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Abstract—Robot teleoperation systems face a common set
of challenges including latency, low-dimensional user com-
mands, and asymmetric control inputs. User control with Brain-
Computer Interfaces (BCIs) exacerbates these problems through
especially noisy and erratic low-dimensional motion commands
due to the difficulty in decoding neural activity. We introduce a
general framework to address these challenges through a combi-
nation of computer vision, user intent inference, and arbitration
between the human input and autonomous control schemes.
Adjustable levels of assistance allow the system to balance the
operator’s capabilities and feelings of comfort and control while
compensating for a task’s difficulty. We present experimental re-
sults demonstrating significant performance improvement using
the shared-control assistance framework on adapted rehabilita-
tion benchmarks with two subjects implanted with intracortical
brain-computer interfaces controlling a seven degree-of-freedom
robotic manipulator as a prosthetic. Our results further indicate
that shared assistance mitigates perceived user difficulty and even
enables successful performance on previously infeasible tasks. We
showcase the extensibility of our architecture with applications
to quality-of-life tasks such as opening a door, pouring liquids
from containers, and manipulation with novel objects in densely
cluttered environments.

I. INTRODUCTION

Robust robotic teleoperation systems must be capable of
mitigating latency [4, 22], intermittency [36], difficulty in
performance of high-precision tasks [33, 27], and reconciling
the discrepancy between input mechanisms of the user and
the robot (e.g. joysticks versus motor torques) [13]. These
challenges are especially present when using Brain-Computer
Interfaces (BCIs) as the input device to teleoperate a robotic
manipulator. The advent of BCIs holds promising opportuni-
ties for empowering those physically impaired, restoring their
mobilitiy and abilities in the control of wheelchairs [32] and
prosthetic limbs [42, 14, 8]. However, the difficulty in mapping
recorded neural activity to teleoperation motion commands
compounds the difficulties present in conventional teleoper-
ation, hindering its applicability in contexts requiring high
precision and dexterity. Reduced integrity of neural signals
caused by the degradation of invasive BCIs over time [39]
results in increased erraticity and noise in the interpreted
motion commands. This effect also reduces the dimensionality
of the decodable control input from the user. Additionally, the

Fig. 1: Brain-computer interface controlled telemanipulation. Our
shared-control teleoperation framework assists and enables a user
to teleoperate a robot prosthetic to perform otherwise difficult or
unachievable daily-living tasks.

lack of haptic feedback can result in dangerous interactions
between the robotic prosthetic and the environment.

The combination of autonomous robot technologies and
direct user control in a shared-control teleoperation framework
can help to overcome these limitations and decrease the
demands on the user [9]. Autonomy infused user control
leverages the strengths of human-in-the-loop supervision for
higher-level task planning and exploits the ability of robotic
systems to reliably solve high-precision tasks. However, the
blending (arbitration) between autonomy and direct user con-
trol is crucial as it balances the comfort and perceived control
of the operator. Although a high amount of autonomy can
outperform direct operator control [24], user studies indicate
that the amount of autonomy should depend on both the user’s
ability to deal with the difficulty of the task and the robot’s
confidence of the inferred user goal [18, 11, 47].

We propose a framework that addresses the challenges
of robot teleoperation with a focus on BCI manipulation
tasks. Our shared-control teleoperation architecture is inspired
by efforts in both autonomous robotics and human-robot
interaction, combining computer vision, user intent infer-
ence [13, 11, 1, 49], and human-robot arbitration [21, 3, 45, 5].



Fig. 2: Overview of the assistive teleoperation architecture. A teleoperation assistance module (green) processes inputs (blue) provided to
the system in order to control (red) an anthropomorphic robot arm and hand. First, the system infers the intent of the human operator using
the user’s end-effector and grasp velocities, and a dynamic representation of the robot’s environment. Second, the intent and the user input
are interpreted to create an autonomous motion plan. The user input and the autonomous motion plan are then blended and converted to arm
and finger joint velocities. Finally, the controller generates the necessary joint torques while ensuring that the robot is safe and compliant.

