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Abstract—In this paper we present an inverse optimal control
based transfer of motions from human experiments to humanoid
robots and apply it to walking in constrained environments. To
this end we introduce a 3D template model, which describes
motion on the basis of center of mass trajectory, foot trajectories,
upper body orientation and phase duration. Despite of its abstract
architecture with prismatic joints combined with damped series
elastic actuators instead of knees, the model (including dynamics
and constraints) is suitable to describe both, human and hu-
manoid locomotion with appropriate parameters. We present and
apply an inverse optimal control approach to identify optimality
criteria based on human motion capture experiments. The iden-
tified optimal strategy is then transferred to the humanoid robot
for gait generation by solving an optimal control problem, which
takes into account the properties of the robot and differences in
the environment. The results of this approach are the center of
mass trajectory, the foot trajectories, the torso orientation, and
the single and double support phase durations for a sequence of
multiple steps allowing the humanoid robot to walk within a new
environment. We present one computational cycle (from motion
capture data to an optimized robot motion) for the example of
walking over irregular step stones with the aim to transfer the
motion to two very different humanoid robots (iCub Heidelberg01
and HRP-2 14). The transfer of these optimized robot motions
to the real robots by means of inverse kinematics is work in
progress and not part of this paper.

I. INTRODUCTION

Humanoid gait generation in constrained environments is
a complex task which consists of a wide range of sub-tasks
reaching from scene recognition [[11 [31] and state estimation
[27] over path planning [32]] and pattern generation [17, 28]
and finally to the computation of a whole body motion based
on e.g. joint angles [21} 20]. To accomplish all those tasks, it
is desirable to observe humans themselves and prolongate the
gained knowledge to the robotic complements. As a specific
sub-task of the before mentioned challenges, the focus of
this paper is on the transfer of motion generation strategies
from humans to humanoids. Previous work on this topic
with focus on a direct transfer of joint angle trajectories
has been published by [6], transfer based on observations
in human gait on soft ground in [12]. Our approach goes
further in both directions. In contrast to [6] it allows for the
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Fig. 1. Starting from real motion capture experiments, locomotion is
transferred by means of identified optimality criteria for a dynamic template
model (top) to the humanoid robot models (middle). In a subsequent step (not
part of this paper) the motion is transferred to the real robots HeiCub and
HRP-2 using inverse kinematics (bottom).

generation of robot motions without performing human motion
experiments for this specific task. In contrast to [12]] we use
a model based approach to obtain a mathematical description
of the observations made in human experiments. To this end
we base our work on the hypothesis that the human motor
system is optimal in its choice of motion [3l 4], use inverse
optimal control and a human multi-body model to identify
the underlying optimization criteria, adjust the optimal control
model to the robots constraints and finally use optimal control,
to compute a feasible robot motion based on the identified
criteria (see Figures [T|2).



To describe human and humanoid locomotion, in this work
we consider the same 3D dynamical template model, adjusted
to the specific embodiment of humans and robots by means
of parameters and constraints. The model consists of two legs
with prismatic joints combined with damped series elastic
actuators instead of knees, two point-masses as feet and a
reactive mass as upper body. Motion is described on basis
of center of mass trajectory, feet trajectories, upper body
orientation and phase duration [7].

Making use of template models for the identification of
optimality criteria is an interesting approach for robotic ap-
plications for the following reasons:

o The same model can be used for different walking
scenarios,

o The same model can be used for human gait analysis and
humanoid gait generation,

o A sequence of several steps can be considered,

o Computational results are directly usable for robot con-
trollers if they are based on the same template model,

« It has potential to be used for robot control in real time.

In this paper we present one entire computational cycle,
starting from motion capture experiments and ending with
the generation of humanoid motions based on center of mass
trajectory, torso orientation, feet trajectories, and phase timing.
As a proof of concept we focus on one trial of constrained
walking and two humanoid robots. The first robot is the iCub
platform of Heidelberg University (HeiCub), a unique version
of iCub produced by iCub Facility Department of Fondazione
Istituto Italiano di Tecnologia (IIT) [[15) [24]. It has 15 degrees
of freedom and consists of an upper body, a hip and two legs
with a total height of 0.97m and a total mass of 26kg. It does
neither have arms nor a head and is therefore quite similar to
the considered template model. The second robot is HRP-2 14
from Kawada, located at LAAS-CNRS [19, [18], a full body
bi-pedal robot with 30 degrees of freedom. It has a total height
of 1.54m and a total mass of 58kg.

