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Abstract—For assistive robots, anticipating the future actions
of humans is an essential task. This requires modelling both the
evolution of the activities over time and the rich relationships
between humans and the objects. Since the future activities of
humans are quite ambiguous, robots need to assess all the future
possibilities in order to choose an appropriate action. Therefore,
a successful anticipation algorithm needs to compute all plausible
future activities and their corresponding probabilities.

In this paper, we address the problem of efficiently computing
beliefs over future human activities from RGB-D videos. We
present a new recursive algorithm that we call Recursive Con-
ditional Random Field (rCRF) which can compute an accurate
belief over a temporal CRF model. We use the rich modelling
power of CRFs and describe a computationally tractable in-
ference algorithm based on Bayesian filtering and structured
diversity. In our experiments, we show that incorporating belief,
computed via our approach, significantly outperforms the state-
of-the-art methods, in terms of accuracy and computation time.

I. INTRODUCTION

Understanding human activities is an important skill for
robots working with humans. Robots not only need to de-
tect the activity that human is performing but also need to
anticipate what activity can a human possibly perform in the
near future in order to choose the right actions. Anticipation
ability is especially important for assistive robots, and we have
recently seen many successful collaborative robotics applica-
tions [44] 29, [21] using the most likely action(s) humans might
take in near future. The set of the future possibilities is quite
large, and robots need to be aware of all of them in addition
to the most likely one. In this work, we focus on estimating
the set of all possible future states with their likelihoods.

Anticipation is a challenging task, and it requires us to
model the relationships between several objects and the hu-
man(s) in the scene, as well as their temporal evolution. Al-
though the modelling assumptions and model parametrization
varies, the common approach [22| [17, 23} 26] is using Con-
ditional Random Field (CRF) to represent the rich relations
in the scene, and anticipating a single or a few most likely
future states. Since the future is ambiguous, the most likely
state might not be sufficient enough to assess the risk of each
action. For example, consider a collaborative cooking scenario,
the object that human is reaching is typically a distribution
over many objects. Computing the trajectory, that is least likely
to conflict with the human, is only possible via consideration
of all future possibilities. The question, we address in this
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Fig. 1: Figure is showing the state and measurements at each time
represented by a CRF. Our algorithm, rCRF, enables the application
of recursive Bayesian estimation to CRF-based scene models. rCRF
computes the full belief over human activity and object affordances
@, ...,y* ™) by using RGB-D Video (z*,...,z").

paper, is: How can we estimate all plausible future activities
and their probabilities in a scene modelled by a CRF?

Bayesian filtering methods can accurately estimate a belief
(set of probabilities) over variables of interest from sequential
data. However, it is still very challenging to estimate a belief
over a CRF for two reasons. Firstly, it is not tractable to
enumerate the labels over a CRF model since the output
space has a dimension exponential in the number of objects,
labels, and the temporal lengtlﬂ Secondly, there is a modelling
difference between CRFs and Bayesian filtering framework.
CRF is based on a discriminative setting whereas the Bayesian
filtering mostly relies on the generative formulation.

In this paper, we present a recursive algorithm — Recursive
CRF (rCRF) — which can efficiently estimate a full belief
over a CRF-based temporal scene model. rCRF can be seen
as an efficient belief estimation method which enables us to
use CRF-based scene model in Bayesian filtering. It models
the temporal evolution via Bayesian updates and models the
measurements in the scene via CRF. In order to use CRFs in
such a scenario, we solve two problems. First, we present an
approximation to convert the discriminative likelihood of the
CRF into a generative measurement equation. Second, we use
structured diversity for tractable computation. To the best of
our knowledge, rCRF is the only tractable method that can use
a CRF-based scene model in a recursive Bayesian filtering.

We apply the rCRF to the problem of activity detection and

ITypically with 10 objects, 10 min. length (with 1 sec. long segments), 10
activity and 10 object labels, dimension is (1010 x 10)10%60 — 16600,



anticipation from RGB-D data. As a CRF-based scene model,
we use the model from [24] which represents the scene as a
CRF over human activity and object affordances. We then use
the RGB-D video to detect and anticipate activities via rCRF.
Our experiments show that we outperform the state-of-the-
art methods for detection and anticipation, and the improve-
ment in the anticipation accuracy is significant. In addition to
the improvements in accuracy, we show that our anticipation
also improves the computation time and runs near real-time.
In summary, the contributions of this work are:

o We present Recursive-CRF (rCRF) method that uses the
rich modeling power of CRF in Bayesian filtering setting.

o We present a structured-diversity based approach to en-
able tractable computation of the belief.

o We apply our rCRF method to the problem of activity
detection and anticipation in RGB-D videos.

