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Abstract—In unlabeled multi-robot motion planning several
interchangeable robots operate in a common workspace. The
goal is to move the robots to a set of target positions such that
each position will be occupied by some robot. In this paper, we
study this problem for the specific case of unit-square robots
moving amidst polygonal obstacles and show that it is PSPACE-
hard. We also consider three additional variants of this problem
and show that they are all PSPACE-hard as well. To the best of
our knowledge, this is the first hardness proof for the unlabeled
case. Furthermore, our proofs can be used to show that the
labeled variant (where each robot is assigned with a specific
target position), again, for unit-square robots, is PSPACE-hard as
well, which sets another precedence, as previous hardness results
require the robots to be of different shapes.

I. INTRODUCTION

In practical settings where multiple robots operate in a
common environment it is often the case that the robots are
identical in form and functionality and thus are interchange-
able. Specifically, in unlabeled multi-robot motion planning
(unlabeled planning, in short) a group of identical robots
need to reach a set of target positions. As the robots are
identical we only require that in the end of the process each
target position will be occupied by some robot. This is in
contrast to the standard labeled (also known as fully-colored)
multi-robot motion problem, where each robot is required to
reach a specific target position, and the robots may differ in
shape. While labeled planning has been of interest to many
researchers for the past four decades, unlabeled planning has
only been recently introduced and investigated.

A. Related work

We start with the much more intensively studied labeled
case of multi-robot motion planning. Schwartz and Sharir [15]
were the first to consider the labeled problem from the
geometric point-of-view, and in particular studied the case of
two discs moving amidst polygonal obstacles and developed
an algorithm with a running time of O(n3), where n is the
complexity of the workspace. Yap [24] also considered this
setting and described an algorithm of complexity O(n2). Later
on, Sharir and Sifrony [16] proposed an O(n2) algorithm as
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well, although their algorithm deals with several additional
types of robots, besides discs.

When the number of robots is no longer a fixed constant the
problem can become computationally intractable. Specifically,
Hopcroft et al. [8] showed that the problem is PSPACE-hard
for the setting of rectangular robots bound to translate in a
rectangular workspace. Their proof required the rectangular
robots to be of varying dimensions. Spirakis and Yap [20]
showed that the problem is NP-hard for disc robots in a simple-
polygon workspace; here the proof strongly relies on the fact
that the discs are of varying radii.

More recently, Hearn and Demaine [4, 5] improved the
result of Hopcroft et al. by showing that the robots can be
restricted to only two types—2 × 1 and 1 × 2 rectangles.
Their work is more general: They introduced in this work
the nondeterministic constraint logic (NCL) model of compu-
tation, for which they describe several PSPACE-hard problems,
and from which they derive the PSPACE-hardness of a variety
of puzzle-like problems that consist of sliding game pieces.
(We describe the NCL model in detail later on.) In particular,
they applied their technique to the SOKOBAN puzzle, where
multiple “crates” need to be pushed to target locations, and the
Rush Hour game, where a parking attendant has to evacuate
a car from a parking lot, by clearing a route blocked by
other cars. Other hardness results using the NCL model have
followed [2, 3, 7, 9].

Due to the various hardness results related to the problem,
the interest of the Computational-Geometry community in the
multi-robot motion planning problem has diminished over the
years and the attention has gradually shifted to the Robotics
community who started to develop sampling-based tools for
the problem. Sampling-based algorithms1 try to capture the
structure of the configuration space of the problem (or more
accurately, its division into “free” and “forbidden” regions)
by random sampling of the space and connecting nearby
configurations by “simple” paths, to form a roadmap. While
such methods are incapable of determining whether a solution
does not exist, they often provide asymptotic guarantees of
completeness and optimality. Even though such techniques can
be applied as-is to the labeled planning problem [14], many
approaches that were specifically designed for the problem
have emerged [6, 13, 18, 22, 23].