As constrained environment we consider a step stone sce-
nario, which is particularity interesting but also difficult,
because

« it combines several steps of different step length, direction
and duration for which common optimality criteria have
to be found,

o it includes constraints on the foot placement, and poten-
tial variation in ground height,

« it allows to consider significantly different scenarios for
optimality identification and for motion generation.

Note, that the presented approach is usable for a wide range
of different scenarios and can be used for the transfer to
basically any bi-pedal robot. In parallel, but not part of this
paper, we investigate how the identification of criteria transfers
between different subjects and how optimality criteria correlate
between different scenarios.

The paper is organized as follows: In Section two we
explain the general idea of inverse optimal control and the
solution strategy considered in this paper. In Section three we
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Fig. 2. The role of inverse optimal control for motion transfer between
humans and humanoids based on optimality criteria.

present our 3D template model, which is suitable to mimic
human and humanoid motion at the same time, by adjusting
relevant parameters and constraints. In Section four we solve
the inverse optimal control problem, based on the presented
template model, a large set of optimality criteria for the
optimal control model and real motion capture data of a step
stone scenario. Finally, in Section five, the identified criteria
together with suitable transfer rules, mainly based on speed
issues and different bounds between human and humanoid,
are used to compute optimal motions for the two different
humanoid robot models each walking over a different step
stone scenario.

II. INVERSE OPTIMAL CONTROL FOR HUMAN GAIT
ANALYSIS AND HUMANOID GAIT GENERATION

The overall goal of our research and the EU-project Koroi-
Bot is to improve humanoid walking capabilities by learning
from humans. In this context inverse optimal control serves
as a tool to extract optimization criteria from human gait and
derive humanoid locomotion by minimizing these criteria with
respect to the robot’s architecture and bounds (see Figure [2).

A. Problem formulation

Based on the assumption that human gait is optimal [3} 4]
with respect to well defined but unknown criteria, we describe
human gait by a mathematical model in the form of an optimal
control problem restricted by a system of differential algebraic
equations (DAEs) and additional non-linear constraints on
control and state.

Given a reference motion Z = (Zit;)i=0,....N. 1, j=0,... N;~1
describing N, trajectories at discrete times (g, t1,. .., N;—1)»
we use inverse optimal control to determine an objec-
tive function ®*(x,u,q,p,~) such that the subset z( ) C
(x(t),u(t),q) of the resulting optimal solution (x*,u*,q*)
approximates 7 (after scaling it with w € RN=) as well as
possible.
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The lower level (2)-(3) describes the optimal control prob-
lem of minimizing the objective function ®(x,u,q,p) with
respect to the walking model (B)-(3), the upper level (I) is a
parameter estimation problem for the unknown weights v €
RNy = (7i)i=o0,...,N,—1 and optionally some of the parameters
p € R™, such that the optimized motion z* C (x*,u*, q*)
is fitted to real motion capture data VA Equation (6) belongs
to the upper level problem and ensures uniqueness of the
parameter set v by fixing <o to its initial value. The state
x : [to,tf] — RN+ and the control u : [to,t;] — RY« are
vector functions in time, the control parameters q € RNa and
the model parameters p € R™» are vectors of real numbers.
The right hand side f := (fo, ..., fn,—1) is phase-wise defined
(denoted by the subscript k) and allows for discontinuities
on phase boundaries. Switching condition between phases
are defined implicitly in the context of the constraints cy,
which also cover other point-wise constraints like periodicity
requirements. As the right hand side, the path constraints rj
are defined phase-wise.

