
Data-Driven Online Decision Making for Autonomous Manipulation

Daniel Kappler∗, Peter Pastor†, Mrinal Kalakrishnan†, Manuel Wüthrich∗ and Stefan Schaal∗†

∗Autonomous Motion Department, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Email: first.lastname@tuebingen.mpg.de
†Computational Learning and Motor Control Lab, University of Southern California, Los Angeles, USA

Email: {pastorsa,kalakris,sschaal}@usc.edu

Abstract—One of the main challenges in autonomous ma-
nipulation is to generate appropriate multi-modal reference
trajectories that enable feedback controllers to compute control
commands that compensate for unmodeled perturbations and
therefore to achieve the task at hand. We propose a data-driven
approach to incrementally acquire reference signals from experi-
ence and decide online when and to which successive behavior to
switch, ensuring successful task execution. We reformulate this
online decision making problem as a pair of related classification
problems. Both process the current sensor readings, composed
from multiple sensor modalities, in real-time (at 30 Hz). Our
approach exploits that movement generation can dictate sensor
feedback. Thus, enforcing stereotypical behavior will yield stereo-
typical sensory events which can be accumulated and stored along
with the movement plan. Such movement primitives, augmented
with sensor experience, are called Associative Skill Memories
(ASMs). Sensor experience consists of (real) sensors, including
haptic, auditory information and visual information, as well as
additional (virtual) features. We show that our approach can be
used to teach dexterous tasks, e.g. a bimanual manipulation task
on a real platform that requires precise manipulation of relatively
small objects. Task execution is robust against perturbation and
sensor noise, because our method decides online whether or not
to switch to alternative ASMs due to unexpected sensory signals.

I. INTRODUCTION

We argue that robust task execution requires to close feed-

back control loops in novel ways around many more sensory

signals than done traditionally. Otherwise robotic systems

cannot cope with noise and uncertainty in the sensory-motor

system of the robot and the environment. Low-level control

systems increase the execution robustness by integrating feed-

back of high-bandwidth sensors, e.g. force/torque. Yet, task

execution often fails due to external perturbations that are hard

to model in the low-level control system, using high-bandwidth

sensors. We propose to close a high-level feedback loop,

leveraging additional low-bandwidth sensor modalities, e.g.

vision based object tracking, to increase the task robustness.

One challenge towards autonomous manipulation is to pro-

vide feedback controllers with appropriate reference signals

and decide online when to consider alternative behaviors

to counteract perturbations. Model-based approaches, such

as [13, 6], have shown great success for motion planning as

long as models are accurate enough. However, for complex

contact interactions, modeling errors are inevitable and will

significantly degrade the performance of the planner [16] , e.g.

for grasping and dexterous object manipulation. Uncertainty

about the state of the manipulated object increases exponen-

tially fast and therefore planning becomes intractable, unless

smart heuristics/biases [1] are applied.

Fig. 1: The ARM-S robot manipulating a bottle.

We propose to formulate manipulation as a data-driven

sequential decision making problem. For most manipulation

tasks, e.g. unscrewing a bottle (see Fig. 1), the task naturally

decomposes into a sequence of skills. A sequence can be

encoded in a state machine, termed manipulation graph, see

Fig. 3. This graph representation imposes constraints onto the

possible sequence of manipulation skills, similar to how a

grammar constrains the possible sequences of words to form

sentences. Such a representation can be either inferred from

data [8, 9] or provided by human operators, who usually have

good intuition about the necessary high-level information and

skill decomposition to accomplish a certain task. However,

manually designing rules, based on current sensory informa-

tion to determine whether or not the current skill execution

is valid and where to start an alternative skill, is very hard.

This is mainly due to differences in sensor modalities, noise

characteristics, and the high dimensionality of the signal space.

In this paper we propose a method which addresses this

issue in a data-driven manner. We propose to decompose the

underlying online decision making problem into two related

classification problems. Both problems have to operate in real-

time to close the high-level feedback loop, learning when to

switch skills and which skill to execute next. All required

information should be automatically extracted from previous

sensory experiences, stored in the manipulation graph struc-

ture, only requiring user interventions at failure conditions.

The key insight that enables such a data-driven system is

that the task-relevant perceived sensor signals are strongly cor-

related with the executed manipulation action [11]. Thus, given

similar task execution, the robot will perceive similar sensory

feedback [10]. Therefore, skills used throughout this paper

are encoded as Associative Skill Memories (ASMs), sensor

information encoded in sync with movement primitives, as

introduced in [12]. The associated signals for a manipulation

action are used to train our classification-based online decision

making system (ODMS).

The main contribution of this paper is an ODMS that is

capable of deciding in real-time at any moment of the task

execution if the currently executed skill should be replaced

with another one (when) and which skill to choose as a

replacement (which). The only required human intervention

to bootstrap our system is to stop task execution if the task

execution is about to fail. Based on this real robot experimental

data, stored in the manipulation graph structure, we automat-

ically extract supervised datasets to train our classification

based decision making system. Our formulation allows to

integrate sensors even if they contain no valuable information

about the task. The importance of different sensor modalities

at different execution stages is automatically inferred. Thus,

manual task specific feature selection is less crucial. We further

report qualitative results of our method applied to a dexterous

manipulation task performed by a bimanual robotic system,

see Fig. 1.

II. RELATED WORK

Motion planning approaches [13, 6] are mostly applied to

problems neglecting object interactions. One recent approach

that creates plans for contact manipulation, proposed in [4], is

still using a quasi-static assumption to obtain a feasible search

space. Our work builds upon results reported in [10, 11, 12], a

skill-based formulation towards autonomous manipulation. In

contrast to [12], we propose to close the high-level feedback

loop by running a decision making process online at all time

and not only selecting the next ASM at the terminal condition

of the current ASM. Different to [10], we propose to learn

failure case prediction from a supervised signal, obtained

from the ASMs organized in the manipulation graph structure.