The value of computer vision in BCI controlled manipulation
was demonstrated with a simple sphere-and-cylinder detection
system [29, 15]. We extend upon these findings by utilizing
a more advanced perception pipeline (Section II-A) in con-
junction with a model library consisting of 3D object models
and corresponding pre-labeled grasp sets. In contrast to the
fixed distance based threshold in [15], we introduce capture
envelopes, similar to gravity fields [40], for smooth and con-
tinuous user grasp inference that can vary based on the object
and grasp (Section II-B). Utilizing prior work in value function
based user intent inference (Section II-C), we circumvent the
requirement of explicit user goal selection by inferring the
user’s desired goal, similar in motivation to eye tracking and
other interfaces [29]. Finally, following the suggestions of user
studies [47, 18, 11], we allow for adjustable assistance levels
through human-robot arbitration (Section II-D) – blending task
requirements with the operator’s capabilities while balancing
their perceived comfort and sense of control. Experimental re-
sults showcase significant performance improvements of using
our shared-control framework to assist in control of a seven
DoF robotic manipulator in conjunction with an intracordical
BCI on adapted rehabilitation benchmarks (Section III). To
highlight the generality and extensibility of our architecture,
we show applications to quality-of-life tasks, such as opening a
door and pouring liquids, and applications using conventional
teleoperation interfaces (Section IV). An overview of related
work in shared teleoperation and BCI technologies (Section V)
is given prior to the conclusion (Section VI).

The contribution of our work is two-fold: (1) The design
and implementation of a shared control teleoperation frame-
work that combines multi-object user intention recognition,
computer vision, and compliant control along with newly
introduced grasp intention recognition via capture envelopes.
(2) The experimental evaluation of the proposed framework
in the new and challenging domain of BCI telemanipulation,
showcasing the advantages of our system compared to direct

teleoperation in the given context.

II. AUTONOMOUS ROBOT MANIPULATION ASSISTANCE

The combination of computer vision, user intent inference,
arbitration between autonomy and human control, and a com-
pliant controller define the major components of our auton-
omy infused shared-control teleoperation system illustrated in
Fig. 2. Below, we detail and describe the involved modules.

A. Computer Vision for Environment Perception
To achieve context-sensitive assistive teleoperation, the sys-

tem requires knowledge about specific objects and obstacles
present in the scene. Our perception module tackles both
object recognition and localization in tabletop scenes using
depth-image template matching, similar to the approach pre-
sented in [6] and the silhouette matching of [41]. Depth
image template matching leverages efforts in in 2D image
template matching from the computer vision literature [25]
while utilizing the scale disambiguation offered by range data.

We first filter out the planar supporting-surface (table) points
with RANSAC. To prevent false detections of the robot arm,
we first correct for joint errors then remove corresponding
pixels in the depth image [20, 12]. The resulting depth
image is segmented to find the potential locations of objects.
Subsequently, the location of each object compared to pre-
generated depth-image templates for each object type (e.g.,
block, ball, canteen, etc.) in various poses, with assignment
to the best scoring template. The templates are created using
3D models from the model library, acquired using a 3D laser
scanner. Due to sensor noise and matching error, iterative
closest point (ICP) matching is used to finalize the object’s
pose. Using this method, our system can recognize and localize
multiple, physically separated objects.

B. Capture Envelopes: Grasp Inference
For an assistive telemanipulation system to be intuitive and

transparent, the prediction of user intention is crucial. Even



when there is only one object in the environment, the user
should be able to choose among the multiple feasible grasps
for the object. To estimate the user’s intent, we assume that the
user is an intent driven agent following a policy to minimize a
cost function cg while approaching a goal g (i.e., grasp pose).
User actions, such as the commanded end-effector velocities,
lead to lower cost for some grasp poses while simultaneously
increasing the cost for others. The process of intent estimation
then becomes the measure of the user’s progress on each
possible grasps. In the following, we will consider the case
of inferring the user’s intended grasp pose of a single object.
We then extend this approach to handle multiple objects by
utilizing the principle of maximum entropy in Section II-C.

To infer the intended grasp pose of a single object, we
assume that the grasp pose is defined by the type of object and
the direction from which the operator approaches this object.
The object specific grasp poses and their approach vector are
stored in the model library. Similar to the idea of gravity
fields [40] where the end-effector is pulled towards a specific
position, we define capture envelopes to account for the fact
that a grasp pose cannot be approached from all directions
without undesirable collisions with the target object .