II. BACKGROUND AND RELATED WORK

Bayesian Recursive Filtering: Estimating a belief over vari-
ables of interest from partial observations is a widely studied
problem [41]]. Sequential Monte Carlo (SMC) —aka par-
ticle filter— is typically used to estimate beliefs in high-
dimensional cases. SMC methods represent the belief as a set
of samples and we refer the reader to [3]] for rigorous analysis.

SMC methods are not directly applicable to spaces like
CRF since the number of samples required is intractably
high. One solution to this problem is the Rao-Blackwellised
particle filter [6]. It uses a partition of the state variables y
into two set of variables y; and y» such that the variables
in one partition yo can be estimated using the partition y;j.
Then Rao-Blackwellised particle filter [6] estimates the y; via
SMC and directly estimates ys using y;. However, for our
problem, we are not aware of any state decomposition which
enables Rao-Blackwellised particle filter. Although there are
discrimantive extensions of Bayesian models like recursive
least squares[37], in this paper we only consider the states
represented by CRFs. Moreover, we are not aware of any
Bayesian smoothing formulation applied over CRFs.

One tractable application of the SMC framework to the

CRF based scene analysis problems is the ATCRF [22] model.
ATCRF [22] uses a set of heuristics to sample the parti-
cles. However, ATCRF faces the problem of computational
limitations and requires computationally intractable number
of samples for anticipation. We follow the Bayesian filtering
theory and efficiently estimate the belief.
Structured Diversity and Variants of CRFs: CRFs are
widely used to solve activity analysis problems [39, [33] in a
discriminative setting. CRF models the conditional likelihood
of the state given the observations, and the MAP solution can
be found. Although this setting is powerful, it does not give
any information about the belief other than the MAP state.

Other than the MAP solution, it is also tractable to compute
the modes of the CRF [1, [27, [3]. These modes can be
considered as an approximate state space, and the belief can
be computed only for them. Indeed, this claim is empirically

validated in many problems like parameter learning [31],
empirical MBR [32] and discrimantive re-ranking [45]].

Among the aforementioned approaches, Div-M-Best [1] is
a method applicable to the sequential information. [1] starts
by dividing the video into a set of frames and computes
the diverse-most-likely solutions of each frame independently.
Then, it combines the results via the temporal relations. On
the contrary, we formulate the problem as recursive Bayesian
smoothing and compute the samples based on temporal re-
lations. Formally, given state variables y',...,y” and ob-
servations x',...,x7, we directly sample p(y'|x!,...,xT)
whereas, [1]] samples p(y*|x'). Since our sampling procedure
uses the entire video, our samples are more accurate.

There are variants of CRFs that rely on sequential models
as well such as, Dynamic CRF (dCRF) [40], Infinite Hidden
CREF [2], Gaussian Process Latent CRF [17] and Hierarchical
Semi-Markov CRF (HSCRF). Although they are applicable to
videos, we are not aware of any tractable method to compute
a belief over any of the aforementioned graphical model.

DCRF [43] learns the observation likelihood —p(xt|y*)-
by using the low-dimensional nature of the features and
follows Bayesian filtering. Since our features have very high-
dimension (for N objects, we have 58N + 20N? + 103
dimensional features), DCRF [43] is not directly applicable.
However, it is possible to learn p(y*|x*%) and approximately
use the DCRF formulation by assuming observation and
label likelihoods are equal. Moreover, This approach can be
shown equivalent to finding local maximum of energy function
defined by [24] following the formulation of Fox et al [8].

It is also common to compute a belief over latent nodes as

in the case of infinte hidden CRF [2]] and Gaussian Process
Latent CRF[17]. However, they are not directly applicable
to our problem since they can compute a belief only over
the latent node. CRF-Filter [28]] is a closely related approach
which uses CRFs in a particle filtering scenario. However, it
is based on sampling of a low dimensional state space and it
is not applicable to our rich model either.
Human Activity Detection and Anticipation: Early works
relied solely on human poses. These works range from jointly
segmenting and recognizing sub-activities [[14}|38] to choosing
a relevant model out of activity models [30]]. Main limitation of
these methods is that they do not use the object information.
Some methods successfully model and use the relations of
the human-poses and objects in the scene [11} 46, [18] [19].
However, a significant drawback of these works is missing the
fact that object affordance is more important than object types
for activities [10]. Indeed, object affordance based models
had higher performance (e.g., [24]). A recent work modelled
human activities with latent models [[15] and also handled the
disagreements among the activity annotations [16].