1We only briefly mention this area of research, as it is beyond the scope
of this paper.
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Unlabeled multi-robot motion planning was introduced by
Kloder and Hutchinson [10], who described a sampling-
based algorithm for the problem. More recently, Solovey and
Halperin have developed a sampling-based algorithm for the
unlabeled problem, as well as for a generalization termed k-
color planning that consists of k groups of interchangeable
robots [17]. Krontiris et al. [11] describe an adaptation of this
work for the problem of rearranging several objects using a
robotic manipulator. Turpin et al. [21] describe an efficient
and complete algorithm for unlabeled planning for disc robots
which also guarantees finding the optimal solution in terms of
the length of the longest path traversed by a robot. However,
their algorithm makes the assumption that a certain portion of
the free space, surrounding each start or target position, is star-
shaped. More recently, Adler et al. [1] studied a similar setting
with unlabeled disc robots operating in a simple polygon,
although under a milder assumption requiring each pair of
start or target positions to be separated by a distance of at
least 4, where the radius of the robots is 1. They describe
an algorithm with a running time of O(n log n+mn+m2),
where n is the complexity of the polygon and m is the number
of robots. A crucial questions that follows from their work is
whether the efficient solution of the problem is possible due
to the separation constraints or the fact that the robots are
unlabeled.

B. Contribution

In this paper we study the problem of unlabeled multi-
robot motion planning for unit-square robots moving amidst
polygonal obstacles. We show that the decision problem,
namely, to decide whether a solution exists, is PSPACE-hard.
To the best of our knowledge, this is the first hardness proof
for the unlabeled case. In fact we consider four variants of the
unlabeled problem (see Section II for a precise definition) and
show that they are all PSPACE-hard. For instance, we show
that the seemingly easier version of the problem where only
one of the robots is required to reach a certain target position
while the other robots function as movable obstacles, is also
computationally intractable. We mention that our proofs can
be used to show that the labeled variant, again, for unit-square
robots, is PSPACE-hard as well, which sets another precedence,
as previous hardness results require the robots to be of different
shapes [4, 8, 20]. The various hardness results for multi-robot
motion planning are summarized in Table I. While our result
in itself is negative, we hope that it will motivate research of
other variants of the unlabeled problem which may turn out
to be polynomially solvable.

This paper complements another work by the authors [19]
in which we study a slightly different setting of the unlabeled
problem and present an efficient algorithm to tackle it. In par-
ticular we consider the problem of unlabeled motion planning
of unit-disc robots moving amid polygonal obstacles. We show
that if two simplifying assumptions are made regarding the
distances between pairs of start and target positions and be-
tween such positions and the obstacles, an efficient algorithm
can be developed. In particular, our algorithm has a running

time2 Õ(m4+m2n2), where m is the number of robots and n
is the complexity of the obstacles. Furthermore, the algorithm
returns a solution whose total length (namely the total length
traveled by all the robots) is OPT + 4m, where OPT is the
optimal solution cost. In spite of the difference in robots, we
believe that the hardness result presented in the current paper
hints that such mitigating separation (or other) assumption are
essential in order to obtain efficient algorithms as in the other
paper.

The organization of this paper is as follows. In Section II we
describe the four variants of the unlabeled problem that will
be considered in this paper. In Section III the NCL model of
computation [4], which is a key ingredient in our hardness
proof, is described. In Section IV we provide the hardness
proofs.

II. PRELIMINARIES

Let r be a robot operating in the planar workspace W . We
denote by C(r) the configuration space of r, and by F(r) ⊂
C(r) the free space of r—the collection of all configurations
for which the robot does not collide with obstacles. Given
s, t ∈ F(r), a path for r from s to t is a continuous function
π : [0, 1]→ F(r), such that π(0) = s, π(1) = t.

We say that two robots r, r′ are geometrically identical
if F(r) = F(r′) for the same workspace W . Let R =
{r1, . . . , rm} be a set of m geometrically identical robots,
operating in a workspace W . We use F to denote F(ri) for
any 1 6 i 6 m.