Formally, let G be the set of grasps associated with an object
in the environment, we want to select the grasp pose g ∈ G
that the user most likely aims for. Let each grasp g contain a
desired end-effector pose G = (RG, xG) ∈ SE(3) as well as
an approach direction dg ∈ R3. The cost for a grasp g ∈ G is
then computed by:

cg(G,E) =
ktctran(xG, xE)

krcrot(RG,RE)
+ ckin(G),

where E = (RE , xE) ∈ SE(3) is the current end-effector pose
and kt, kr are gain factors. Intuitively, this cost relationship
prefers grasps that are close by to the end-effector location
while favoring orientations similar to that of the current
rotation of the end-effector. ctran computes the translational
distance between the current end-effector position xE ∈ R3

and the grasp position xG ∈ R3. The function crot is computed
from the quaternion dot product and decreases with increasing
difference between the orientations RG and RE . Finally, we
append a cost ckin that implements the kinematic feasibility
constraint for the grasp pose, returning zero if the pose is
feasible for the manipulator and infinity otherwise.

To compute the translation cost ctran, we define a capture
envelope (Fig. 3), represented as a truncated cone with origin
close to the target and aligned with the approach vector dg:

ctran(xG, xE) =

{
t if xE is in the cone
∞ else,

where t captures the progress of the end-effector along the
grasp’s defined approach vector dg . Specifically, it is the
projection of the vector between xG and the position xE
projected onto the approach vector:

t =
(xG − xE)

T (xL − xG)

‖xL − xE‖22
,

where the launch position xL is set to a predefined distance
along the approach direction from the goal position xG. The

Fig. 3: Capture Envelopes. The distance between the end-effector xE

and the goal position xG is defined by the distance t when xE is
within the cone and infinite otherwise.

capture envelope, as defined, provides a major advantage over
methods that only consider the radial distance to the target.
With capture envelopes, the hand is never guided backward
into the object when it approaches the object from above or
behind.

Finally, all grasps g ∈ G are ranked based on their cost cg ,
filtered based on a threshold cost. The best ranked grasp is
used as the automated desired pose A.

C. User Intent Inference via Maximum Entropy
Although the development of capture envelopes allows for

successful assistive grasping with a single object, many real-
world scenarios contain multiple objects. Thus, it becomes
necessary to reason about the probability of each being the
intended target. A simple approach that selects the best capture
envelope across objects in the method described above, is
limited by the fact that it only takes into account the current
end-effector pose, rather than the entire trajectory. In this
section, we describe a method based on the principle of
maximum entropy to overcome this limitation. The principle
of maximum entropy intuitively allows us to reason about
the probability distribution over goals while making minimum
commitment beyond the information observed so far. After
the most likely object is identified, we leverage the capture
envelope ranking as described above to achieve successful
grasping behaviors.

We assume the user is a rational agent running an optimal
controller to minimize some cost-to-go (value) function to-
wards their intended goal. By reasoning about the observed
trajectory, generated as a result of user commands, we are
able to compute the likelihood of each possible goal (object)
go given the value function cgo optimized by the intent-driven
user (agent). In practice, it is difficult to find the true value
function of the human operator and we instead use an approxi-
mate surrogate. Formally, let ξX→Y denote a trajectory starting
at pose X and ending at Y . Using the principle of maximum
entropy [50, 51], we compute the probability of a trajectory
for a specific goal (object) go as p(ξ|go) ∝ exp(−cgo(ξ));
the probability of the trajectory decreases exponentially with
cost. Following [11], we use a first order approximation to
address the difficulty in in computing the normalizing factor,
the partition function, for the above conditional distribution.
This gives us the probability over trajectories:

p(ξS→E |G) =
exp (−cgo(ξS→E)− cgo(ξ∗E→G))

exp (−cgo(ξ∗S→G))
,



where ξ∗X→Y is the optimal (minimum-cost) trajectory, S is
the starting pose of the end-effector, E is the current end-
effector pose, and G is the pose of the goal (object). Finally,
Bayes’ rule gives the desired probability per goal:

p(G|ξS→E) ∝ p(ξS→E |G)p(G)

with a prior over goals p(G). Enumeration over discrete,
finite goals normalizes the distribution. In the experiments
discussed in Section III, we showcase the potential of this
approach for multiple-object manipulation under BCI control.
For these trials, cgo is an Euclidean distance between S
and E and initializes with a uniform prior over the objects;
however, this cost function may alternatively be learned from
demonstrations [50]. At every intent-inference loop iteration,
the optimal goal pose:

G∗ = argmax
G∈G

P (G|ξS→E)

is selected. The final pose A is computed using the capture
envelopes on the object identified by G∗.