Another drawback of these methods is the requirement of
the entire activity. Detecting the activity in its early stages
is especially crucial for assistive robotics and surveillance
systems. Although a few recent work adress the problem of
activity detection with partial/early information [13} [36]], these
works do not perform anticipation. There are a few recent
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Fig. 2: Computing the full belief by using rCRF. Each iteration
of the recursive estimation algorithm includes computing forward
and backward messages, o(y’) and S'7'(y'~!), by using the
current samples and computing the belief p(y'|x',...,x”) with
the computed messages. Then, we re-compute the messages and re-
sample the belief until the belief converges. Here, we only have two
objects as y* = (0%, 0%, A") and x' = (L, L5, HY)

works addressing what human will perform next by using
trajectory prediction. It is possible to predict the trajectory
of the human using inverse reinforcement learning in 2D
[47, 125} 20] or 3D [7]. However, these models rely on the
low-dimensional structure of the 2D/3D coordinate space and
therefore they do not apply to rich models like CRF.

Recent work on anticipatory temporal CRF [22] considers
an anticipation with a CRF model. It anticipates the future via
augmenting set of possible future observations to the CRF.
It is also extended with an improved human motion model
based on a Gaussian process [17]. However, their accuracy
significantly drops for a long anticipation horizon since they
fail to represent the uncertainty. Our method overcomes these
problems by recursively estimating a full belief.

ITII. OVERVIEW

In this section, we summarize our method and explain
how we estimate the full belief over the activities and object
affordances. Moreover, we also give an illustrative example
of the rCRF with a toy scene consisting of two objects (a
microwave and a bowl) and a human in Figure [2}

Reasoning about activities requires not only identifying the
objects but also interpreting object-object relations and human-
object relations. Indeed, we capture such rich information via

CRF. As shown in the Figure 2] each object and a human
corresponds to a node in the graph on which we define
the CRF. As a hidden variable, we are interested in object
affordances such as openable, graspable, movable, etc., and
the activity human is performing such as moving, opening,
grasping, etc.. We define the affordances as the actions that
can be performed on/with the object [L0]. We denote the
affordance variables at time ¢ as Of,..., O% for N objects
and the activity variable as A?. Since they are not directly
observed, we estimate them by using partial observations.
We are using the 3D positions of the objects LY, ... L,
and the human pose H! as observations. The input video
is temporally over-segmented prior to the application of the
belief estimation, and the time instant ¢ represent the t*"
segment of the video. We explain the features and the potential
functions we use while defining the CRF in Section [V]

In addition to the spatial relations between objects and
humans, we are also interested in their temporal evolution. In
general, the problem of estimating a belief over set of hidden
variables using the entire video corresponds to a Bayesian
smoothing problem. Formally, we are interested in estimat-
ing states y' = (O},..., 0%, A") given set of observations
x! = (Li,..., LY, H"). We estimate the states through suc-
cessive application of the recursive Bayesian updates. In order
to tractably compute the Bayesian updates, we introduce two
approximations in Section [[V] First, we compute the set of all
plausible future states by using structured-diversity. Second,
we use Jensen inequality in order to convert the discriminative
likelihood into a generative one. After the introduction of these
two machineries, we follow the recursive Bayesian estimation
framework. As shown in Figure 2] we first compute the
Bayesian updates through the forward and backward messages,
al(y') and fB(y!). We then compute the posterior belief
p(yt|x!,...,xT) by using the computed messages and the
CRF-likelihood p(y'|x'). As a final step of the iteration, we
represent the belief via diverse samples of the posterior belief.
Since the belief is recursively defined, we re-compute the
messages and re-sample the belief until it converges.

1V. BELIEF ESTIMATION WITH RCRF

In this section, we develop the Recursive Conditional Ran-
dom Field (rCRF) to use CRF in a Bayesian filtering setting.
rCRF jointly uses rich model of CRF and the recursive nature
of the Bayesian filtering to compute an accurate belief. We
first define our modelling assumptions in Section and
then we introduce a link between the CRF likelihood and the
measurement likelihood in Section in order to compute
the posterior belief. In Section [IV-B2| we further show that
the resulting posterior belief is equivalent to a CRF. Moreover,
this equivalence enables efficient computation via the diversity
based method [1]] developed for CRFs.