Additionally, we reduce the number of open hyper-parameters,

compared to previous work [10]. The manipulation graph

is capable of generating a large number of skill sequences.

This structure is assumed to be manually provided by a user.

Although out of the scope of this paper, a manipulation graph

could be constructed automatically, as proposed in [8, 9].

Kroemer et al. [8] proposed to infer the hidden phases of

the manipulation task from several trial executions, using

an autoregressive Hidden Markov model. They train logistic

classifier, on a small, manually selected set of discriminative

features to model the transition probability deciding when to

switch between states in their inferred Hidden Markov model.

Niekum et al. [9] present another approach to automatically in-

fer a state machine representation which can be incrementally

refined. Similar to [12], this approach only allows to switch

skills at the end of each skill execution.

III. PROBLEM FORMULATION

Similar to previous data-driven approaches to manipulation,

we assume that tasks can be decomposed into re-usable

High-Level Feedback loopLow-Level

Feedback loop

Virtual

Sensors

Manipulation
Graph

Real

Sensors

Real
Robot

ASM

DMP
Online Decision Making

current

ASM

current

features

state

classifier

failure

classifier

state

classifier

failure

classifier online

decision

successor

ASMs

continue switch stop

Fig. 2: This figure illustrates our control concept towards autonomous manipulation. The

left side shows the high-bandwidth low-level control loop. The DMP of the currently

active ASM generates the reference trajectory (black) locally adapting due to (real)

sensory feedback. The right side illustrates the main building blocks and their interaction,

discussed in this paper. Our system leverages previous sensor experience of successful

(green) and erroneous (red) trials to train two sets of classifiers (state and failure). At

runtime the manipulation graph restricts the possible successor ASMs, considered for

state classification. The box labeled ’Online Decision Making’ shows the general data

flow and the individual steps to close the high-level feedback loop.

skills. Skills can be interpreted as low-level control systems.

Fig. 2 illustrates such an control loop (blue). Although low-

level control systems allow to counteract local perturbations,

they are not robust enough for manipulation in unstructured

environments. This is mainly due to strong unmodeled per-

turbations (outside of the stability regions), simplistic model

assumptions, or missing of high-level sensory feedback. In

this paper, we focus on closing a high-level feedback loop

(Fig. 2, green) using both low- and high-bandwidth sensors

(Sec. III-B), taking the low-level control loop into account.

This problem can be interpreted as a real-time online decision

making problem, capable of orchestrating skills due to sensor

feedback, while improving from past experiences. We argue

that the training of such a system should only require common

sense user feedback and no low-level system knowledge.

A. Manipulation Graph

Inspired by language models, we believe that complex

behaviors can be decomposed into skills (words). Similar

to grammar models, a task specific directed graph models

constraints on possible skill sequences. Each graph node

represents a skill, an atomic unit represented as an ASM,

see Fig. 3. This graphical representation and the sensory

experience contain all the required information for closing the

high-level feedback loop.

Despite recent progress in structure learning, we believe

that modelling such a directed graph is still a domain where

humans outperform state-of-the-art inference methods. There-

fore, we propose that a task specific manipulation graph is

constructed by a user, using skills from an existing ASM

library or additionally taught task specific skills. Initially the

manipulation graph consists of a linear sequence (Fig. 3,

green) which encodes the expected outcome of each skill.

During task execution, the manipulation graph builds the

connection between the executed ASM and the ASM library,

allowing to add annotations such as success, failure, and the

path through the graph. This information is initially based

on user intervention for new ASMs, stopping as soon as the

Manipulation Graph

0

2

...
100

2 retreat0 grasp

4 r-grasp 3 remove

1 unscrew

5 recover

DMP

torques

forces

joints

forces

torques

distances

audio

Sensors

ASM Library

1
grasp

Fig. 3: ASMs (left) contain a DMP which updates its internal representation based on

several executions (black). Sensor experience is stored in sync with the DMP progress and

split into successful (green) and unsuccessful (red) trials. Sensor signal for unsuccessful

trials stop as soon as a failure is indicated. The right hand side shows an exemplary

manipulation graph for unscrewing a bottle initially (green) containing only a sequence

of three ASMs, connected with their expected successor ASM. As soon as the cap is

loose on the bottle we stop the execution and demonstrate a new ASM remove (blue),

added to unscrew. Finally, we add additional recovery ASMs (red) which result in a

more robust overall performance.

execution fails. As soon as both successful and erroneous

trails are available, interventions can also be due to a trained

ODMS. This initially linear graph is extended to achieve the

target task by intervention if failures occur. For example, while

executing unscrew, the cap of a bottle becomes loose and thus

can be removed. Therefore, a failure is triggered since the

expected skill (retreat), opening the gripper, cannot be applied.

Then either a new behavior (remove) is added as possible

successor to the current graph node or a terminal stopping

node is added, representing an unrecoverable system condition.

This procedure guarantees an efficient teaching process, only

considering human labeled failure cases, occurring on the

real system 1. Structuring available ASMs in a graphical

representation reduces computational complexity and avoids

perceptual aliasing, i.e. when the currently processed features

cannot distinguish between two or more ASMs.

B. Features

Data-driven methods strongly depend on the information

provided by features, and the representation itself. Robotic

systems usually provide a lot of different sensor modalities

which allow to observe both the state of the robot and of

the environment. For some tasks, it might be intuitively clear

which sensors to manually select, to acquire all task relevant

information. However, for many tasks, especially those that

involve contact interactions and external perturbations from

a nominal state, this may not be as clear. We argue that

it is beneficial to include many sensors in the ASM repre-

sentation and automatically infer their relevance from data.

This allows to use the same methodology for a wider range

of tasks and perturbations. The inherent noise of real sensor

readings increases the learning complexity of classification

based systems. Therefore, we propose to enrich the ASM

representation, compared to [12], with additional (real) as well

as (virtual) sensors, adding possible redundancy to the feature

representation. Hereafter, we use the term features and sensors

for both real as well as virtual sensor information interchange-

ably. Virtual sensors are features, computed online from (real)

sensor signals. Such (manually) uncovered virtual features
1 Previous related work [12] does not support failure driven incremental

teaching, since switching is assumed to take place exclusively during the last
10 percent of the ASM execution.