D. Human-Robot Arbitration

Given an automated desired pose A (Section III-A) and the
user commanded velocities vu, the system needs to blend
the two commands to generate new robot joint velocities.
First, a desired pose U ∈ SE(3) is generated from the user
commanded velocities vu and the current end-effector pose E.
Second, an arbitration scheme is needed. We decided to follow
the suggestions of previous user studies [18, 11, 47] and keep
the human operator in control to the largest extent possible and
smoothly increase assistance in certain scenarios based on the
confidence of the estimated intent. The arbitration between
user commands and autonomous robot control is realized by
a linear blending function [45, 5, 11]:

D = (1− α)A+ αU

where α is an arbitration factor that defines the amount of
control given to the user. α = 1 gives the user has full control
and α = 0 allows the robot assistance to take over completely.
We compute α using a sigmoid function to enable smooth,
continuous blending between the user and robot command:

α =
1

1 + e−a(1−I)+o
,

where I defines the confidence of the intent and a and o are
parameters that ensure that α is in the range [αmin, 1]. The
value of αmin defines the minimal control contribution of the
user and is adapted to the needs and ability of an individual
user. Finally, to ensure the user’s ability to regain control
in scenarios where there is a large discrepancy between the
system’s assistive policy and the user’s command, the value
α is increased above a safety threshold, allowing the user to
break away.

In the experiments discussed in Section III and IV, the
confidence of the intent I is computed based on the progress
of the end-effector towards a goal: I = 1− t.

E. Safe and Compliant Control

Given a desired motion in task space, the servo controller
generates the required joint velocities by minimizing a cost
function balancing the joint motion and error in the trans-
lation and rotation of the end-effector [30, 31, 37]. Due to
redundancy in many robot manipulators, we can further add
a secondary objective in the nullspace of the manipulator
Jacobian [38]. In our servo controller, we aim to prevent colli-
sions of the arm with the environment by using the nullspace
objective to bias the arm towards preferred configurations with
good manipulability. We also add a quadratic hinge penalty
on the distance of the the elbow to the table applied in the
nullspace of the joints above the elbow.

The lack of haptic feedback for external contact and in-
correct or erratic movement commands from the operator
can result in dangerous interactions with the world. We rely
on software-based compliant control from force and torque
sensors built into the robot to help to prevent damage. The
compliance provided by the joint velocity control software
is realized by a constant monitoring of the operational space
forces and torques from a sensor at the wrist of the robot
arm. We apply intended force corrections to the joints using
a procedure similar to [17, 44]. Since our joint-velocity
PID controller uses the integral gain term, our end-effector
compliance is implemented by computing a joint configuration
offset to remove unwanted forces and torques applied at the
end-effector Fe. The offset qe is given by qe = KJTFe,
where K is a tuned gain term related to the proportional
gain term in the velocity controller, and JT is the transpose
of the Jacobian around the current joint configuration. Since
the wrist-based force-torque sensor cannot detect collisions of
the arm above the wrist, the described joint-offset controller
becomes ineffective. To compensate, we introduce a stall
detection mechanism within the control loop based on the
build-up of the integral gain term. When a threshold is crossed,
the controller torques for relevant joints are ramped down,
releasing pressure at the contact points. The various thresholds,
gains, and reference force-torque vectors are task dependent
and stored in the model library. For example, actuating a door
lever handle requires a specific relaxation of forces along
certain axis compared to free-motion, grasping, or pouring
from a glass.

III. EXPERIMENTS

We evaluated the autonomy infused shared-control teleop-
eration framework on case-specific adaptations of two com-
mon rehabilitation benchmarks: the Action Research Arm Test
[48, 26] and Box and Blocks [28, 46]. In addition to these
two single object manipulation tasks, we tested a multi-object
setup where the subject had to grasp one of two objects on the
table corresponding to the one indicated by the experimenter to
test the maximum entropy based user intent inference (Section
II-C). During all experiments, two subjects controlled 4 DoF
(3 DoF for end-effector translation velocity in task space and
another DoF for a grasp velocity to open and close the hand)
via BCI. A video showcasing the performance of the system
can be found in the supplementary material of this paper.



(a) Starting Configuration (b) Approaching (c) Object grasped (d) Object released

Fig. 4: ARAT performed with autonomy infused BCI control. The robot starts in a neutral configuration (a). When the end-effector moves
close to an object the user wants to interact with, the system assists the user by preshaping the hand and guiding the end-effector to a good
grasping configuration (b). The object can be grasped (c) and moved towards a raised area to be released (d).