One important issue in the analysis of human gait are studies
on the duration of the different phases of the gait cycle - or
even more challenging: studies on optimality criteria leading
to realistic phase durations. To this end, the durations AT
between the implicit defined switching points (7g,...,7n,)
have to be included in the vector of control parameters q :=
[a, AT]. Note, that there is a important difference between
the parameters q (and q, respectively) and p. Whereas q
is a control parameter of the lower problem, p is a model
parameter, and hence fixed for the lower problem. However, it
can be considered as an identification parameter on the upper
level.

Usually the reference trajectories 7 do neither include the
control nor do they define the entire state, but only a subset
of it. A special feature of the presented algorithm is that it
can handle arbitrary subsets z, since it does not build on
the assumption that for the reference motion all state and
control trajectories are explicitly given. It can even handle
the special case, if Z does not correspond to a subset z(t) C
(x(t),u(t),q) but to a general function M(x(t), u(t), q).

In our research we define the lower objective function of
the optimal control model [2)-(3) as a linear combination

N,—1 .

O(x,u,q,p,7y) = Y., 7Yii(x,u,q,p), of physically
meaningful sub-criteria ¢;, ¢ = 0,..., N, — 1 which can de-
scribe common criteria known from biomechanics or robotics
or new hypotheses based on human experiments. There are two
major advantages to use this kind of objective function: first,
using physically meaningful sub-criteria, the results of gait
analysis are physically interpretable and second, it implies the
possibility to derive transfer rules from humans to humanoids
which can take into account dynamic and kinematic differ-
ences between the two embodiments.

B. Solution strategy

To solve the inverse optimal control problem (I)) - () there
are to two main types of solution strategies. In the first strategy
the bi-level structure of the problem is kept and exploited [25}

26, 29]]. In the second one the bi-level problem is replaced by
a one-level problem, substituting the lower level problem by
its optimality conditions [8} |9} [14} |5, [13| [2]]. In our research
we consider and also compare both approaches. In this paper
we focus on the first approach which has shown to perform
well for real-life optimal control problems and allows for an
easy implementation of new problems. An one-level approach
for similar studies, but with an easier template model walking
on level ground, has been considered in complementary work.

As both, the upper and the lower level of the bi-level optimal
control problem are optimization problems themselves, we
need suitable solution strategies. Whereas the upper level is a
parameter identification problem with constraints of unusual
form, the lower level problem is restricted by a hybrid dif-
ferential equation with additional linear and nonlinear con-
straints, where known structures can be exploited. Therefore
on the upper level we rely on a derivative free optimization
method, in this paper the quadratic approximation based
method BOBYQA [30]], implemented in the optimization
library NLOPT [16]. For the lower level, we use a derivative
based approach which relies on a state parametrization by
multiple shooting and a structure exploiting SQP algorithm to
solve the resulting discrete nonlinear programs (NLPs). Both
algorithms have been combined in an efficient inverse optimal
control framework that allows the user

« to define an optimal control model, which consists of an
objective function defined by a linear combination of op-
timization criteria, a dynamical model given by a hybrid
differential equation, and additional linear and nonlinear
constraints (also specifying implicit phase changes),

e to define the sub-set of optimization parameters to be
taken into account on the upper level, which usually
consists of the objective weights ~ and a subset of model
parameters p,

o to define the sub-set of quantities which are the ones
that are fitted to motion capture data or functions thereof.
These quantities are usually a subset of the state x, and
the subset AT C q, defining the duration of the different
phases.

III. LocOMOTION AS OPTIMAL CONTROL MODEL

As mentioned above, in our work we model locomotion
as an optimal control problem, relying on the hypothesis that
the human motor control system is optimal in its choice of
motions. For our framework, such an optimal control model
consists of three main parts. First, the dynamic multi-body
model, which we usually model on bases of Newtons law,
reformulating the differential algebraic equations of index
three as a system index one. Second, the gait cycle as
a sequence of changing contact sets and additional linear
and non-linear constraints. Different dynamical behavior as
a consequence of varying contact sets during the gait cycle is
defined by different phases, resulting in a hybrid differential
equation. Phase durations are defined implicitly by characteris-
tic state and control dependent switching events. Furthermore,
we explicitly allow for discontinuities in the state functions



to model the impact of foot touch down. Third, a twice
continuously differentiable objective function. As stated above,
in the context of inverse optimal control, we formulate the
objective as a linear combination of different criteria. Note,
that the criteria themselves can be highly non-linear.