Desired force (purple) and

actual force(yellow)

Wrist z-torque

Pressure

sensors

Distance

features (yellow)

Tracked

wrist

markers

(green)

Desired (outer) and actual

knuckle torque (inner half circle)

Tracked

object pose

Desired/actual

tool frame and

goal pose of ASM

Updated robot

model (grey)
Fig. 4: The left picture shows an im-

age recorded from the left Bumblebee

camera of the ARM-S robot (see Fig. 1)

overlaid with sensor and feature infor-

mation. The green markers at the wrist

are visually tracked and used to esti-

mate the pose of the arm, overlaid in

gray. The pose of the bottle is tracked

using 3D information from the depth

camera as introduced in [17]. Predicted

and actual forces are also illustrated.

The table below lists the feature count

and a corresponding description of each

feature used during the experiments.

Feature count and descriptions

4 Joint angles of the right hand

12 Force/torque measurements at both wrists

3 Torques at the knuckles of the right hand

10 Distance between locations on the visually tracked right hand and the

corresponding closest point on the tracked bottle

13 Position and orientation (in quaternion notation) of the right palm and tool

frame to the tracked pose of the bottle

11 Relative linear and angular velocities of the right palm, tool frame and the

tracked bottle

8 Mel-frequency cepstral coefficients (MFCC) computed using the audio

recordings of the two microphones located in the sensor head

exploit task knowledge, e.g. the proximity of the robot’s

end-effector the target object, increasing robustness against

sensor noise. These features provide an alternative channel

to obtain similar information, e.g. proximity for force/torque

measurements. For example, we create virtual vision based

features, using existing methods for object tracking. Auditory

information is rarely being considered during manipulation,

yet we believe that valuable information about the progress

of a task can be inferred from this signal type. Especially

failure conditions are oftentimes accompanied with sound

feedback, as shown for object grasping by Sinapov et al. [15].

Thus, we enrich our ASM representation with audio features.

Fig. 4 shows an exemplary feature representation, used for the

experimental results. Sec. V-A provides further details of the

feature acquisitions process.

IV. DATA-DRIVEN ONLINE DECISION MAKING

The principal goal of our work is to close high-level

feedback loops (Fig. 2 (green)), integrating low-level control

systems while improving from scarce supervised data, using

a transparent user process. High-level feedback loops can

leverage information from low-bandwidth (object tracker) and

high-bandwidth sensors (force/torque), still operating in real-

time (30 Hz), adding robustness to autonomous manipulation

systems. The change of feature importance throughout the

execution of skills is a common issue for the design of

data-driven online decision making systems. For example,

force/torque sensor readings might have no relevance prior

to object grasping and completely different signal character-

istics after making contact. Partial skill execution, required to

achieve robust recovery behaviors, adds further complexity to

the ODMS design. We address these issues by formulating

the online decision making problem as two related state-based

classification problems (Fig.2). A state (see Sec. IV-A) in

the context of our method represents a distinct execution

stage of an ASM, with a corresponding dataset of feature

readings, which is automatically associated from successful

and erroneous trials. The first classification process predicts the

most likely state of the currently executed skill and successor

skills, discretizing the time series into independent states.

Only possible successor skills, determined by the manipulation

graph, are considered, reducing the computational complex-

ity. Sec. IV-B describes the optimization procedure for this

classification problem and the automatic supervised dataset

construction from previous task executions. The second classi-

fication task determines whether or not the sensory information

is valid or not, meaning if the currently executed skill should

be switched or the system should stop (Sec. IV-C). Finally,

the high-level feedback loop is closed by fusing the outcome

of all predictions, as described in Sec. IV-D.

A. Representation

Our proposed ODMS is optimized based on the following

data representation, obtained and updated using information

provided by the manipulation graph, sensory feedback and

user intervention. Each ASM, stored in the skill-library, can

be identified by a unique id and each skill execution during

real robot experiment has a corresponding trial id. We store

the predecessor trial id and the successor trial id respectively

for every execution, allowing us to draw connections between

these executions. This information is automatically acquired

during experiments, only requiring the user to stop executions

at failure cases and select or teach appropriate recovery behav-

iors. While running an experiment a pre-defined set of features

is recorded at the highest possible frequency. The current

feature readings are denoted as the feature vector xxx. We assume

that unsuccessful trials are interrupted before the skill is fully

executed. Skills are represented by ASMs, thus skill execution

is based on DMPs [5]. Therefore, unsuccessful trials can be

identified by the phase, meaning before the phase variable ρ of

the DMP has converged ρ = 0. Thus, we store every trial in the

ASM library and add success (ρ = 0) or failure (ρ > 0) labels.

All (N) successful trials, associated with a particular ASM are

aligned using ρ and discretized in the target frequency (e.g.

30 Hz), resulting in the time series data with T states fff 1:N
1:T ,

where T is determined by the skill execution time and target

frequency. Every state sss = fff 1:N
t ∈ fff 1:N

1:T is treated as a different

class with corresponding data samples from the N successful

trials. Unsuccessful trials are stored but not aligned.

B. State Classification

State classification predicts the most likely state given the

current sensor signals xxx (Fig. 5). The most likely state sssc of

the currently executed ASM is computed independent of the

most likely state of all possible successor ASMs ssss (Fig. 2).

Directly using the ASM progress ρ to estimate the current state

sssc is sub-optimal due to perturbation and noise, e.g. object

contact while grasping almost always happens at different

stages but has a large effect on the sensor readings. Our

formulation decomposes state classification into T isolated

Positive

ASM tials
Positive

ASM tials

State Classification

Positive

ASM tials

Current

Features

...