A. Experimental Setup

The robotics platform used as a prosthetic consisted of
a RGB-D camera mounted on a two-stage, four-axis neck,
a seven DoF Barrett WAM arm equipped with a three-axis
force-torque sensor at the wrist, and a four DoF three-fingered
BarrettHand with pressure sensors in the palm and each finger.
In all tests, a table was located directly in front of the robot.
The subject was positioned next to the table with a direct view
of the task space (see Fig. 1).

We tested our setup with two tetraplegic subjects who
had been using an intracortical microelectrode (Blackrock
Microsystem, Salt Lake City UT) BCI for 2.5 years (Subject 1)
and 2 months (Subject 2) respectively. While Subject 1 was
able to practice the tasks prior to and during the development
of the system, Subject 2 did not perform any of the tasks prior
to the experimental sessions. This study was conducted under
an Investigational Device Exemption (IDE) granted by the
US Food and Drug Administration and was approved by the
Institutional Review Boards at the University of Pittsburgh, the
Space and Naval Warfare Systems Center Pacific, and Carnegie
Mellon University. This trial is registered on clinicaltrials.gov
(http://clinicaltrials.gov/ct2/show/NCT01364480). Both partic-
ipants provided informed consent prior to participation.

To extract the user commanded velocities, intracortical
recordings were made from two microelectrode arrays in
Subject 1 and from four arrays in Subject 2. At the beginning
of each session, thresholds were set on each channel at −4.5
times the root-mean-square (RMS) voltage for Subject 1, and
−5.25 times RMS for voltage for Subject 2. The number
of threshold crossings on each channel was recorded every
30 ms to generate a control signal that refreshed at 33 Hz for
Subject 1. Threshold crossings were binned every 20 ms for
Subject 2, resulting in an update rate of 50 Hz. The threshold
crossings were filtered using a 450 ms window for Subject 1
and a 440 ms window for Subject 2. This filtered signal was
used to decode the intended endpoint and grasp velocities
using an indirect optimal linear estimator (OLE) decoder.
The decoder was trained prior to testing using the two step
calibration method described in [8, 46].

The experiments were performed in two modes: Autonomy
Infused Teleoperation (AIT) and Direct Control (DC). In the
DC mode, decoded taskspace velocities were directly used for
the servo and hand motion with almost no assistance. However,
to ensure the safety of the robot, we applied workspace limits,

elbow avoidance, and compliance control (Section II-E). In
the AIT mode, we further applied autonomous manipulation
assistance utilizing computer vision, intent inference, and
human-robot arbitration (Section II).

Additionally, a hand control scheme assisted the user with
hand opening and closing motions during certain manipulation
tasks. In particular for the AIT experiments, the following
assistance was given: (i) when entering the capture envelope,
the system ensures that the hand/finger positions are set as
specified by the object grasp library and (ii) to avoid early
grasp initiation, the system suppresses the user’s hand close
signal in the capture envelope if the hand is not sufficiently
close to the preset grasp position. Furthermore, the autonomy
assist applied a squeeze while holding an object until it
received a user commanded a release signal exceeding a pre-
defined threshold.

B. Action Research Arm Test (ARAT)
To test the abilities of the subjects to control the robot

arm via a BCI with Autonomy Infused Teleoperation, we
used a subset of the Action Research Arm Test (ARAT)
[48, 26]. ARAT was developed as a standardized test to assess
upper limb impairments following a stroke. In the adapted
experiments, the subjects had to grasp four different sized
blocks (2.5 cm, 5 cm, 7.5 cm, 10 cm) and a ball. Starting
from a neutral position, the subject was required to reach
for the object, grasp it, and transport it from the left side
of the workspace to a raised surface on the right side of
the workspace (see Fig. 4). The task had to be completed
within two minutes. If an object was dropped within the
reachable workspace, the subject was allowed to re-grasp it.
Otherwise, the trial was treated as timed out. An experimenter
corrected any movement of the release platform by the robot
arm. Directly above the release area, the subject was assisted
in stabilizing its position and opening the hand at a release
position.

The subjects were asked to perform the task three times in
a row for each object in each control mode, AIT and DC. The
subjects were not made aware of the operating mode of the
robot. They were notified that each of the three attempts would
be counted in their final score. After completing a group of
three trials for a mode, each subject was asked to rate the
difficulty of the task on a scale from 1 to 10: 10 if the task
was extremely difficult to perform and 1 if it was extremely
easy. The times and videos of each trial were recorded.
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Fig. 5: Comparison of end-effector positions for the ARAT task for two sample trials. Observe the simpler trajectories with computer guided
assistance. The Direct Control trials showcase the difficulty of standard BCI manipulation: noisy control, unintended early releases, and
unstable erratic movement while grasping. As shown in Table I, this results in overall shorter times for successful task completion with AIT.
Note that we show a 2D projection of the 6D end-effector motion onto the table surface.