Definition 1. A collection C = {c1, . . . , cm} of m con-
figurations is termed a multi-configuration. Such a multi-
configuration is free if C ⊂ F and for every two distinct
configurations c, c′ ∈ C it holds that r(c) ∩ r′(c′) = ∅, for
r, r′ ∈ R, where r(x), for x ∈ C denotes the area covered by
some robot r ∈ R when placed in x.

Definition 2. Given two free multi-configurations, C =
{c1, . . . , cm}, C ′ = {c′1, . . . , c′m}, we say that they are equiv-
alent (C ≡ C ′) if there exist m paths Π = {π1, . . . , πm} that
move the m robots from C to C ′. More formally, we demand
that for every c ∈ C, there exists 1 6 i 6 m for which
πi(0) = c; for every c′ ∈ C ′ there exists 1 6 j 6 m for
which πj(1) = c′; for every τ ∈ [0, 1] the multi-configuration
Π(τ) = {π1(τ), . . . , πm(τ)} is free.

Given two equivalent multi-configurations S, T we denote
by Π(S, T ) = {π1, . . . , πm} a collection of m paths that move
the robots from S to T by following the restrictions above.
Note that Definition 2 requires that every target position will be
occupied by some robot, in contrast with the classic definition
which indicates which robot should reach where.

We define four decision problems that will each be shown
to be PSPACE-hard below:

1) Given two free multi-configurations S, T , is it true that
S ≡ T ?

2For simplicity of presentation, log factors in the complexity of the
algorithm are omitted, and hence the Õ notation is used.
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Contributor Problem Complexity Robots Workspace
Hopcroft et al. [8] labeled PSPACE-hard rectangles rectangle
Spirakis, Yap [20] labeled strongly NP-hard discs simple polygon

Hearn, Demaine [4] labeled PSPACE-complete 1× 2 rectangles rectangle
this paper unlabeled, labeled PSPACE-hard unit squares polygonal obstacles

TABLE I: Hardness results related to the multi-robot problem.

2) Given a free multi-configuration S, and a configuration
t ∈ F , is there a multi-configuration T such that t ∈ T
and S ≡ T ?

3) Given a free multi-configuration S, a configuration s ∈
S, and another configuration t ∈ F , is there a multi-
configuration T such that t ∈ T , S ≡ T for which there
exists π ∈ Π(S, T ) such that π(0) = s, π(1) = t?

4) Given two configurations s, t ∈ F , are there two multi-
configurations S, T such that s ∈ S, t ∈ T and S ≡ T ?

We will refer to these problems from now on as the multi-
to-multi, multi-to-single, multi-to-single-restricted, and single-
to-single problems, respectively. Note that multi-to-single dif-
fers from multi-to-single-restricted by allowing any robot to
reach t. Although the four problems seem to be closely related,
it is not clear whether it is possible to reduce one problem to
another.

III. NONDETERMINISTIC CONSTRAINT LOGIC

In this section we review the nondeterministic constraint
logic (NCL) model of computation, and state three decision
problems that are based on this model and are shown to
be PSPACE-complete [4]. An NCL machine is defined by a
constraint graph G = (V,E), a weight function w : E → N,
and a minimum-flow constraint c : V → N.

Definition 3. A machine configuration is an orientation o :
E → {0, 1} such that for every edge (v, v′) ∈ E it holds that
o(v, v′) = 1, o(v′, v) = 0, or o(v, v′) = 0, o(v′, v) = 1. An
orientation o is valid if for every v ∈ V the sum of weights of
the edges that are directed into v is at least the minimum-flow
constraint of the vertex. More formally,

∀v ∈ V :
∑

v′∈N(v)

o(v′, v) · w(v′, v) > c(v),

where N(v) denotes the set of neighbors of v in G.