0.2 2.0 0.9 0.10.1 1.10.3

Fig. 5: State classification first discretizes

all successful trials of a particular ASM for

all sensors, shown in the top. The feature

mean (blue) and standard deviation (green)

is updated for each feature independently,

based on the time aligned signals. At test

time the likelihood of the current signal xxx

is computed for all states sssi and the most

likely state is returned.

Positive

ASM tials
Positive

ASM tials

Failure Classification

ASM tials

state

likelihood

state

classification

valid

failure

Fig. 6: Failure classification uses all

ASM trials and assigns the likelihood

N (xxx; µµµ sssi
,ΣΣΣsssi

) of xxx to the most likely cor-

responding state sssi. For each state we train

a linear SVM using the generated dataset.

The decision boundary is propagated to

neighboring states in terms of standard

deviations of the samples from successful

trials. Test time evaluation selects the most

likely state and checks if the state likelihood

is below the error threshold.

problems. All classifiers optimize their own feature importance

model completely independent of each other. This rather strong

assumption enables our system to predict at which state a new

skill should start, since independent classifiers for each state sss

do not require any partial information up to the current state.

Our approach is based on two main assumptions. First, we

assume that sensor readings xxx contain enough information to

recover the corresponding state sss. Second, we assume that

feature variations during successful executions are solely due

to sensor noise or counteracting external perturbation, using

low-level feedback control.

Skills have typically a duration in the order of seconds, thus,

thousands of classes have to be considered to evaluate new

sensor readings xxx (Fig. 5). To ensure real-time classification,

the computational complexity of individual classifiers must be

rather low. Fortunately each classifier is only concerned with

a short period of time, allowing us to use simple models. We

use a probabilistic formulation (Eq. 1), using Gaussian sensor

models for the likelihood function, see Eq. 2. The ASM state

is denoted by sss, {µµµsss,ΣΣΣsss} represent the statistics of a particular

ASM state, and p(sss|ρ) a progress ρ dependent prior.

argmax
sss∈ASMs

p(sss|xxx) ∝ p(sss|ρ)p(xxx|sss) (1)

p̂(sss|xxx) ∝ p(sss|ρ)N (xxx; µµµsss,ΣΣΣsss) (2)

p̂(sss|xxx) ∝ p(sss|ρ)
n

∏
i=1

p(xxxi|sssi) (3)

Assuming feature independence, ΣΣΣ is a diagonal matrix result-

ing in a naı̈ve Bayes classifier (Eq. 3). This classifier has been

shown to work very well in practice [14], despite its strong

assumptions. Crucial for our application is the fast training and

testing time. Training is reduced to computing the mean µµµsss

and variance ΣΣΣsss of the state specific dataset sss = fff 1:N
t , obtained

automatically from the successful trials of the corresponding

ASM (Sec. IV-A). Furthermore, incremental learning is pos-

sible by simply re-estimating the feature mean and variance

of the likelihood model. This likelihood model automatically

trades off the importance of different sensor modalities for

each state, allowing to handle completely different sensor

modalities.

Our state classifier factorizes completely, therefore training

and prediction can be parallelized for all states in the current

and possible successor ASMs, which is crucial to achieve

real-time performance. Due to recent advances in hardware,

especially accelerations in GPU communication, this can be

done efficiently, scaling up to hundreds of possible successor

ASMs. The progress based prior p(sss|ρ) is only meaningful

for the currently executed ASM, e.g. imposing a Gaussian

prior around the current skill progress. Since it would only

reduce perceptual aliasing within the current ASM and the

number of classes, we assume a uniform prior for both

current and successor skills, resulting in a maximum likelihood

classification problem:

p̂(sss|xxx) ∝ N (xxx; µµµsss,ΣΣΣsss) (4)

C. Failure Classification

Due to the complexity of manipulation tasks, failure cases

are inevitable during task execution. However, we assume that

the majority of the task executions succeed. Therefore, less

data is available for failure case classification. Failure cases

rarely happen several times at the exact same execution stage,

adding further complexity to the prediction problem.

We use a supervised discriminative approach to classify

failure conditions. Eq. 5 presents a general optimization based

formulation to this problem, where l denotes a problem

specific loss function (e.g. −I(c(xxx,θθθ) = y) where I is the

indicator function), c the classifier with open parameters θθθ ,

R a regularizer (e.g. l1-norm ||θθθ ||21) to prevent overfitting and

encoding additional information to obtain e.g. sparse solutions,

and (xxx,y) ∈ D a supervised dataset of sensor signals xxx and

labels y ∈ {success, failure}.

min
θθθ

∑
(xxx,y)∈D

l(c(xxx,θθθ),y)+R(θθθ) (5)

Since our aforementioned state classifiers already determine

the most likely state sss for both the current and possible suc-

cessor ASMs, we address failure classification independently

for each state. Hence, by associating sensor readings xxx from

successful and unsuccessful trials of a particular ASM with

their most likely state, our system automatically generates

state dependent supervised datasets, allowing discriminative

learning:

D′ = {(sssk,dk,yk) : sssk = argmax
xxx∈ASM

p̂(sss|xxx),dk = max
xxx∈ASM

p̂(sss|xxx)}

(6)

Success and failure labels y are determined by the label of

the trial (see Sec. IV-A). To associate feature vectors xxx from

successful trials fff 1:N
1:T with their corresponding state, leave-one-

out cross validation [7] has to be used, otherwise the resulting

state classification would be overconfident. This means that

state classification is trained on all successful trials except for

the one which is currently added to the supervised dataset.

Further, the state classification, trained on all successful trials,

assigns the last m feature vectors for unsuccessful trials of the

corresponding ASM to the most likely states (Eq. 6). Thus,

for generating the supervised datasets the user only has to

stop an execution in an error case. Since each state classifier

returns the predicted likelihood, resembling the similarity of

the current feature readings with the state, we can further

simplify the given problem into a one dimensional binary

classification problem:

min
θθθ

∑
(sssk,dk,yk)∈D′

l(csssk
(dk,θθθ),yk)+R(θθθ) (7)

Hence, our failure classifiers automatically benefit from model

improvements of our state classifiers, further reducing the

computational complexity at training and test time.