Success Rate (n=3) Completion Time Time to Grasp Number of drops Difficulty Rating (1-10)
Subject Object AIT DC AIT DC AIT DC AIT DC AIT DC

Subject 1

Block 10cm 66 % 0 % 31 s - 6.33 s 19 s 1.0 3.67 4 8
Block 7.5cm 100 % 0 % 9.2 s - 5 s 28 s 2.0 1.0 1 9
Block 5cm 100 % 0 % 7.9 s - 4.3 s 19.3 s 0.0 3.0 1 9
Block 2.5cm 100 % 0 % 42 s - 4.6 s 5.3 s 0.0 3.3 3 9
Ball 66 % 0 % 42.3 s - 21 s 10.5 s 1.0 1.0 3 9

Subject 2

Block 10cm 0% 0% - - 15 s - 1 - 4 6
Block 7.5cm 50% 0% 46.43 s - 23 s - 1 - 4.5 7.5
Block 5cm 66% 0% 26.6 s - 15 s - 0.3 - 2 9
Block 2.5cm 100 % 0 % 40.63 s - 25.67 s - 0 - 1 9

TABLE I: ARAT benchmark comparison with BCI implanted subjects with Autonomy Infused Teleoperation (AIT) and with Direct Control
(DC). The data is averaged from three trials in a single session with an exception for Block 7.5 for Subject 2, averaged over two sessions
with three trials each. No completion time could be reported for the DC experiments as there were zero successful trials. Also note the
reduction in the time to grasp and the number of drops.

Results: The results are summarized in Table I. A visual
comparison of the trajectory of the robot’s end-effector in both
modes for two objects is shown in Fig. 5. In the following
section, we will discuss each subject individually.

The trial completion time of Subject 1 with the AIT mode
varied between 7.1 s and 72 s. In the AIT mode, two out of
15 trials were failures. In both cases, the subject grasped the
object successfully, but released it too early causing the object
to go out of reach. With DC, the subject was unable to perform
the complete task in any of the 15 trials. Here, the subject
pushed the object away before grasping, could not stabilize
the position long enough to complete the grasp, and after
a successful grasp was unable to transport the object to the
release platform without dropping it (see Fig.5b and Fig.5a).

Subject 1 grasped the object successfully in every trial with
AIT. The average time in this mode of the first successful
grasp was less than 6.4 s except for the ball. Here, the subject
moved the object in a hard-to-reach area while approaching
it from the side, requiring another grasp attempt in that area.
The average time for the first successful grasp with DC varied
between 5.3 and 28 s with an overall average of 16 s (13 of 15
trials grasped successfully). These results indicate the ability
of AIT to reduce the time until first object possession. AIT
was also able to reduce the number of drops after grasping for
Subject 1. After each drop the subject was able to re-grasp the
object quickly if the object was in reach for the manipulator.
Subject 1 reported an average perceived difficulty of 2.4 when
using the Autonomy Infused Teleoperation in comparison to
the 8.8 average difficulty under Direct Control.

Subject 2 was unable to grasp any objects in the 15 trials

with DC. Often, the subject hovered close to the object without
being able to stabilize or was unable to approach the object.
With AIT, Subject 2 was able to grasp the object in 13 of 15
trials. The subject was able complete 61.5% of the successful
grasps trials. The task completion time varied between 11.5 s
and 74 s. AIT reduced Subject 2’s average perceived difficulty
from 7.8 with DC to 3.2.

C. Object Transfer Task: Box and Blocks

We performed an object transfer task based on the Blocks
and Blocks experiment [28, 46]. This test required the subject
to transport a 7.5 cm block from one side of the workspace to
the other as many times as possible in two minutes. The subject
was required to lift the block up to a minimum height given
by a reference object placed at the edge of the table within the
subject’s view. After each successful transfer, the object was
reset by the experimenter until the 2 minute time limit was
reached. Upon completion of one trial, the subject was asked
to rate the difficulty on a scale from 1 to 10. The task was
performed in each of the two modes AIT and DC without the
subject being made aware of the mode of the trial.