A move from one orientation to another consists of a reversal
of the orientation of a single edge, while maintaining the
minimum-flow constrains. Given two orientations o, o′ we say
that they are equivalent, and denote this relation by o ≡ o′,
if o can be transformed into o′ by a series of moves. Given
these definition, the following decision problems are defined
in [4]:

1) Given two orientations oS , oT , is it true that oS ≡ oT ?
2) Given an orientation oS and an edge (v, v′) ∈ E is

there another orientation oT such that oS ≡ oT and
oS({v, v′}) 6= oT ({v, v′}), i.e., the orientation of (v, v′)
is reversed between the two configurations?

3) Let (v, v′), (u, u′) ∈ E. Additionally, let o(v,v′), o(u,u′)

be two orientations for these specific edges. Are there

two configurations oS , oT such that oS ≡ oT and
oS(v, v′) = o(v,v′), oT (u, u′) = o(u,u′)?

These problems are termed full-to-full, full-to-edge, and
edge-to-edge, respectively. We are interested in a particular
setting of the problem where the constraint graph is planar
and consists of only two types of vertices:
• An AND vertex has a minimum-flow constraint of two,

and has exactly three incident edges, where one of the
edges has a weight of two, and each of the other two
edges has a weight of one.

• An OR vertex has a minimum-flow constraint of two and
has exactly three incident edges, each with a weight of
two.

The following Theorem will play a central role in our
analysis. Its proof is found in [4, Theorem 12].

Theorem 4 (Hearn and Demaine). Full-to-edge, full-to-full,
and edge-to-edge, are PSPACE-complete, even when the con-
straints graph is simple, planar, and consists of only AND and
OR vertices.

A. Grid-embedded constraint graph

In order to simplify the reduction process in the following
sections, we show that given a constraint graph G, as described
above, it can be transformed into a two-dimensional constraint
grid graph H , such that the three NCL decision problems
remain PSPACE-hard on H as well. We mention that the
authors of [4] use a similar grid embedding, but omit the
relevant details. Thus we chose to provide a full description
of this process here.

We generate a new constraint graph H whose vertices are
grid vertices and edges are grid edges. Each edge of G is
transformed into a noncrossing path in H . Such an embedding
is possible due to the fact that G is simple and planar. For
the purpose of the reduction it suffices to know that such
an embedding can be carried out in polynomial time, but we
mention that a linear-time algorithm by Liu et al. exists [12].

As G is planar and has a degree of three (it is exclusively
made of AND and OR vertices), it can be embedded on a planar
grid H = (VH , EH) which is defined as follows. The set of
vertices of H is defined to be VH := V ∪ U , where U is an
additional set of vertices called connectors and where each v ∈
VH corresponds to a point on the grid. Every edge (v, v′) ∈
EH corresponds to an axis-parallel segment that connects the
two points v, v′ on the grid. Given two vertices v, v′ ∈ V for
which (v, v′) ∈ E we denote by H(v, v′) = (v, u1, . . . , u`, v

′)
the path in H that corresponds to (v, v′).

We also define the weight and capacity functions wH , cH ,
respectively. Each vertex v ∈ V maintains its original capacity
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A1

A2 A3

(a) AND vertex

O2 O3

O1

(b) OR vertex

Fig. 1: AND and OR vertices. Red (dashed) edges have a weight of 1 and blue (solid) edges have a weight of 2. The blue
(solid) vertex (circle) represent an minimum flow constraint of 2. In (a) A1 can be directed outward if and only if A2 and A3

are both directed inward. In (b) O1 can be directed outward if and only if any of the other two is directed inward.

of two from G, that is, cH(v) := c(v). Let (v, v′) ∈ E and
let u ∈ U such that u ∈ H(v, v′). Then cH(u) := w(v, v′).
Additionally, suppose that (u, u′) represents an edge on the
path H(v, v′), then we let wH(u, u′) := w(v, v′).

Lemma 5. Configuration-to-edge, full-to-full, and edge-to-
edge, are PSPACE-complete, even for the grid-embedded con-
straint graph H that consists of only AND,OR, and connector
vertices.