A. The dynamical walking model and the step stones
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Fig. 3. 3D SEA-walker

We consider the three dimensional dynamical template
model (3D SEA-walker), which we have first introduced in
[7], and slightly tailor it to the arising needs. It consists of
an upper body (torso) and two legs, which are attached to the
center of mass of the torso. Both legs have a compliant knee,
modeled by a damped series elastic actuator, and a point foot
with appropriate mass.

Denoting the absolute positions of the center of mass of the
torso and feet positions by

TM Tm1 Tm2
aMm ‘= | YM | s49m1 ‘= | Yml | 9Am2 ‘= | Ym2 |
ZM Zm1 Zm2

and defining the torso mass M, the feet masses m1 and mo, the
leg length of the i-th leg [;, and the inertia tensor of the torso
©®, the dynamics of the motion is defined by the following
equations:

Métyy = 7@ = @) + (@ — dna) = Mg (D
m1Gm1 = RHSm1, m2qma = RHSy 3
Od = u,; + urs. )
We set
Qg Uz Uz2 0
“ (ay> = (uy1> e (“y2) s =\
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with gravitational acceleration g. Including a series elastic
actuator (SEA) and a damper, the leg forces are given as

where k is the spring constant, b the damping constant, /; the
leg length, Iy the rest length, u, = (us1,us2)? the control
of the SEA, u, = (u,1,u,2)7 the hip torque, and « the
torso orientation. Each step is modeled as a sequence of single
support phase (SS), instantaneous touch down discontinuity

(D) (D) (D) (D) } discontinuities
A | A |
| [N N ) continuous
(SS)leg 1 (DS) (SS)leg 2 (DS) (SS)leg 1 (DS) (SS)leg 2 (DS) phases

Fig. 4. Sequence of walking phases.

(TD), and double support phase (DS), see Figure 4 In our
computations, we consider a sequence of two full strides,
where each stride contains two steps with alternating legs.
During the different phases of one single step, we formulate
the following right hand sides and additional constraints:

e Single support phase (SS) on leg ¢, with swing foot j

RHS,; =0, (11)
RHSy; = _T](QM — dmj) + %V_j + %n]’ —m;g, (12)
J J J
lj S ZO + Usjy Zmj > h(xmjaymj)v (13)
e Discontinuity at touch down (TD), leg j
qmj =0, (l'mja ymj) € Cstepstonem (14)
Zmj = h(xmj7ymj) (15)

e Transition conditions (SS, leg ¢) — (DS, leg j in front)

e Double support phase (DS, leg j in front)
RHS,i =0, RHSy =0, a7
li <lo+usi, 1y <lo+ugj, (18)

e Transition conditions (DS, leg j in front) — (SS, leg j)

grf.; =0, l;>c>0,

where grf, ; is the vertical ground reaction force of leg i.

Furthermore we fix (zps,yas) at initial time ¢ = 0 and
final time 7T to a desired value, to allow to use the same
model for later gait generation. The subsequent step is defined
analogously to (TT)-(I9) by switching the roles of leg ¢ and j.

Different from the version of the SEA-walker in [7]], as
upper body we consider a regular cone, with center of mass
(CoM) at % and inertia tensor © = 2 diag(12r?+3h7, 12r2.+
3h?,24h?) (cone radius 74, cone height h;). Furthermore we
consider the torso orientation v = (o, o) around the global
z and y axis, in analogy to the absolute positions of CoM and
feet. The vector v; lies in th y-z plane and is perpendicular
to the vector from q,,; to qus, the vector n; is lies in the
x-z plane and is also perpendicular to the vector from q,,; to
qar- The torque u,; implies a linear force in direction of v;
on foot ¢, the torque u,; implies a linear force in direction of
n; on foot 3. The function h : R? — R defines the height of
the uneven ground, the set Ciepsiones the feasible region to be
stepped on.