Subject 1 performed the experiment over two different
sessions. During the first session, the subject performed the
task three times in each mode. During the second session,
the subject performed the task two times in each condition.
The experiments during the second session were additionally
modified in three ways. 1) The grasp signal was put through
a low-pass filter for the AIT mode, resulting in the object’s
release only when given a continuous strong release signal.
2) The subject was asked to start moving towards the object



Transfers Difficulty rating (1-10)
AIT Direct Control AIT Direct Control

Session 1
7 4 1 4
2 6 6 5
6 2 4 6

Session 2 4 1 2 9
7 0 2 9

Average 5.2 2.6 3 6.6

TABLE II: BCI object transfer (Box and Blocks) benchmark results
with and without the Autonomy Infused Teleoperation (AIT) assis-
tance for Subject 1. The subject had to grasp an object and transport
it over an invisible wall as often as possible within two minutes.

after the experimenter’s hand left the object in order to allow
the computer vision system to detect the object. 3) The object
was put at a random position on the left side of the workspace
after every transfer.

Results: Table II summarizes the results of both sessions.
In Session 1, the results were inconclusive. Here, the subject
moved the arm in such a way that the camera’s view was
blocked when reacquiring the object location after a successful
transfer or moving the object around before it could be
relocated on replacement. In the second session, the subject
was instructed to wait before moving the arm. Here, the AIT
increased the successful transfers and decreased the difficulty
rating compared to DC.

D. Multi-Object Grasping with Intent Inference

To evaluate if the architecture can successfully infer intent
in a multi-object setting, two 7.5 cm blocks were placed in
various configurations 10 to 31 cm apart from each other. The
subject was instructed to grasp one of the two objects chosen
by the experimenter (yellow or wooden block). The experiment
was performed only with Subject 2. Starting from a neutral
position, the subject had to reach for the object, grasp it,
and lift it from the table. The experiment was repeated 36
times solely with AIT as single object grasp results had been
unsuccessful with DC. The subject was able to successfully
grasp the indicated block 32 of 36 times. Two failures were
due to the subject moving the object out of reach. Another
failure was the result of the subject being unable to lift the arm
after grasping, and one failure was due to incorrect inference
of user’s intended object. The grasping time varied between
4.5 s and 110 s – averaging 17.61 s over the trials.

IV. EXTENSIONS

We examined the extensibility of our architecture to other
everyday living tasks such as pouring, door opening and
manipulating unknown objects and the generality to multiple
teleoperation control interfaces. While door opening was per-
formed with Subject 1, the other two tasks were performed
by an experienced operator using a game controller that could
be operated with either the dual-joysticks or with its 6-DoF
motion tracking capabilities.

A. Door Opening

The first investigated quality-of-life task was to enable
Subject 1 to open a door. This task is made especially difficult
due to the lack of force feedback to the subject and the lack of
rotational control through the 4D-control provided through the

(a) Pouring soda (b) Door opening with BCI

Fig. 6: Extending the model library allows the user to engage in
object-specific affordances such as pouring when grasping a soda
can (Fig. 6a) and opening and closing a door when grasping the
handle (Fig. 6b).

BCI. To realize door opening (Fig. 6b), we extended the idea
of grasp sets stored in the model library by additionally storing
rotational interactions and compliant force constraints for the
door and door handle. As a result, the system automatically
rotated the door handle after detecting a successful grasp. The
user commands were projected on the arc created by the door
hinge constraint for door opening or closing until the user
released the handle through a strong hand-open command.
Subject 1 was able to open the door four times during a
session. Although the subject was able to turn the handle
successfully in two other trials, he/she was unable to command
the backwards movement for opening the door.

B. Pouring
The lack of robust rotation control with low-dimensional

input complicates other common daily living tasks such as
pouring from a glass. We augmented our framework through
the model library to assist a user with the required rotational
motion and stability when near “fillable” containers (e.g.
a bowl). Specifically, we extended our approach to allow
pouring from a soda can, glass or canteen (Fig. 6a). We
extended the approach of grasp poses in the model library,
by defining pouring poses that became active when approach-
ing such a container with a “pourable” object. The end-
effector was guided to the pour pose using capture envelopes
(Section II-B). At the pouring pose, the user’s translational
commands were mapped to corresponding rotational velocities
for pouring. When the user commands to move away, the
system ensured that the “pourable” object was re-oriented
upright before allowing translational motions away. To test the
performance, an experienced operator controlled the arm using
a dual-joystick game controller. The task involved grasping
the “pourable” object, moving it to the “fillable” bowl, and
returning the object to the table. In all 10 trials, the contents
were successfully poured into a bowl. In one trial, the object
was not properly returned to the table after pouring.