Proof: Every orientation of H can be transformed into
an orientation for H , and vice versa. Using this fact the
hardness of the these three problems immediately follow from
Theorem 4.

IV. FROM NCL TO MULTI-ROBOT MOTION PLANNING

In this section we present the reduction from the three NCL
problems, which were described in the previous section, to
our four unlabeled multi-robot motion planning problems; we
will call them unlabeled problems for short. Specifically, we
consider the case where the input consists of a grid-embedded
constraint graph H , as described in Section III. Given such
a graph H we construct an unlabeled scenario which corre-
sponds to the graph and consists of unit-square robots and
polygonal obstacles. We use a grid layout, as depicted in
Figure 3, where the cells of this grid are of dimension 5×5 and
the walls separating the cells are of thickness 1/2. Each such
cell functions as a placeholder for a gadget which represents
and emulates a specific vertex of H . The gadgets are placed
according to the positions of their counterpart vertices in H .
Note that between every two adjacent cells there is a doorway
of width 1 so that an interaction between adjacent gadgets
can take place. We may rotate the gadgets depicted below by
90, 180 or 270 degrees so that gadgets that correspond to two
vertices of H that share an edge will share a passage. When
two vertices of H share an edge, the corresponding gadgets
will share a robot. A similar scheme was employed in [4],
although they used different gadgets as they were interested
in showing the hardness of slightly different motion planning
problems.

A. AND, OR, and connector gadgets

For each vertex of H we create a gadget that emulates
the functionality of this vertex in the NCL machine. For
the vertices of U we create a connector gadget, while for

Fig. 3: Placeholders for the gadgets.

the vertices of V we create AND and OR gadgets. All the
gadgets fit into 5 × 5 squares (see Figures 4,5,6) and have
either two or three exists through which they connect to
other gadgets. Every gadget accommodates several robots
and contains polygonal obstacles; the robots are illustrated in
purple or green and the obstacles are illustrated in gray. The
white regions represent portions of the free workspace. All
the robots are placed such that they neither overlap with the
obstacles nor with each other. The AND gadgets also have a
point obstacle, illustrated in red (its purpose will be explained
below). We mention that robots are allowed to touch, but not
penetrate, the obstacles. For an illustration of a connection
between two gadgets, see Figure 7.

Every gadget accommodates several unit-square robots
which fall into two categories: those that never leave the
gadget and those that may penetrate the gadget or leave it to
a neighbor gadget. The former are called vertex robots (drawn
in purple), while the latter are edge robots (drawn in green).
Edge robots are located at the exits of the gadgets, one robot
per exit. As the name suggests, edge robots correspond to
the edges of H incident to the vertex. The direction of the
edge corresponds to the position of the robot, with respect
to the gadget. Specifically, an edge that is directed inward
corresponds to an edge robot that is located at the exit but
does not penetrate the 5×5 square of the gadget (for example,
robot A1 in Figure 5a); an outward directed edge corresponds
to an edge robot located at the exist such that exactly half of
it is located inside the 5 × 5 square of the gadget (see for
example robots A2, A3 in Figure 5a). We will refer to these
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v1

v2
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v4

v5

v6

(a)

v6
v5

v1

v2 v4

v3u1

u2
u3 u4

u5

u6

(b)

Fig. 2: A grid embedding of a simple planar graph with AND and OR vertices. In (a) we have the original graph G = (V,E)
while in (b) we have a grid embedding of it. Recall that blue (solid) edges represent edges with weights of 2, while red
(dashed) represent weights of 1. Similarly, blue circles represent vertices with min-flow constraints of 2, while red represent
vertices with min-flow constaints of 1. Note that the embedding preserves the type of the vertices from G, e.g., v4 is an AND
vertex in both cases. In order to make the embedding possible the connector vertices U = {u1, . . . , u6} were added to H .
Note that the minimum-flow costraint of u1 is 1. The edges of G are represented as paths in H . For instance, (v1, v6) ∈ E is
represented by the path H(v1, v6) = {v1, u2, u3, u4, v6} in H .