Iy <o+ usy, (19)



We parameterize the ng step stones by Ny = 4 -3 - (ng)
parameters p;, which correspond to the markers placed on
the corners of each step stone during the experiments. There-
fore, for each considered motion, the step stone model is
automatically adjusted to position, orientation and dimension
of the real blocks. Feasible (z,y)-regions are described by
the four lines, passing through the (x,y) coordinates of two
adjacent markers, with its normal pointing inwards. A foot
placement is defined to be feasible, if the distance between
the (z,y)-position of the foot and all four lines is greater
than a safety margin and if the position (z,y, z) fulfills the
condition h(z,y) = z, with function h describing the height
of the ground or the step stones at a point (z,y).

B. Optimality criteria

In this work, we propose a set of twelve different optimality
criteria ¢;, ¢ = 0,...,11, depending on state x, control
u, and one optimality parameter ppsss which defines the
optimal ratio of double and single support. Note, that all
objective functions of Lagrange type are additionally divided
by the corresponding phase duration A7y to avoid an implicit
minimization of phase times. As described above, the objective
function to be identified is defined as follows

11
®(x,u,ppsss) = »_ i), (20)
i=0
with the optimality functions of Lagrange type:
minimization of the SEA actuation in the stance foot
¢o(u) :min/ u? dt
Ss1
+min/ u§2dt+min/ w? +uidt,  (21)
Ss2 DS
minimization of the SEA actuation in the swing foot
$1(u) = min/ u§2dt—|—min/ u?, dt, (22)
SS1 SS2
minimization of hip torque of the swing foot
P2(u) = min/ |uro||2dt +min/ lu?dt,  (23)
Ss1 SS2
minimization of angular momentum in z-direction
T
¢3(x) = min / (O - éy)2dt, (24)
0
minimization of angular momentum in y-direction
T
$4(x) = min / (0, - &y)?dt, (25)
0
minimization of vertical center of mass oscillations
T
$5(x) = min / 22,dt, (26)
0
minimization of absolute swing foot velocity
b6(x) = min/ | étmal|2dt + min/ e [|1?dt, (27)
551 552

and the optimality functions of Mayer type
minimization of planar distance between foot position at touch
down and capture point

¢7(x) = > min (||(m1(trar), Y (tar))” — €(tear)|

all steps

+ (@m2 (tra2), Ym2 (traz)) " — &(traz) 1),

&(t) = (za(t), yne (1)) + \/E(ifM(t)vyM(t))T

(28)

minimization of periodicity gap in center of mass velocities
. . . 2

¢s(x) = min || (0) — e (7)]|
minimization/maximization of overall single support duration

¢9(X) =4 Z (qt7ssl + qt,ss2)7

all steps

(29)

(30)

minimization of absolute swing foot velocity at touch down

$10(x) :Zmin(”qml(ttdl)HQJr [€m2 (teaz)[1?),

all steps

€1y

tracking of ratio between sub-sequent double and single sup-
port phase to constant but unknown value ppsss

P11(x) = Z

all steps

2
qt,ds

qt,ss

— PDSSS (32)

IV. OPTIMALITY CRITERIA IDENTIFICATION

For the identification of optimality criteria, or to be more
precise, of the optimality weights < and optimality criteria
related parameters p, we rely on a least square fit of model
CoM, feet trajectories, torso orientation, and phase durations
to the corresponding reference trajectories and reference times.

In accordance to common notation in optimal control of
ODEs and DAEs and with respect to Section in the
following we refer to the control as u := (us, u,) and to the
state as X := (qas, A1, Am2, &, AN, Qm1, Ama, ). However,
x as a subscript denotes the z-axis of the basis frame.

A. Model parameters and reference data

As in the first part of the presented motion transfer, the
3D-SEA walker is meant to mimic a human being, the
model parameters have to be set as close as possible to the
corresponding values of the subject and the environment of
the motion capture experiment.