Although the particular classifier is not decisive for the

success of the proposed method, using a discriminative clas-

sifier allows to easily integrate data from the state classifier

without requiring further processing or modelling. We use the

automatically generated dataset (Eq. 6) to learn a max-margin

linear support vector machine (Eq.7, R = ||θθθ ||22 l2-norm,

l = max(0,1− y(θθθ T d +b)), hinge loss) [2], for which the

global optimum can be found efficiently. In the case of our

one dimensional problem this optimization will result in a one

dimensional state dependent threshold εsss, which can be used

to classify the predicted state likelihood into success or failure.

One reason to choose a discriminative over a probabilistic

classifier is the dynamical nature of the dataset generation. It

is to be expected that the data sample distribution will change

throughout experiments, resulting in multimodal distributions,

adding additional model complexity.

Successful and unsuccessful trials have different effects

on the decision boundary εsss. All data samples are used

to determine the decision boundary, yet, data samples from

successful trials are also used to update the models of the state

classifiers which affects the dataset generation (Eq. 6), such

that similar feature readings become more likely. Given the

system assumptions, our proposed ODMS does not require any

threshold tuning, feature scaling, or additional data annotation.

The single user intervention, stopping the system at failure

conditions, is sufficient. The decision boundary for failure case

detection only exists for a fraction of an ASM due to the state

independence assumption. This is theoretically sufficient to

learn to predict failure cases, practically this would require

to demonstrate unwanted behavior multiple times to cover a

reasonable space of an ASM. Therefore, we assume that the

dataset (Eq. 6) can be enhanced, by assigning failure examples

to neighboring states. Based on the same assumption the

learned failure detection decision boundary can be transferred

to close by parts of an ASM, with vanishing impact based

on the difference in ASM progress, e.g. exponential decay.

Since the likelihood statistics of successful trials are different

for different states of an ASM, we propose to propagate the

decision boundary as scaling factor in terms of one standard

deviation of a Gaussian fitted to the likelihood predictions for

all successful trials, see Fig. 6. Doing so one must observe

an equally unlikely data change at a close by state, for which

otherwise no decision boundary would exit, to classify feature

readings as failure cases.

D. Decision Making

The box Online Decision Making in Fig. 2 visualizes the

decision making process. First, the state of the currently

executed ASM and independently for all possible successor

ASMs is estimated using our probabilistic classifier for every

state (Fig. 5). If no failure is classified for the most likely state

of the currently executed ASM, the results for the most likely

successor are ignored and the execution of the current ASM

continues. Otherwise the most likely successor state has to be

analyzed by applying the corresponding failure classifier. In

case of failure classification for both the most likely current

and successor state our system halts, otherwise the ASM is

switched to the best successor ASM and state. Although the

most likely successor state is only required if a failure for the

current ASM is classified, continuous classification of the most

likely successor enables further post-processing, e.g. verifying

the consistency of the successor, which we want to investigate

in future work. Switching could also be done solely based

on the likelihood of the current and the best successor state.

Perceptual aliasing and system stalling are two reasons to

avoid this methodology. For example, a manipulation graph

for robust grasping might require several alternative ASMs,

but for all ASMs the final configuration might be very similar.

For each decision, our state classification complexity scales

linear with the number of considered states. Our proposed

failure classification is constant with respect to states and

features, because it leverages the information provided by the

state classifiers.

V. EXPERIMENTS

The experimental setup (Fig. 1) consists of the ARM-S

robot, a dual armed robot of two Barrett WAMs and a

sensor head. For details about the platform we refer to

http://thearmrobot.com/aboutRobot.html. The considered ma-

nipulation task consists of unscrewing a cap of a bottle as well

as to screw the cap back on. This task requires very dexterous

manipulation capabilities given the hardware constraints of the

robot, the three-fingered Barrett Hands with four degrees of

freedoms, and a very small object compared to the size of the

hand. All of our experiments were conducted with the same pa-

rameters as described in Sec. V-A. The presented results only

reflect a subset of our experiments to illustrate different prop-

erties of our proposed method. High resolution videos of more

experiments are available at https://vimeo.com/117512319 and

https://vimeo.com/117515950, also showing how to screw the

cap back on the bottle.

A. Task Demonstration and System Parameters

For the exemplary bimanual manipulation task we teach

the required ASMs in the sequence, grasp, unscrew, and

retreat. Every ASM is executed at least 5 times to gather the

required statistics. As soon as the cap of the bottle comes

off the first time during the execution of unscrew, we stop the

execution and teach a new remove ASM. Therefore, we obtain

a manipulation graph similar to Fig. 3. For each trial execution

the ASM, contains the previous and next manipulation graph

unscrewFeature
count

remove

4 0.00

0.00

0.00

0.00

0.00.0 0.20.2 0.40.4 0.60.6 0.80.8 11

0.15

0.15

0.15

0.15

-0.15

-0.15

-0.15

-0.15

19

53

61

Fig. 7: With the help of two skills (unscrew,remove), this plot illustrates the benefit of a

rich set of features for state classification. The position of each data point indicates the

estimated DMP progress (y-axis) vs. the deviation from the ground truth DMP progress

(x-axis). Therefore, the closer the points are to the zero-line, the better the prediction.

The colors indicates the negative log-likelihood, where blue means small therefore high

confidence and red vice versa. With just 4 features, (right finger joints) it is impossible

to classify the right state. Using 19 features, most similar to [12], the state classification

is possible for unscrew but still impossible for remove. Integrating virtual vision based

features (53) we achieve a good correlation. Adding audio features (61), not providing

any further task information, does not degrade our system performance.

node. We teach the DMPs for the corresponding ASMs similar

to the methodology described in [11, 12]. First, movements

are learned from kinesthetic demonstrations and encoded into

DMPs. Second, learned DMPs are executed multiple times on

the robot and experienced sensor information are accumulated.