two positions of the edge robot as inside a gadget, and outside
a gadget, respectively. We note that when an edge robot of one
gadget is located outside, it is also inside the adjacent gadget,
and vice versa. The inverse relation between the position of
the edge robots and the orientation of the edges stems from the
fact that we wish to avoid situations where too few edges are
directed into a vertex (and thus the minimum-flow constraint
is not satisfied), and situations where too many edge robots
are inside a gadget (and thus a collision occurs). For example,
in the OR gadget in Figure 6 it is not possible for all the
three edge robots to be simultaneously inside the gadget, and
this ensures that the corresponding OR vertex in the constraint
graph will receive a sufficient amount of in-flow.

For simplicity, we only consider configurations of the robots
where the center of each robot is located at the vertices
of a 1/2 × 1/2 grid. We refer to such configurations as
terminal. For instance, all the robots in Figures 5,4,6 are placed
at terminal configurations. Additionally, the actual terminal
configurations are illustrated in Figure 4b. We also allow a
robot to move between two adjacent terminal configuration.
The following three lemmas illustrate the relation between the
gadgets and the vertices of H . Their proofs are straightforward
and therefore omitted.

Lemma 6. Connector gadgets correspond to connector ver-
tices in H , i.e., one of the two edge robot can be inside, if
and only if the other edge robot is outside.

Proof: See Figure 4a and Figure 4b.

Lemma 7. AND gadgets correspond to AND vertices in H ,
with A2, A3, A

′
2, A

′
3 corresponding to the 1-weight edges, and

A1, A
′
1 corresponding to 2-weight edges, e.g., A1 can move

inside the gadget if and only if A2, A3 are both outside.

Proof: See Figure 5a and Figure 5b.

Lemma 8. The OR gadgets correspond to OR vertices in H ,
i.e., one of the edge robots can move inside if and only if at
least one of the other edge robots is outside.

Proof: See Figure 6.

B. Unlabeled motion planning with gadgets

We finalize the details of our reduction and prove its
correctness. We first show that the structure of gadgets is
very restrictive and allows a limited set of movements for the
robots, so that robots cannot wander between different gadgets.

Lemma 9. Each edge robot can be in at most two distinct
terminal configurations.

Proof: We show that for every possible connection of two
gadgets the edge robot can be in at most two terminal configu-
rations. We only consider here the combination of the second
AND gadget (Figure 5b) and the OR gadget (Figure 6). The
other combinations can be treated analogously. Specifically,
we consider the case where the connection is made through
the edge robot A′3 = O2 (colored in orange), as illustrated
in Figure 7. Notice that robot A′3 = O2 is stuck between the
robots D and E: D is blocked to the left by the red point
obstacle (Figure 7a); E is blocked to the right by an obstacle
(Figure 7b). From this observation we conclude that every
edge robot can either be inside or outside, and not in any
other terminal configuration.

Lemma 10. Each vertex robot can be in at most two distinct
terminal configurations, save robot O∗ in the OR gadget, which
can be in at most three terminal configurations.

Proof: First, note that every edge robot can move either
horizontally or vertically. Let us consider for example robot
A′3 = O2 in Figure 7, which can only move horizontally. Since
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C1
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C ′
1
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Fig. 4: Connector gadgets. The blue crosses in (b) represent terminal configurations, which are defined in Section IV-A.
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A′
2 A′

3

(b)

Fig. 5: AND gadgets.