Environment and subject specific data (such as block size
and location, leg length, torso height, etc.) can directly be
measured. Feet and upper body masses are approximated based
on de Leva [10] and the absolute weight of the subject. The
width of the cone is set to r; := %ht. Spring constant k£ and
damping factor b are chosen by use of optimal control, such
that for a minimized amount of actuation the model mimics the
main characteristics of human walking. All relevant parameters
are given in Table [I|

We use motion capture and subject specific data, jointly
recorded with M. Giese et al. at Eberhard Karls University,



TABLE I

WALKING MODEL PARAMETERS AND BOUNDS FOR HUMAN SUBJECT

human subject
body weight 60kg
est. upper body weight 30kg
foot weight 0.3 kg
leg rest length 0.965m
torso height 0.7m
torso radius 0.35m
spring stiffness 3300kg/s?
damping constant 660 Ms/m
bound ss duration (1,u) 0.4s, 0.6s
bound ds duration (I,u) 0.2s, 0.5s
safety margin on block | (0.02,0.02,0.02,0.02)m
(front, left, back, right)

Tiibingen, and published in the open source KoroiBot motion
database, set up by Karlsruhe Institute of Technology [23| [1].

To convert the recorded motion to model related reference
data we extract a mean hip point qus ref = i(LASI * RAST %
LHIP % RHIP), mean foot points (Zm ref,Ym,ref) =
%(TOE + HEEL), zmyef = min(TOE,HEEL), and
the angles «, and o, given by the orientation of a
line through the mean hip point qas,.s and the marker
C7.LASI,RASI,LHIP,RHIP,TOE,HEFEL and C7 are
marker labels and denote markers for which three dimensional
position trajectories are recorded. For a full description of the
used marker set (and its labeling) we refer to the marker set,
introduced in [22].

The reference motion starts, when the rear leg is about to
lift off from the floor while the front leg is already on the first
tread. The motion ends after four full steps, when the front
leg is on the last step stone and the rear leg is about to take
off again.

B. Identification of objective weights

To take into account the different orders of magnitude of the
twelve optimality functions (ZI)-(32), we introduce a scaling
vector o, which ensures that the elements of the weight vector
7 = (¥T,ppsss/opsss)? are of similar magnitude, to
enforce a well conditioned upper optimization problem. Here,
we set o to

o ={1,1,0.01, 10,10, 1,0.01,0.1,0.1,0.001,0.001, 0.1, 0.25},
and the initial weights to
4 ={1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.5,1.0, 1.0, 1.0}.

For uniqueness reasons, we fix the first weight 7y to one and
propose an initial ratio for double and single support of 1:4
(ppsss = 0.25). Since the identification of ppgss would be
infeasible for the case 11 = 0 or 412 = 0, we introduce the
bounds 0.1 < 713 < 10, 0.01 < 412 < 10. Furthermore, to
allow for both, minimization and maximization of the overall
single support duration, we define the bounds —10 < 79 < 10.
For all other weighs we require non-negativity 0 < 7; < 10,
1=0,...,10, 7 # 9.

For the initial guess of :y(o) we observe an average quadratic
deviation between motion capture data and computed optimal

motion of 0.04m and an average difference in phase times of
0.11s. After 121 iterations on the upper level the algorithm
converges with

4*2{1.0,1.3,0.8,0.92,0.93,0.91,0.91, 1.35,1.28,0.51,0.98,0.1, 1.61}.

For the identified weights the average quadratic deviation of
the optimized motion can be reduced to 0.03m and 0.06s.

A comparison between a representative subset of the com-
puted quantities to their reference counterpart is presented in
Figure [5] a comparison of phase durations in Figure [6]
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Fig. 5. CoM trajectory and left foot trajectory resulting from identified

objective function (red, solid line) versus marker based reference data (blue,
dashed line). The z-direction is the walking direction.
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Fig. 6. Phase durations resulting from identified objective function (red)
versus reference data (blue).

Phase durations, feet trajectories, and x-y coordinates of
the center of mass are satisfying reconstructed. The torso
orientation and the vertical CoM velocities (Figure [5] bottom
left) have a greater relative difference, which is due to their
small scaling and the fact that the upper level fitting is based on
absolute errors. This can be changed by adjusting the weight
vector w, see Equ. (I).

The optimal motion for the identified objective function,
together with indicators of the reference motion, is given in
the figure sequence

V. HUMANOID GAIT GENERATION

Comparing the two humanoid robots to the human model
we can observe significant differences in architecture and
dynamical behavior.