Third, the mean position and force trajectories are computed

and re-encoded into DMPs. During execution, the end-effector

and finger positions as well as forces are controlled and

adapted as described in [11], i.e. only positional and force

trajectories are encoded into DMPs. Given the re-encoded

DMPs, the experienced 61 features (see Fig. 4) from at least 5

trials are linearly re-sampled (30 Hz) and stored time aligned

with each DMP to form ASMs.

In contrast to [12], end-effector trajectories are encoded

into the start frame of the movement. This encoding scheme

generates movements that are locally similar to the demon-

stration. It thus enforces a strong correlation among subse-

quent movements despite changing absolute coordinates. End-

effector force/torque trajectories are encoded in the goal frame

of the movement (see [11]). This ensures that the desired

forces/torques are independent of the (global) end-effector

pose. We track the target object in real-time using the al-

gorithm proposed in [17], matching 3D information from the

depth camera against the geometric model of the bottle. Based

on the object pose we enrich our ASM representation with

10 additional distance based features between the manipulator

and the surface of the tracked target object, e.g. the fingertip to

bottle, palm to bottle, finger segment to bottle distance (Fig. 4

distances). Parallel to using vision based virtual features, our

system integrates vision sensors to improve the estimation

of the robot end-effector pose, directly improving low-level

feedback control. Therefore, we use fiducials, round markers,

to visually track the hands during manipulation, arranged

around the wrist (Fig. 1). The fiducial detector 2 is used in

combination with triangulation to estimate the 3D position of

each marker to obtain a least-squares fit of the hand pose. To-

gether with the known control input, these measurements are

used in a Kalman filter to smooth the position estimates over

time. In addition, we use the lower 8 Mel-frequency cepstral
2The fiducial detector has kindly been provided by Paul Hebert, Jeremy

Ma, and Nicolas Hudson from the Jet Propulsion Laboratory, Pasadena.

http://thearmrobot.com/aboutRobot.html
https://vimeo.com/117512319
https://vimeo.com/117515950

Fig. 8: Snapshots of the robot

performing the bottle opening task

despite perturbation introduced by

moving the left hand of the robot. The

compliance of our control framework

including DMP adaptation as well

as closed loop visual tracking of

the bottle and both hands enable

the robot to give in without loosing

necessary accuracy to perform the task.

The corresponding video is available

at https://vimeo.com/117512319#t=3m50s.

Re-open right hand Grasp bottle cap

C
u

rr
en

t
n

eg
.
lo

g

li
k

el
ih

o
o
d

R
.
fi

n
g
er

 s
tr

a
in

g
a
u

g
e

[N
m

]

L
ef

t
h

a
n

d

fo
rc

e
Y

 [
N

]

R
.
fi

n
g
er

 t
ip

to
 b

o
tt

le
 d

is
t.

 [
m

]

M
F

C
C

 a
u

d
io

co
ef

fi
ci

en
t

1

Clapping

Pushing the right hand

from the side,

without holding the cap

Pushing the left hand

from the side,

without holding the cap

Pushing the either

hand while grasping

the bottle cap

Time [s]

Fig. 9: The top four plots show the expected mean feature value (blue), standard

deviation (green), and the currently processed feature value (red) of a subset of all 61

processed features. Transitions between subsequent ASMs are indicated by horizontal

dashed lines. The selected features are the first MFCC coefficient, the distance of the

right fingertip of the right hand to the visually tracked bottle, the Y component of

the experienced force at the wrist of the left hand, and the torque experienced at the

right finger knuckle of the right hand (top to bottom). Note, due to space constraints

the plot only shows four out of 61 features, nevertheless, all features (auditory,visual,

and haptic) are used for classification. The negative log-likelihood (bottom) shows that

each individual perturbation of each sensor modality (top three plots) has been scaled

appropriately since each perturbation became noticeable. The corresponding video is

available at https://vimeo.com/117512319#t=3m25s.

coefficients (MFCC) [3] as audio features. They sufficiently

cover the frequency spectrum of interest. To obtain the state

classifiers for each ASM, the mean and variance are computed

as described in Sec. IV-B, using only successful trials. We

obtain the failure classification thresholds εsss for all ASMs for

which erroneous trials exist, using the automatically generated

datasets (Eq. 6) with the last m = 5 samples of erroneous

executions and all corresponding positive trials, as described in

Sec. IV-C. Thresholds εsss are propagated to neighboring states

using exponential growth (εsssi
= min(εsssi

,1.05|i−k|εsssk
)), since

we are optimizing the negative log likelihood. Thresholds are

always encoded in terms of the state variance of the negative

log likelihood based on the generated datasets (Fig. 6).

B. State Classification and Feature Importance

Our proposed method is based on the assumption that every

state can be modeled individually and identified given the

current sensor readings. Fig. 7 illustrates that our method is

capable of state classification, despite the strong independence

C
u

rr
en

t
n

eg
.

lo
g
 l

ik
el

ih
o
o
d

R
ig

h
t

h
a
n

d

fo
rc

e
Z

 [
N

]

Pull the left arm while

reaching for grasping

Time [s]

Fig. 10: The top plot shows the measured

right wrist force in Z direction (red) as well

as the expected mean (blue) and standard

deviation (green). The intentional pertur-

bation is immediately detected as shown

in the lower plot indicated by the rise of

the negative log-likelihood (red). Without

demonstrated failure cases our system as-

sumes that the introduced perturbation, al-

though highly unlikely, does not constitute

a problem.

