 0.01713

UTM Downtown 14,549 16,365
GN 10 0.28154
VP 4 0.23555

Sphere2500 2,500 9,799
GN 5 0.96145
VP 4 0.82080

New College 52,480 52,577
GN 8 2.19560
VP 6 2.00967

A common way of approaching conditionally linear-
Gaussian state space models is to use Rao-Blackwellized
particle filters (RBPF), see e.g., [9]. In these methods first N
samples {θ[i]}Ni=1 are generated according to θ[i] ∼ p(θ|z).
Then for each sample the optimal p is recovered analytically
by finding the mean of p(p|θ[i],z) using e.g., the Kalman filter.
The latter stage is equivalent to (26) as shown in [17]. It is
worth noting that this approach naturally leads to the minimum
mean-square error point estimate (i.e., mean of the posterior
instead of its mode). L-SLAM [30, 31] uses this idea to exploit
the separable structure of feature-based SLAM by employing
a RBPF based on a clever partitioning of state variables, i.e.,
θ vs. p, instead of FastSLAM’s choice of poses vs. features
[20, 21]. Any sequential Monte Carlo method employed on
a high-dimensional state space will eventually suffer from
degeneracy and consequently, particle depletion [10]. Particle
depletion has a direct negative effect on estimating θ: at time
step t � t0, eventually all of the particles share the same
estimate for {θi}t−t0i=1 for some t0 (i.e., effectively only one
sample is drawn from the corresponding region).

In our previous work [29] linear variables of 2D feature-
based problems with spherical noise are explicitly eliminated
to obtain a smaller optimization problem over θ. This ap-
proach is similar to Golub and Pereyra’s VP [12], but with
numerical differentiation and Newton iterations. This method
is computationally beneficial only in extremely noisy problems
with dense graphs. LAGO [4, 5] uses the separable structure
of SLAM to bootstrap GN. First a refined estimate for θ is
computed by only considering relative measurements of robot
heading. Using this initial estimate of θ, LAGO then recovers
the conditionally-optimal estimate for p. Finally the result
is used as the initial guess in GN. From this perspective,
our algorithm can be roughly interpreted as a constant use
of LAGO’s bootstrapping approach, without the initial phase
of approximating θ (which makes our algorithm robust to
strong correlations between the components of noise [5, 15]).
Unlike our algorithm, LAGO is limited to 2D pose-graphs. The
equivalence between the minima of the original optimization
problem and those of the reduced problem (15) have allowed
researchers to study various properties of SLAM by looking
at the reduced problem. For instance in [27, 28] we analyze
the number of local minima is in some small special cases
using this idea. Similarly in [3] the reduced problem is used

to analyze the convergence of GN in 2D pose-graphs with
spherical noise covariance.

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed a scalable and efficient algorithm
to take advantage of the separable structure of SLAM. It was
shown that by exploiting this structure, we can achieve faster
and more reliable convergence than the state-of-the-art solvers.
A key contribution of this work comes from establishing the
link to a less-known but vast literature on separable NLS
problems. In particular, recognizing the equivalence between
Algorithm 1 and Algorithm 2 was the missing link that enabled
us to retain sparsity while exploiting the separable structure of
problem through Algorithm 3. This link also provides a firm
theoretical justification for the proposed algorithm.

The proposed algorithm can be applied to the most common
forms of SLAM (2D/3D feature-based and pose-graphs) with-
out any restrictive assumption. Our algorithm is not limited to
a particular type of NLS solver and the benefits it brings along
are orthogonal to those of other possible improvements such as
a more efficient implementation (of e.g., GN) or using different
Newton-based solvers, trust-region or line search techniques.
As an advantage, the proposed algorithm can be easily adopted
by the existing back-ends (e.g., LM, Powell’s Dog-leg [23],
etc) without any major modification. By stripping down SLAM
to its nonlinear core and recovering the conditionally optimal
estimate for linear variables, our approach yields more effec-
tive and reliable iterations than solving the full NLS problem.
The number of iterations required for solving the reduced
problem (15) was shown to be less than that of the full NLS
problem. Exploiting separability is especially beneficial when
GN (or other Newton-based solver) iterations are relatively
costly and/or when it takes more than few iterations to solve
the full NLS problem. Datasets with relatively high measure-
ment noise and bad initial guess are among those cases.

Our current implementation relies on g2o to compute the
intermediate GN step. Identifying and merging some of the
terms shared between VP and GN to achieve a more tightly
integrated implementation can further improve the computa-
tional benefits of the proposed method, especially in non-
spherical problems. According to our empirical observations,
using VP seems to be more crucial in the first few iterations.
A hybrid strategy would involve an “iteration management”
stage in which the back-end can select the next iteration (e.g.,
VP or GN) based on the expected gain and cost. Such a
strategy may impose negligible extra cost since GN step is
already computed in each iteration of Algorithm 3. We plan
to investigate this idea in our future work.
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