C. Beyond the Model Library: Novel Objects
The computer vision component (Section II-A) and grasp

inference methodology (Section II-B) relied upon prior knowl-
edge of object models and preselected, predefined grasp poses.
Though this approach enables greater reliability or specifics in
regards to object grasping (e.g. grasp a mug by the handle),
interaction with novel objects would not be possible with ac-
cess to only a fixed model library. The architecture depicted in



(a) (b) (c) (d) (e)

Fig. 7: Using a model-free object perception and grasp point detection algorithms allows us to augment the shared-control framework to
handle situations with novel objects (7a). Supervoxel segmentation (7b) and forward simulation of the robot hand (7c), are used to create
grasp fixtures (7d). Clutter clearing arises when when trying to find hidden objects lying underneath (7e). Due to limited time with the BCI,
we were only able to show this extension as a proof-of-concept using a motion tracking game controller.

Fig. 2 can easily be augmented to utilize additional computer
perception and grasp selection techniques for unkown objects
such as those in [34, 23, 16].

As an example, we extended our framework to utilize a
vision and grasp point selection similar to the work of [7]
towards the task of novel object manipulation in dense clutter
(Fig. 7a). Specifically, we use spectral clustering of supervox-
els to generate object candidates (Fig. 7b). Forward simulation
of simplified robot hand and finger models on the 3D point
cloud (Fig. 7c) is used to determine feasible grasp points on
each candidate (Fig. 7d). Using the maximum entropy user
intent inference formulation, we are able to assist users to
manipulate in scenes with novel objects. For demonstration
purposes, we cleared dense clutter to search for target objects
hidden underneath (e.g. a phone in Fig. 7e). We verified our
proposed augmentation as a proof-of-concept utilizing a 6-DoF
motion tracking controller as input device.

V. RELATED WORK

A. Shared Teleoperation

While some shared-control teleoperation frameworks ad-
dress the needs of a specific task [27, 2, 5], others have
concentrated on the necessary components such as user intent
prediction [1, 49], system transparency [45], or studying user
preferences on the the amount of autonomy provided by the
robot or system [47, 18, 11]. In some schemes, the human
operator provides only corrective actions [3]. In most shared
teleoperation applications, however, the robot takes over only
in specific situations, e.g, guaranteeing safety [5], avoiding
obstacles [10], assisting path tracking [27, 2], or in alignning
a gripper to an object [21]. The arbitration between user
commands and autonomous robot control is usually either
a binary switch [21] or a linear blend between the two
inputs [45, 5, 11], similar to that used in this work.

B. BCI Controlled Teleoperation

BCIs have been used for control in a variety of applications
through a variety of input methods such as intracortical arrays
as well as noninvasive EEG and ECoG interfaces [35]. Em-
bedded microelectrode arrays in the motor cortex give superior
bandwidth and have been used for continuous high degree of
freedom control of upper limb prosthetics [14, 8]. However,
certain limitations prevent seamless teleoperation via BCIs.
Vogel et al. address the lack of neural haptic feedback through

compliant controllers based on joint-level torque sensors to
enable safe interaction with environment [43]. We achieve
a similar effect through joint-stall detection and Jacobian
transpose compliant control from a wrist mounted force-torque
sensor. For BCI manipulation with non-human primates, [19]
uses simple optical sensors to provide obstacle avoidance
and grasping assistance. We extended this idea using a more
complex computer vision system and model library augmented
grasp inference and show results on human subjects.

VI. CONCLUSION

Our shared-control assistive teleoperation framework pro-
vides an intuitive and responsive system, overcoming erratic,
noisy, and low-dimensional user inputs by i) finding environ-
mental context through computer vision ii) inferring the user’s
intent from their motion commands, and by iii) dynamically
arbitrating between the user command and autonomous robot
control. The integration of robot sensor data for compliant
control allowed the system to safely react and interact with
the environment without requiring haptic feedback for the
operator. In experiments with two subjects implanted with in-
tracortical BCIs, we demonstrated the capability of autonomy
infused user control for achieving a high dexterity level in
manipulation tasks. This allowed the subjects to complete tasks
that were unsuccessful through direct control.
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