O2

O3

O1

O∗

Fig. 6: OR gadget.
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A′1

A′2

A′3 = O2

O3

O1

O∗

D E

(a)

A′1

A′2

A′3 = O2

O3

O1

O∗

D E

(b)

Fig. 7: Illustration for Lemma 9 and a depiction of two gadgets that are connected through an edge robot. In both figures the
same AND gadget and OR gadgets, which share an edge robot A′3 = O2, are illustrated. These two gadgets simulate an AND
vertex and an OR vertex which share an edge. For each edge robot A′i in the AND gadget, denote by a′i the corresponding edge
in the AND vertex. Similarly, denote by oi the edge corresponding to the edge robot Oi in the vertex. Note that a′3 and o2
represent the same edge. In (a) the gadget represents a machine configuration in which a′1 is directed inward, a′2 outward, a′3
outward with respect to the AND vertex. As a consequence, o2 is directed inward with respect to the OR vertex. Additionally,
o1 is directed inward, while o3 outward. In (b) a similar machine configuration is depicted, with the exception that a′3 is now
directed inward while o2 outward.

this robot can only move between two terminal configurations
(Lemma 9), the two vertex robot that are directly to its right,
cannot move further left than where they appear in Figure 7a.
Additionally, robot E is bounded from the right by an obstacle
which does not allow it to move further to the right than it
appears in Figure 7b. A similar reasoning can be applied to all
the other vertex robots. As to robot O∗, consider its position
in Figure 7a. It cannot go up as there is an obstacle there.
If O3 leaves the gadget it can move a half step right, and if
O2 leaves the gadget it can move a half step down. Notice
however, that it cannot move simultaneously down and right
since it will collide with the robot that is immediately to its
right.

The following lemma implies that our motion planning
scenario is so tight that each valid multi-configuration can
be interpreted in a single way as an assignment of terminal
configurations for the robots.

Lemma 11. Given a specific terminal configuration, there is
at most one robot that can be in it.

We mention that a similar Lemma can be proven for the
gadgets used by Hearn and Demaine [4] in their hardness proof
of the labeled variant of the multi-to-multi problem. Since their
proof uses two different types of robots, their result can also be
interpreted as a PSPACE-hardness proof for the 2-color multi-
robot motion planning problem [17], which consists of two
groups where the robots within each group are identical and
interchangeable.

We return to the PSPACE-hardness proof of the four unla-
beled problems discussed in our paper.

Theorem 12. The problems multi-to-multi, multi-to-single,
multi-to-single-restricted, and single-to-single, for unit-square
robots translating amidst polygonal obstacles in the plane are

all PSPACE-hard.

Proof: We describe reductions from the three NCL-model
decision problems to our four unlabeled problem. Specifically
we show the following reductions:
• The full-to-full problem, which is concerned with check-

ing whether one NCL machine orientation can be trans-
formed to another, is reduced to the multi-to-multi unla-
beled problem, which is concerned with deciding whether
a collection of robots can be moved between two multi-
configurations.

• The full-to-edge problem, which is concerned with the
existence of an orientation that can be reached from a
given orientation where a direction of a specific edge is
flipped, is reduced to the unlabeled multi-to-single and
multi-to-single-restricted problems that are concerned
with moving an arbitrary or a specific robot (respectively)
to a given destination configuration, when a starting
multi-configuration is specified for all the robots.

• The edge-to-edge problem, which is concerned with the
existence of two orientations, where one can be trans-
formed to another, such that the two orientations have an
opposite direction for a given edge, is reduced to the
unlabeled single-to-single problem which is concerned
with the existence of two multi-configurations that are
equivalent, where each of the two multi-configurations
contains a specific configuration that is given as input
(where the configuration is not assigned to a specific
robot).

We use the same reduction for all three cases. Only the analysis
slightly differs. Given a grid-embedded constraint graph H
we generate a scenario for the unlabeled problem as we
described above, by placing gadgets corresponding to vertices
and connecting gadget according to the connections in H .
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We first note that given an orientation for H it can be
transformed into a valid multi-configuration consisting only
of terminal configurations, where the directions of edges in H
induce configurations for the respective edge robots, and these
in turn induce configurations for the vertex robots. In the other
direction, given a valid multi-configuration for the robots that
consists of only terminal configurations a valid orientation for
H can be easily generated, by considering only the positions
of edge robots. Note that by Lemma 9 every edge robot can
be in at most two terminal configurations that represent two
opposite directions of the same edge of H .