The first robot, the iCub platform of Heidelberg University
(HeiCub), has 15 degrees of freedom and consists of an upper
body, a hip and two legs [15} 24]. It does neither have arms nor



Fig. 7.

Optimal motion with respect to the identified weights. The motion of interest is shown by the 3D-SEA walker. The reference motion is

sketched by light colored lines as legs and a small ball as head. The head trajectory of the motion (which is not an explicit state) is only plotted
for the reference solution and is meant to simplify the comparison of the torso orientation. A corresponding video is available online: http://orb.iwr.uni-

heidelberg.de/ftp/CleverMombaur_IOC_RSS2016,

a head and is therefore quite similar to the considered template
model. It has a total height of 0.97m and a total mass of 26kg.
The second robot, HRP-2, is a full body bi-pedal robot with
30 degrees of freedom. It has a total height of 1.54m and a
total mass of 58kg [19, [18].

Most of the differences between the three embodiments
(human model, HeiCub (red), HRP-2 (gray)) can be directly
taken into account by adjusting the model parameters, model
constraints and environment constraints. Whereas we have
precise information about robot masses and limits, we have
no information about spring and damping constants in terms
of the considered SEA-model. In the following experiments
we use the same stiffness as for the human but reduce the
damping to 440 Ms/m. The relevant parameters and limits are
given in Table

TABLE I
PARAMETERS AND BOUNDS FOR ROBOT MODELS

HeiCub (red) HRP-2 (gray)
body weight 26kg 58kg
est. upper body weight 12.5kg 28kg
foot weight 0.8 kg 1.2 kg
leg rest length 0.6m 0.75m
torso height 0.38m 0.8m
torso radius 0.38m 0.4m
spring stiffness 3300kg/s> 3300kg/s>
damping constant 440 Ms/m 440 Ms/m
bound ss duration (l,u) 0.5s, 1.5s 0.5s, 1.5s
bound ds duration (1,u) 0.15s, 0.5s 0.15s, 0.5s
safety margin to edge (0.10,0.05,. .. (0.12,0.08,...
(front, left, back, right) | ...,0.05,0.05)m ...,0.08,0.08)m

We set up two different step stone scenarios, one for each
robot. Here, the second scenario is particularity interesting as it
has already been accomplished by HRP-2 14 at CNRS-LAAS,
using a standard pattern generator.

A. Transfer rules

Performing motion transfer based on optimality, as it is
done in this paper, it is desirable to transfer the identified
weights of human optimality criteria as direct as possible to
the humanoid objective function. However, as robots are much
more constrained than humans a direct transfer of objective
weights usually drives the robot model to some of its bounds.
Those active constraints can change the nature of the motion

dramatically. Therefore, we aim to identify transfer rules in
terms of weight re-scaling which prevent the model to be stuck
on a certain bound.

In our specific example (as most likely for many other ones)
the identified weight for the minimization of single support
phase duration is much too large for the robot and would
result in phase durations which are forced to its lower bound.
However, this would mean the same as predefining phase
durations and destroys the advantage of state dependent phase
transitions. Therefore, it is reasonable to not only adjust the
lower bounds for the phase duration, but also to decrease the
weight 79. Similar observations are made if we only include
stricter bounds on the swing foot velocity. Here, an active
bound results in an undesired M-shaped swing foot trajectory.
Therefore, in addition to the stricter bound the weight 74
has to be increased. For the first robot model (HeiCub) the
weight 9 is divided by two (Y9,op1 = 0.25), which is
the only modification we introduce for this robot. For the
second robot model (HRP-2), where we define component-
wise bounds on the CoM velocity of [—0.5,0.5]m/s and
on the swing foot velocities of [—0.8,0.8]m/s, we increase
Y6 O Ye,rob2 = 2 and set yg9 to the high negative value
of 49,02 = —6. Furthermore, we include the fact that
in previous experiments (using a standard pattern generator)
HRP-2 successfully crossed the considered step stone scenario
with a ratio of double to single support of 1/7. Hence, for the
HRP-2 model we set the parameter ppsss,rop2 = 0.14. Also
modifications in environment constraints might require a re-
scaling of optimality parameters. In our example, HRP-2 is
asked to manage steps with significantly greater differences in
step height than in the training step stone scenario. Because
the actuation of the SEA also mimics desired knee bending,
setting y; = 1.3 enforces a gait, where the robot model swings
its almost stretched legs outwards instead of swinging the foot
on a more direct line between step stones and adjusting the
leg length. To this end we divide this weight by two and set
Y1,rob2 = 0.65. In scenario 1 the topology of the step stones
is quite similar to the human example, except for the smaller
distances and the fact, that the robot has to start the motion
with the other leg. Due to the characteristics of the template
model this issue does not require any additional modifications,
neither in the dynamics of the model, nor in the constraints,
nor in the objective.