A. Recursive Conditional Random Field

Consider a sequential estimation problem in which we are
interested in variables y* using observations x’ where ¢ is the
temporal variable. In our application, ¢ is the temporal segment



id. We note RGB-D camera reading as x¢, and object and
activity labels as y*. We now define the Recursive Conditional
Random Field (rCRF) framework for such a problem following
the assumptions of Hidden Markov Models.

Definition 1: Let Gt = (V! E*) be set of graphs indexed
by the temporal variable ¢ and y! is indexed by the vertices
of Gt as y* = (y!),cy+. Then, (x' T, y'~T) is a Recursive
Conditional Random Field with dynamics p, (-|-) when

1) For each t, (y! x?) is a CRF over G = (V! EY)

2) ply'fyhs- ...y 1) p(y'ly'™") vt (Markov)

3) p(xtyt,. .., yhxt o xET) = p(xtyt) vt

Y py' =ylyt =y) =pyly) (stationarity)

|

t 41
T3
t+1

Fig. 3: rCRF is defined over a temporal CRF. The graphical
model, we use within the rCREF, is a temporal CRF with additional
constraints. We impose a special structure through the conditions we
state in the definition. For the visualization purposes, we show there
nodes per segment although rCRF can handle any number of nodes.

We visualize the graphical model representation of the rCRF
in Figure E} In this work, we are interested in the belief over
state variables at a given time instant ¢ as:

bel'(y) = p(y" = y|x1,...,x7) (1)

Here, T' denotes the length of the video. Hence, in rCRF the
belief of any frame is supported by the entire video. Moreover,
the time instant ¢ can be greater than the video length 7' as
well. Hence, rCRF naturally supports anticipation setting.

We then decompose the belief by using the independence
properties of the rCRF as:

Lx)px T x|y =)

BH(y)

bel'(y) o p(y" = y|x',

ot (y)

2)

Moreover, o and 8% can be computed recursively by using
forward and backward messages. Following [34],

o' (y") = p(x'ly") Za y'

By =Y p(Xt“Iyt“)ﬁt“(yt“)p(yt“Iyt)

yt+l

t

)y ly'™)
3)

p(xty!) and BT (yT) = 1.

B. Computing the belief using an rCRF

with initializations o (y!) =

Recursive definition in (3) has two significant drawbacks:
firstly, CRF is modelling p(y‘|x’) instead of p(x’|y?) and

the transformation is not trivial. Secondly, computation of the
messages require a summation over the entire output space,
and it has an exponential dimension. In this section, we first
compute the posterior of the observation given labels p(x'|y*)
by using the CRF posterior likelihood p(y'|x’). Then, we
show that the belief function at time ¢, bel’(y), can be
approximately represented as a Gibbs measure over G¢. Then,
we conclude that the belief, belt(y), is a CRF over the graph
G' with modified energy functions.

1) From p(y'|x") to p(x'|y"): Since (x',y") is a CRF, the
posterior of the label given the observation follows [9];

p(y'|x") ocexp | > 0,0 (y)) +

i€Vt

i,jEE!
where 6 is the energy function defined over the node set
v € V! as 0, and over the edge set (u,v) € E* as Ou,v-

In order to transform p(y?|x?) into p(x‘|y?), we use Bayes

rule; p(xt|y?) % and compute p(y') as;

Zexp Z 0t yZ

eVt

i,jeEt
®)

For tractability, we approximate the p(y*) with its lower bound

after applying the Jensen inequality as;

) & exp ZZ@ (y)p Z 20

i€Vt xt i,jeEt xt

p(x"))

yl7y]

a(yt) O(ytut)

(6)

We then estimate the inner summations (- ) from the train-
ing data using Monte Carlo method as () = ~ Zl 1 Oy )( )
where N is the number of training samples and x() is the 7*"
training sample. Therefore, we can compute the observation
likelihood as: p(x*|y?) oc

exp (Z 0,0 (yi) —

yz + Z amﬁz yzvy] _o(ywy])

i€Vt i,jEET
)

2) Beliefis a CRF: Here we compute the belief (2)) in terms
of forward and backward messages and CRF likelihood. We
then show that the posterior belief is a CRF. This observation
enables us to use efficient methods developed for CRFs.

In order to compute the belief (2), we decompose the system
dynamics using the independence assumption in the graph in
Fig. 3| This gives us p(y'ly'™') = [, p(y¢|y. ™). We then
compute the belief function as bel(y?) = af(y!)B!(yt) by
using equations (B) and (7). After algebraic manipulations,
the belief function can be approximated as follows (see



supplementary material for a detailed derivation):

bel(y") o< exp [ S (Gat o (h05) — 000t 5) )

i,jeE?