We first prove the hardness of the multi-to-multi problem
by a reduction from the full-to-full problem. Let oS , oT be
two orientations of H , and denote by S, T the two free multi-
configurations induced by them. It is clear that if oS ≡ oT
then also S ≡ T . Now, suppose that S ≡ T . Notice that
in order to show that this implies that oS ≡ oT we need to
prove the existence of a solution Π(S, T ) where no two edge
robots move at a given time. More accurately, we need to
show that there exists a solution in which every edge robot is
in transit between two terminal configurations, only when all
the other edge robots are stationary in terminal configurations.
We consider for example the AND gadget (Figure 5a) and
show that each simultaneous movement of edge robots, where
several edge robots are located simultaneously at non-terminal
configuration, can be carried out in a sequential manner as
well. We treat the various combinations of robots moving
simultaneously in and out of the gadget. If both A2 and A3

move inside then A1 must be out, and therefore the former
two robots do not depend on each other in order to make
their move. Now suppose that A2 and A3 simultaneously move
outside. This means that each of the two gadgets, to which A2

and A3 are entering, already moved other edge robots, and
vertex robots, so that the entrance of A2, A3 will be possible.
Thus the fact that A2 can leave the gadget does not depend on
the fact that A3 leaves the gadget, and vice versa. Therefore,
we can move A2, A3 in a sequential manner. Therefore, a
solution Π(S, T ) as required always exists and in the case
that S ≡ T it also follows that oS ≡ oT .

We now proceed to prove the hardness of the multi-to-
single problem by a reduction from the full-to-edge problem.
Recall that full-to-edge consists of an orientation oS and
edge e ∈ EH . The question is whether there exists another
orientation oT such that oS ≡ oT and oS(e) 6= oT (e), i.e., the
direction of e in the two configurations is reversed. Denote
by S the multi-configuration induced by oS , and by s ∈ S
the terminal configuration that corresponds to the edge e in
the direction oS(e). We now ask whether there exists a multi-
configuration T such that S ≡ T such that there exists t ∈ T
that corresponds to e in the opposite direction. Now that we
have defined the components of our multi-to-single problem
it is clear that if there exists an orientation oT as required,
then its induced multi-configuration satisfies the conditions of
multi-to-single. The opposite direction follows similarly to the
multi-to-multi proof above.

The difference between multi-to-single and multi-to-single-
restricted is that in the latter we require that a specific
robot will move to a specific target configuration. Note that

our reduction for multi-to-single holds here as well, since a
selection of a specific edge of H induces the selection of a
specific robot that has to move between two configurations (see
Lemma 11). The hardness of the single-to-single problem by
a reduction from the edge-to-edge problem can be proved in
a manner similar to the previous three cases.

We mention that using Lemma 11, our hardness proof can
also be applied to prove the hardness of the labeled variant
of multi-to-multi. In this case, each robot ri is assigned with
specific start and target configurations si and ti, respectively,
and the goal is to move each ri from si to ti while avoiding
collisions with robots and obstacles. Specifically, we have the
following result.

Theorem 13. Labeled multi-robot motion planning for unit-
square robots moving amidst polygonal obstacles is PSPACE-
hard.

Proof: We follow the same reasoning as for the full-to-
full to multi-to-multi reduction (Theorem 12) and add that due
to Lemma 11 given a placement of the robots induced by the
starting multi-configuration S, the targets multi-configuration
can be viewed as an assignment of a specific target for every
robot. Specifically, given an initial assignment si for robot ri,
there at most one configuration in T to which it can move (see
Lemma 11).

V. CONCLUDING REMARKS

In this paper we studied the problem of motion planning of
multiple unlabeled unit-square robots in an environment clut-
tered with polygonal obstacles. We proved that four variants
of this problem are PSPACE-hard. While our result in itself
is negative, we hope that it will motivate research of other
variants of the unlabeled problem which may turn out to be
polynomially solvable.
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