http://orb.iwr.uni-heidelberg.de/ftp/CleverMombaur_IOC_RSS2016
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B. Gait synthesis

Fig. 8. Robot motions as result of an optimal control problem in terms
of CoM and feet trajectories, torso orientation and phase durations. Objective
weights, model parameters and bounds are adjusted to the constraints of
the two robots. A corresponding video is available online: http://orb.iwr.uni-
heidelberg.de/ftp/CleverMombaur_IOC_RSS2016.

We now use the same optimal control model which we have
used in the lower level of the inverse optimal control approach,
but adjust parameter and objective scaling as described in Ta-
ble [ and Subsection [V-A] As we do not have a sophisticated
guess for an initial motion (as we had for the inverse optimal
control based on the motion capture experiments) we start with
a simple initial motion, where feet and CoM trajectories are
linearly interpolates between step postures and where the torso
orientation is constant to zero. Finally, we predefine the desired
values for the initial horizontal CoM position (x a7, yar) at
time ¢t = 0 and the final ones at time 7.

E E E
c 1 c c
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é 0 —human § g
” ---robot1| =, N

1 --robot 2

"o 2 2 2

time [s] time [s] time [s]

Fig. 9. CoM trajectories resulting from identified objective function for

the human model (blue) and the two robot models, HeiCub (red) and HRP-2
(black).

SS0 DSO SS1 DSt SS2 DS2 SS3 DS3
phase number
Fig. 10. Phase durations resulting from identified objective function for

the human model (blue) and the two robot models, HeiCub (red) and HRP-2
(white).

The result of this computation are optimal trajectories for
the center of mass, the feet, the torso angles and the phase

durations for the two robot models, see Figure [8] Exemplary
for all the quantities, the CoM trajectories of the human
motion and the humanoid motions are presented in Figure
E} Whereas the human motion is quite fast (vg = 0.43m/s),
the computed motion for the robots, with the reduced weight
for time minimization, results in much slower motions (both
vy = 0.18m/s), see Figure 0] and [I0]

VI. CONCLUSIONS

On basis of a step stone scenario, we have presented
an approach, which allows to transfer walking motions in
constrained environment from humans to humanoids that have
different embodiments and are moving within a new scenario
with significantly different properties.

Even though the optimal motion resulting from the iden-
tified optimization strategy does not exactly match the one
based on motion capture markers, the inverse optimal control
algorithm shows a satisfying performance. The average error
in trajectories and timing between the computed and the
reference motion is reduced by 40% in comparison to the
best hand tuned solution. Taking 121 upper level iterations for
full convergence, already after half of the iterations, suitable
weights are identified. More precisely, this means that for a
loss of accuracy by approximately 5% computational time can
be reduced by 50%. We have shown, that the optimal control
based transfer of motion leads to reasonable robot motions
for two different robots. We can observe the advantage of
physically interpretable optimization criteria to derive heuristic
(but physically motivated) transfer rules. An important step of
future research is a systematic investigation and formulation of
similar transfer rules which hold for a wide range of scenarios
and robots. Follow up work will focus on two issues. On
the computational side, we extend of our studies to different
walking scenarios and augment the optimality identification
across different trials and different subjects. On the practical
side, we investigate on how well the computed robot motions
transfer to their real counterparts. In this context, the computed
motions are not planned to be run open loop on the robot.
Rather they substitute existing methods (e.g. based on the table
cart model) to generate the input for the robot specific whole
body motion generation tools.
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