> (9 0(y:) + Za Dlogp(yilyi ) ®)

i€Vt

Z Bt+1 t+1

f+1

p(x" My ) log p(y t“lw))]

where 7 = Y7ot B (y" T )p(x H y )

One property to observe is the decomposition of the belief
over the graph. Resulting belief function, (8), is a summation
over energy terms defined over nodes i € V! and edges
i,j € E*. Hence, belief bel’(-) is a Gibbs measure over G'. By
using Hammersley-Clifford theorem [12], we conclude that the
posterior belief in rCRF is also a CRFE. In other words, belief
is a CRF defined over the same graph with a modified energy.

3) Belief via Diverse-Most-Likely Samples: Since we com-
puted the belief function and showed that it is equivalent to a
CRF, we now need an efficient method for computing it.

We follow the observation that CRF-likelihood over a nat-
ural scene concentrates on a few diverse samples [1]] because
each scene only has a few plausible explanation. So, we
compute the belief for only those samples. In other words,
let’s assume the set of all plausible solutions at time ¢ is

Y! = ybt .. yb™ where y*? is the ' sample at time
t. We then redefine the belief as;
bel' ) ify e Y

approx_bel’ (y) = { Syreyt bel'(y) 9)

0.W.

Since there are only a few plausible explanation of a visual
observation and CRF-based belief concentrates only on those
samples, proper selection of the samples Y! is expected to
work well in practice. These samples are typically selected as
the diverse-most-likely solutions of the CRF. They are most-
likely samples because we are only interested in the plausible
explanations. They are diverse because we are interested in the
modes of the CRF other than set of samples around the MAP
solution. Diversity is achieved via asserting samples to be at
least § unit apart from each other via the distance function A
(we use hamming distance as a in our experiments). In other
words, we solve the following optimization problem in order
to get the samples which represent the belief;

yit = arg max,, bel'(y)

iq . (10)
st Aly,y"7)>6 Vji<i

This optimization is NP-hard in general; however, since we
already showed bel’(y) is CRF, we use the existing diverse-
m-best algorithms developed for CRFs. We use the Lagrange
relaxation by Batra et al. [1]. We explain the details of solving
this problem by using [1]] in supplementary material.

In summary, we first compute the belief via (§) for all

frames by using samples of the previous and the next frame
as well as CRF likelihoods. Then, we compute the diverse
samples of () by using [I]]. After computing the samples, we
compute the messages o and 3! by using the equations
and (3). We continue to re-sample the beliefs and re-compute
the messages recursively until the convergence. Moreover,
during the initialization, we only sample the observation
function (/) since the messages are not available.

V. HUMAN ACTIVITY DETECTION AND ANTICIPATION

In this section, we describe how we apply the rCRF
framework to RGB-D videos for human activity detection and
anticipation. We are interested in activities such as reaching
and moving, and object affordances such as reachable and
movable as explained in Section We follow the approach
in [24]], and start with temporally segmenting the video. This
step can be considered as an oversegmentation in the temporal
domain. It decreases the computation complexity and enables
using motion information as an observation.

We then obtain the observations x! = (L%, LY, H?), by
detecting the objects in the first frame and then tracking
them. We obtain the human pose H! through a skele-
ton tracker. We consider affordances and activities as state

= (04,...,0%,A) where N is the number of objects.
We extracted set of features from the observations follow-
ing the feature functions in [24] (eg. relative and absolute
location of objects, human joints and their temporal displace-
ments). After extracting the features, we define our CRF
as a log-linear CRF and learn the energy function defined
in @) by using the Structural SVM [42] as in the case of
[24]. We use the first order statistics for temptoral (,1}’}13“}'
ies as py(y,y) = p(Vy = y|Vi L = y) = Fhmpre o)
where # (-, -) is number of the co-occurrence in training data.

After defining the observation, state and dynamics, we apply
the rCRF framework. We also summarize the activity detection
and anticipation application in Algorithm

Algorithm 1 Compute belief the over (0% ,A") for
t € [1,T + 7] in an RGB-D Video of length T'

Initialization:
Compute Lt, ... L%, and H' for t € [1,T] via [24].
Compute p(L} , H'|OY , A?) for t € [1,T] via (7)
Compute the belief via w/o messages (a« =1,8 =1)
Detection:
repeat
for t € [1,7] do
Compute the forward/backward messages via
Compute the belief via () an sample via
end for
until convergence or number of iterations limit
Anticipation:
fort e [T+1,T+ 7] do
Compute only the forward messages via (3))
Sample the belief directly from the forward messages.
end for




Moreover, since the temporal relations are modeled as
causal, we do not compute the backward messages during the
anticipation. In anticipation, there is also no future observation.
Hence, the belief is defined solely by the forward messages.
In order to compute the belief for future frames, we propagate
the estimated belief. We propagate the belief to the next frame
by sampling the next state of the each sample in the belief of
the current frame via the temporal dynamics. Then, we choose
diverse most likely samples out of the propagated samples via
solving with exhaustive search.