C
u

rr
en

t
n

eg
.

lo
g
 l

ik
el

ih
o
o
d

R
ig

h
t

h
a
n

d

fo
rc

e
Z

 [
N

]

Crossing of the decision bor-

der triggers failure prediction

Time [s]

Fig. 11: The plots show the same experi-

ment as in Fig. 10 after the data obtained in

Fig. 10 has been processed as an unwanted

(erroneous) execution. Given this failure

case example data, our approach updated

the decision border (black) which now en-

ables our system to correctly detect the un-

wanted failure condition indicated by the ar-

row. Now, our system immediately stops the

execution, as shown in the video available

at https://vimeo.com/117512319#t=4m25s,

if a similar perturbation is detected.

assumption. Results are obtained by leave-one-out cross val-

idation, training the state classifiers for unscrew and remove

on at least 5 successful trials. The correlation between the

classified state and the DMP progress is less good at the

beginning, the end of an ASM execution, and when object

contact happens. Such events rarely happen at exactly the

same time which is why the DMP progress is not a good

estimate for the current state. One key difference to other

approaches [12, 9, 8] is that we propose to always use a high

dimensional feature representation and automatically infer the

feature importance. Fig. 7 supports the hypothesis that more

features do improve the system performance, although not

required for all skills. The lower two plots show that our

method does not degrade in performance even if we add

features which contain no further information for the task. This

supports the hypothesis that our method is capable of learning

the changing feature importance for an ASM and thus, manual

task specific feature selection is less crucial.

C. Robustness through Perception-Action Loop

Robustness of our system is achieved through closing two

control loops. The low-level loop implements a compliant

control framework, using the DMP adaptation mechanism as

proposed in [11] and integrating information from visual based

tracking of both hands and the bottle. To demonstrate the

low level-adaptability, we introduce a large perturbation by

moving the left arm during the manipulation task as depicted

in Fig. 8. Despite this perturbation the right hand is able

to maintain contact and continue the DMP execution due to

vision in the loop, adapting the goal of the DMP online. The

high-level control loop is capable of detecting perturbations of

different sensor modalities as shown in Fig. 9. Our method is

able to automatically determine the importance of all available

61 features and fuse the information into a one dimensional

signal, for which failure detection is easily achieved.

D. Failure Demonstration and Detection

Adding recovery behaviors incrementally in the case of

failure, e.g. due to external perturbation, is the key ingredient

to add robustness to task execution. To demonstrate a typical

use case, we start our manipulation graph and pull the left

https://vimeo.com/117512319#t=3m50s
https://vimeo.com/117512319#t=3m25s
https://vimeo.com/117512319#t=4m25s

C
u

rr
en

t
n

eg
.
lo

g

li
k

el
ih

o
o
d

S
u

cc
es

so
r

n
eg

.

lo
g
 l

ik
el

ih
o
o
d

Grasp

bottle cap

Grasp

bottle cap

Unscrew

bottle cap

Unscrew

bottle cap

Remove

cap

Re-open

hand

Time [s]

Fig. 12: Both plots show the predicted negative log-likelihood (red) in log scale of the

most likely state within the currently active ASMs. The bottom plot shows that the system

is certain about the task progress since the predicted negative log-likelihood remains

close to the expected mean. The top plot shows that the successive ASM becomes more

likely towards the end right before the transition to this ASM. Note that the duration of

the second unscrew movement is shorter than the initial unscrew movement since our

approach correctly detected that the cap came off the bottle. The two overlaid plots show

a closeup of these two events. The subtle event of lifting the cap has been detected as

the negative log-likelihood (red) passed the decision border (black).

arm during the first grasping attempt. Although our system

classifies the event as highly unlikely, it will not detect a failure

condition initially, see Fig. 10. This design choice, to assume

that even unlikely events will not result in failure conditions

if not known otherwise, allows easy system bootstrapping, but

is not required for our system. After retraining the classifiers

to corresponding ASM (Sec. IV-B and IV-C), taking this

erroneous execution into account, our system detects pertur-

bations of similar magnitude and will stop (Fig.11). The only

user information required to teach this failure detection is

stopping the current ASM execution before it has finished. If

a possible successor/recovery already exists, the user can add

the connection in the manipulation graph to enable automatic

recovery.

E. Failure Detection and Recovery

Fig. 12 shows a sequence of automatically chosen ASMs,

successfully unscrewing the cap of a bottle without external

perturbation. This experiment was part of of a longer exper-

iment to unscrew the bottle. During the course of which we

repeatedly screwed the cap back on the bottle (during ASM

retreat execution), as shown in the corresponding video. This

demonstrates that our method automatically detected the subtle

event, when the cap becomes completely loose from the bottle,

prior to finishing the ASM execution and successfully switched

to ASM remove. Fig. 13 shows the prediction of unscrew at

different stages of an successful attempt to unscrew a cap of

a bottle with manually introduced unknown perturbations. For

this experiment an additional ASM has been taught named

recover. This ASM has been added to the manipulation graph

as additional outcome of unscrew after stopping the execution

of unscrew at the beginning of an external perturbation similar

to the one in this experiment. Our method successfully deter-

mines if the sensor information indicates a failure condition

and selects the right successor ASM, either recover, retrieve,

or remove. Again, the skill execution time is different due

to the online detection of failure conditions. Some failure

conditions are detected while not even reaching half of the

expected skill execution time (Fig. 13, left), not possible

without closing the high-level feedback loop [12, 9].

Unscrew bottle cap

followed by re-open hand

Unscrew bottle cap

followed by remove cap

Unscrew bottle cap

and recover

C
u

rr
en

t
n

eg
.
lo

g

li
k

el
ih

o
o
d

Time [s]

Fig. 13: The plots show the three considered outcomes of one real experimental attempt

of unscrewing the bottle, triggering the learned recovery behavior after pulling the left

arm (left), triggering the retreat behavior because the cap of the bottle is not yet detached

(middle), and triggering the remove behavior immediately after cap has correctly been

detected to have detached from the bottle (right). Three small plots at the bottom show

a close up of the negative log-likelihood at the point of switching to the corresponding

successor ASM (dotted line). The solid horizontal lines indicate transitions. Note, the

intermediate ASMs have been left out due to space constraints. The complete experiment

along with corresponding plots is available at https://vimeo.com/117512319#t=4m52s.