VI. EXPERIMENTAL RESULTS

In order to experimentally evaluate the proposed rCRF
model and the belief computation, we perform experiments on
two applications. Firstly, we estimate a belief over the activity
a human is performing and the affordances of the objects in the
scene by using the RGB-D video. After computing the belief,
we detect the most likely activity and affordance sequences
and study the improvement in the detection accuracy. Sec-
ondly, we test the accuracy of the beliefs in the anticipation
setting. Indeed, we show that it is possible to obtain high-
quality detection and anticipation via rCRF.

Data: We use CAD-120 [24] dataset in order to evaluate
our method. CAD-120 dataset includes 120 RGB-D videos of
four different subject performing activities reaching, moving,
pouring, etc. while interacting with objects having affordances
reachable, movable, pourable, etc.. There are 10 activity
classes and 12 object affordance classes.

Experimental Setup: For computing the features and learning
the CRF parameters, we follow the approach and the code in
[24]. Following the convention in [24]], we use 4-fold cross-
validation by training over the data from 3 subjects and testing
on the remaining subject. We then average the results over 4-
folds. We implemented the rCRF as we explain in Algorithm [I]
with the following parameters obtainded via cross-validation;
we sampled M = 15 diverse samples and ran the recursive
message updates with the number of iterations limit as 5.

For the anticipation setting, In order to experiment the 7

seconds into the future anticipation, we experiment over all
feasible anticipation scenarios. In other words, we anticipated
the time instant ¢ + 7 by using the segments 1...¢ for all
t < T — 7, where T is the length of the video. Then, we
averaged the score over all feasible experiments.
Baseline Algorithms: In detection setting, we compare the
detection results of the rCRF to MAP solution of the spa-
tiotemporal CRF in [24]. We also included the state-of-the
art activity detection results from Hu et al. [15]. Moreover,
[L5] is not based on object affordances and it only outputs
activity detections. For the anticipation, we compare the rCRF
with the state-of-the-art anticipation methods ATCRF [22]]
and GP-LCRF[17]. We also include DCRF[43]. In order to
evaluate the contribution of the recursive modeling and the
structured diversity separately, we also compare the rCRF with
a recursive approach without diversity and a diversity-based
approach without recursive modeling baselines.

The DivMBest algorithm in [1] uses the diverse sampling
method to sample CRFs defined over each frame separately.
DivMBest[1] then finds the most likely sequence via Viterbi
algorithm. Since it is missing the recursive modeling, it serves
as structured diversity without recursive filtering baseline.
We replace the diversity-based sampling in our method with
Gibbs sampler and consider it as recursive filtering approach
without structured diversity baseline. For the Gibbs sampling,
we sampled 50 samples per temporal segment. We denote the
recursive approach with Gibbs sampling as "rCRF w/o div”
while tabulating the results.

Evaluation Metrics: For activity detection, we compute the
ratio of the correctly classified labels (micro precision) and
the averages of the precision and recall values computed for
each activity and object affordance classes (macro precision
and macro recall). For anticipation, we record the ratio of
the correctly classified labels micro precision, the average of
the f-1 score that is computed for each activity and object
affordance class (macro f-1 score), and the precision of the
top 3 anticipated labels (robot anticipation metric). While
computing the robot anticipation metric; if any of the top 3
anticipation is correct, it is counted as true positive.
Accuracy of the rCRF in detection setting. We evaluate
the rCRF for activity detection and summarize the results in
Table [T} Table [I] suggests that the rCRF outperforms the MAP
solution [24]] and performs similarly with the state-of-the-art
solution [15]. Since rCRF and [24]] are using the same spatial
relations, the performance difference is due to the modeling of
the temporal relations in rCRF. We use first-order statistics as
temporal dynamics, and they are quite accurate as shown in the
heatmap in Figure [5] They also capture semantic information
like objects become stationary after being used.
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Fig. 5: Heatmap of the first-order statistics of activity and object
affordance classes. They are used as temporal dynamics by rCRF.

Accuracy of the rCRF in anticipation setting. We eval-
uate the accuracy of the belief we compute via rCRF, both
quantitatively and qualitatively. For qualitative evaluation, we
show the segment that we are anticipating the belief over, as
well as the belief we obtain in Figure E} Please note that, this
visual information is not visible to the algorithm, and it is only
included for the subjective evaluation.

As shown in the figure, anticipated belief is capturing
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Fig. 4: Anticipated belief over activity. In

the first and third row, we show a

middle frame of the temporal segment. In the second and

fourth row, we show the anticipated belief we computed for the middle frame. Note that frames are not visible to the algorithm and only

included for evaluation.

the scene accurately. Belief is accurate even for the case of
concurrent activities. For example, in the second column of
the second row in Figure 4] subject is reaching the microwave
and moving the cleaner. Our method assigns similar likelihood
values to both reaching and moving.

We also perform quantitative analysis over anticipation
accuracy. We anticipate 3 seconds into the future and sum-
marize the results in Table As shown in the Table
rCRF outperforms the state-of-the-art heuristic method
and the GP-LCRF method significantly as well as all
other baselines. We believe this result is due to the accurate
joint-modeling of the temporal relations and the CRF model.
We further analysed this behaviour in the subsequent sections.

TABLE I: Detection Performance over CAD-120. We compare
rCRF with MAP solution and baselines for detections accuracy.

Sub-activity [ Object Affordance

micro macro micro macro

prec(%)  prec(%) rec(%) prec(%)  prec(%) rec(%)
Chance 10.0+0.1 10.04+0.1 10.0+0.1 | 8.3+0.1 8.3£0.1 8.3+0.1
Hu et al.[T5] | 67.84+1.4 65.54+3.5 63.5+6.6 N/A N/A N/A
MAP Sol[24]| 63.44+1.6 65.3+2.3 54.0+4.6 | 79.440.8 62.54+5.4 50.2+4.9
DivMBest[T] | 64.0+1.3 61.7+£2.1 56.4+2.7 | 80.1+1.0 76.242.5 53.2+3.2
DCRF[43] 61.24+2.1 62.8+2.8 54.3+1.5 | 71.9+2.9 80.6+2.4 62.5+3.6
rCRF w/o div| 61.2+1.8 64.0+1.8 52.7+3.8 | 75.24+2.4 79.3+3.1 63.7+2.9
rCRF 68.1+1.3 66.1+2.7 57.2+3.9 |81.5+1.1 85.242.4 71.6+3.9

How important is the recursive modeling? DivMBest[1] is
the application of the structured diversity without recursive
modeling of the Bayesian filtering. In all experiments (Table [[]
and @), rCRF outperforms the DivMBest [1]]. We believe this
is because rCRF samples p(y*|z?, ..., x7) instead of p(yt|z?)

TABLE II: Anticipation performance for the anticipating 3 sec-
onds in the future. We compare rCRF with state-of-the-art antici-
pation algorithm and baselines for anticipation accuracy.

Sub-activity Object Affordance

micro macro  robot ant. micro macro robot ant.
Method prec(%)  fl-scr(%) metric(%) | prec(%) fl-scr(%) metric(%)
Chance 10.0£0.1 10.0£0.1 30.0£0.1 | 8.34+0.1 8.34+0.1 24.9+0.1
GP-LCRF 52.1+1.2 43.2+1.5 76.1+£1.5|68.1+1.0 44.2+1.2 74.9+1.1
ATCRF 47.7+1.6 37.9+2.6 69.2+2.1|66.1+1.9 36.7+£2.3 71.3+1.7
DivMBest[T] |47.94+1.4 43.243.6 71.54+2.7|61.3+1.4 56.3+2.1 73.340.5
DCRF[43] 48.3+2.6 35.4+1.8 66.6+1.1 | 55.2+3.1 48.5+3.1 71.24+2.2
rCRF w/o div | 49.64+2.1 39.74+2.6 65.14+1.1 | 56.24+1.9 47.443.1 70.84+2.5
rCRF 54.3+3.9 45.84+2.7 76.5+2.6|78.7+3.4 74.9+3.8 82.1+2.9

as in the case of [I]]. In other words, DivMBest [1]] samples
without considering temporal relations; on the contrary, we
sample the full belief directly.

Moreover, the improvement over the DCRF model shows
the important of accurate recursive modeling. DCRF uses the
recursive modeling without the proposed conversion of the
discrimantive likelihood into generative one and it performs
poorly. Hence, the proposed conversion is a necessary step.

We also studied the effect of anticipation horizon. We
computed precision of all methods for horizons between 1 and
10 seconds and plotted in Figure [7] and [§] We see significant
improvements over longer anticipation time horizons.