VI. DISCUSSION AND CONCLUSION

In this paper we proposed an incremental data-driven ap-

proach to autonomous manipulation. By leveraging stereotyp-

ical movements and an object-relative encoding, we can learn a

classification-based real-time online decision making process.

Our experiments demonstrate qualitatively that the proposed

method is capable of detecting otherwise catastrophic pertur-

bations and failure conditions in real-time, using 61 features

from different sensor modalities. Furthermore, our system

automatically triggers recovery behaviors if needed, closing

a high-level feedback loop. These results were achieved with-

out the need for any task-specific programming. Therefore,

we believe that our method can enable non-expert users to

demonstrate robust strategies for executing a wide range of

robotic manipulation tasks.

Our system assumes that consecutive readings are inde-

pendent. This assumption allows our method to run all state

classifications in parallel and address changing feature impor-

tance throughout the execution of an ASM. However, relaxing

the independence assumption could be used to reduce the

computational complexity, e.g. clustering similar consecutive

states and using a progress based prior.

Failure classification is another important building block

for our ODMS. In this paper, we assume that perturbations

only represent failure cases if previously demonstrated to the

system. This assumption enables easy teaching of the system

but it might be necessary to introduce a global failure threshold

at system deployment. In addition, failure classification is

not considering the features but the unnormalized posterior.

Therefore perturbations, affecting this quantity, trigger failure

cases even if completely different features are affected. This

is a very conservative assumption and it might be beneficial

to add failure cases as additional classes. Yet, this would add

more complexity and open hyper-parameters, since the model

parameters for a probabilistic classifier cannot be obtained in

the same manner as for successful trials.

We think an interesting avenue for future work would be to

learn a lower dimensional sensory representation based on un-

labeled data, which can be gathered in larger quantities. Such

compression of the time series representation could enable

automatic graph inference, at least locally, and the prediction

complexity would be rendered sub-linear with respect to the

number of discrete time-steps in an Associative Skill Memory.

https://vimeo.com/117512319#t=4m52s

REFERENCES

[1] O. Brock. Berlin Summit on Robotics. In Conference

Report, Berlin Summit on Robotics, December 2011.

[2] Corinna Cortes and Vladimir Vapnik. Support-vector

networks. In Machine Learning, 1995.

[3] S. Davis and P. Mermelstein. Comparison of Parametric

Representations for Monosyllabic Word Recognition in

Continuously Spoken Sentences. IEEE Transactions on

Acoustics, Speech and Signal Processing, 28, 1980.

[4] M. Dogar and S. Srinivasa. Push-Grasping with Dexter-

ous Hands: Mechanics and a Method. In IEEE/RSJ Intl

Conf. on Intelligent Robots and Systems, 2010.

[5] A. J. Ijspeert, J. Nakanishi, P. Pastor, H. Hoffmann, and

S. Schaal. Dynamical Movement Primitives: Learning

Attractor Models for Motor Behaviors. Neural Compu-

tation, 25(2), 2013.

[6] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and

S. Schaal. STOMP: Stochastic Trajectory Optimization

for Motion Planning. In IEEE Intl Conf. on Robotics and

Automation, 2011.

[7] Ron Kohavi et al. A study of cross-validation and

bootstrap for accuracy estimation and model selection.

In Ijcai, volume 14, pages 1137–1145, 1995.

[8] O. Kroemer, H. van Hoof, G. Neumann, and J. Peters.

Learning to predict phases of manipulation tasks as

hidden states. In IEEE Intl Conf. on Robotics and

Automation, 2014.

[9] S. Niekum, S. Chitta, B. Marthi, S. Osentoski, and A. G.

Barto. Incremental Semantically Grounded Learning

from Demonstration. In Robotics: Science and Systems

(R:SS), 2013.

[10] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and

S. Schaal. Skill Learning and Task Outcome Prediction

for Manipulation. In IEEE Intl Conf. on Robotics and

Automation, pages 3828–3834, 2011.

[11] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal.

Online movement adaptation based on previous sensor

experiences. In IEEE/RSJ Intl Conf. on Intelligent Robots

and Systems, 2011.

[12] P. Pastor, M. Kalakrishnan, L. Righetti, and S. Schaal.

Towards Associative Skill Memories. In IEEE-RAS Intl

Conf. on Humanoid Robots, 2012.

[13] Nathan Ratliff, Matthew Zucker, J. Andrew (Drew)

Bagnell, and Siddhartha Srinivasa. CHOMP: Gradient

Optimization Techniques for Efficient Motion Planning.

In IEEE Intl Conf. on Robotics and Automation, 2009.

[14] Irina Rish. An empirical study of the naive Bayes

classifier. In IJCAI workshop on empirical methods in

artificial intelligence, volume 3, 2001.

[15] Jivko Sinapov, Connor Schenck, Kerrick Staley, Vladimir

Sukhoy, and Alexander Stoytchev. Grounding semantic

categories in behavioral interactions: Experiments with

100 objects. Robotics and Autonomous Systems.

[16] J. Weisz and P.K. Allen. Pose Error Robust Grasping

from Contact Wrench Space Metrics. In IEEE Intl Conf.

on Robotics and Automation, 2012.

[17] M. Wüthrich, P. Pastor, M. Kalakrishnan, J. Bohg, and

S. Schaal. Probabilistic Object Tracking using a Depth

Camera. In IEEE/RSJ Intl Conf. on Intelligent Robots

and Systems, 2013.

	Introduction
	Related Work
	Problem Formulation
	Manipulation Graph
	Features

	Data-Driven Online Decision Making
	Representation
	State Classification
	Failure Classification
	Decision Making

	Experiments
	Task Demonstration and System Parameters
	State Classification and Feature Importance
	Robustness through Perception-Action Loop
	Failure Demonstration and Detection
	Failure Detection and Recovery

	Discussion and Conclusion