In Figure [7] and [8] accuracy of all algorithms decreases
with the increasing horizon. One interesting observation is
decrease rate of DivMBest is steeper than others. Since Di-
vMBest misses the recursive nature of the problem, accuracy
of the belief it computes is limited; hence, the resulting
belief does not stay informative with increasing horizon.
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We further computed the
entropy of the belief
rCRF computes and plot-
ted its average in Fig-
ure [0l The decrease rate
of the accuracy is much
smaller than the increase
rate of the entropy. In S T S SRR
summary, recursive mod- Anticipation Horizon(s)

eling is necessary for an
accurate belief estima-
tion and rCRF computes
flatter yet still informative beliefs with increasing horizon.
How to efficiently cover the output space? In order to
see the effect of structural diversity on covering the output
space, we compare the rCRF with a version of it in which
we replace diverse sampling with the Gibbs sampler. As
expected, Gibbs sampler only sampled the small region around
the posterior and failed to cover the output space. Within
all experiments, rCRF outperforms Gibbs sampler baseline.
Another interesting observation is, as shown in Figure [7|&8]
although Gibbs sampler based method performed slightly
better than other baselines for short horizon activity antici-
pation, it performed much worse for object affordance. We
believe this is because of the dimensionality. Activity space
has dimension 107" whereas the object affordance space has
dimension 127°™ where T is the length of the video and M
is the number of objects. Hence, diversity plays bigger role
with increasing dimension. Moreover, [22] uses the domain
knowledge by selectively sampling points around the hand,
etc. and it performs better than both baselines with increasing
horizon. We believe this result is due to the efficient coverage
of the output space with heuristics.

viv Belief over Object Affordance
2.5. ®=a Belief over Sub—activity

Entropy (bits)

Fig. 6: Entropy of the belief vs. time
(uniform dist. has ~ 3.32 bit entropy)
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Fig. 8: Precision vs. anticipation horizon for subject activities.

Computationally-efficient inference: We evaluated the com-
putational efficiency by computing the average computation
time for anticipating 3 second in the future via rCRF and
the fastest available anticipation algorithm (the ATCRF[22]).
Within our experiments, we did not include any pre-processing
or feature extraction computation (they are same for all algo-
rithms). Our experiments suggest that the rCRF is faster than
[22]] as shown in Table Hence, rCRF model outperforms
the state-of-the-art anticipation algorithm in terms of speed in
addition to the accuracy.

TABLE I1I: Computation time for anticipating 3 seconds in the future
excluding pre-processing (see supplementary material for details).

ATCREF [22] 34.1s rCRF 1.41s ‘

Can rCRF generalize to RGB data?: Since there is no RGB
activity dataset with object labels, it is hard to compare our
algorithm in the RGB activity analysis setting. Removing the
concept of the objet form the graph, makes it a chain-CRF and
the inference and learning becomes straightforward. However,
we still implement our rCRF over a linear-chain CRF for
RGB activity analysis. We based our implementation on MPII
cooking activity dataset [35] and use the publicly distributed
features from the authors webpage. The shared features are
HOG, HOF, dense trajetory features and MBH [4]].

As shown in
the Table our
method outperforms
all  baselines and

TABLE 1V: Anticipation performance for
the anticipating 3 seconds in the future in
MPII Cooking Dataset[335].

competing algorithms. micro macro  macro
We did not include Method prec(%) prec(%)  recall(%)
. . Chance 1.5+0.6 1.5+0.6 1.5+0.6

Gibbs sampling here  ATCRF [22] | 334433 521446 12.1+14
since the dimension DivMBest[1] | 34.4+28  55.3+5.0 14.3+1.2
rCRF 37.4+29 63.2+55 26.1+26

of the activity space
is rather low and the
experiment over diversity is not informative. We believe this
result is due to the accurate handling of temporal information
in rCRF and it shows that it generalizes to other modalities.

VII. CONCLUSIONS

In this work, we consider the problem of using rich
CRF-based scene models in Bayesian filtering setting. We
presented the rCRF model which uses rich modelling power of
CREFs in recursive Bayesian filtering. We further developed a
computationally-tractable method based on Jensen inequality
and structured diversity. We performed extensive experiments
that show rCRF accurately anticipates the future beliefs over
CRFs. We also experimentally demonstrated that the recursive
framework significantly improves the accuracy of anticipation.
Our rCRF not only resulted in more accurate anticipation but
also improved the computation time.
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and Army Research Office.
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