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Abstract—Many applications in robotics such as registration,
object tracking, sensor calibration, etc. use Kalman filters to
estimate a time invariant SE(3) element by locally linearizing a
non-linear measurement model. Linearization-based filters tend
to suffer from inaccurate estimates, and in some cases divergence,
in the presence of large initialization errors. In this work, we use a
dual quaternion to represent the SE(3) element and use multiple
measurements simultaneously to rewrite the measurement model
in a truly linear form with state dependent measurement noise.
Use of the linear measurement model bypasses the need for
any linearization in prescribing the Kalman filter, resulting in
accurate estimates while being less sensitive to initial estimation
error. To show the broad applicability of this approach, we
derive linear measurement models for applications that use either
position measurements or pose measurements. A procedure to
estimate the state dependent measurement uncertainty is also
discussed. The efficacy of the formulation is illustrated using
simulations and hardware experiments for two applications in
robotics: rigid registration and sensor calibration.

I. INTRODUCTION

Estimation of SE(3) elements plays an important role in
many applications of robotics, ranging from registration [11]
and manipulation [18] to sensor calibration [9] and object
tracking [31]. Probabilistic estimation techniques such as
Kalman filters have been a popular choice for estimation of
SE(3) elements due to their ability to adapt to noisy sensor
measurements. While the process models used for estimation
of SE(3) elements are linear, the update models are non-
linear and the estimates provided by linear filters or their
variants are often inaccurate and even diverge in cases where
the initial estimation error is high. In this work, we derive
a linear update model for estimation of SE(3) using a dual
quaternion representation.

Dual quaternions provide a means to combine both rotations
and translations while retaining the advantages of using quater-
nions for representing rotations [6]. While dual-quaternions
have been used with iterated extended Kalman filter (IEKF)
to estimate SE(3) elements, the update model was non-
linear [10]. Non-linear update models can be highly sensi-
tive to initial estimation errors, and can be computationally
expensive. As a result in this work, we focus on deriving a
linear update model to estimate SE(3) elements. Chaukron
et al [5] come closest to our work in terms of formulating
a linear update model, but they only estimate the SO(3)
element. In this work, we start with a non-linear update model,
and using multiple sensor measurements simultaneously, we
rearrange the update model into a linear form. To the best of

our knowledge, this is the first attempt to derive a linear update
model for estimating time invariant SE(3) elements using a
Kalman filter.

The linear measurement model comes at the cost of state
dependent measurement uncertainty. Measurement uncertainty
is typically state independent and can be obtained based on the
physical characteristics of the sensor and/or the measurement
process. However, in case of state dependence, there is an addi-
tional burden of estimating the measurement uncertainty after
each state update. State dependent measurement uncertainties
have been used in systems for satellite tracking [27] and robot
navigation [28]. We use an approach similar to [27], [5] to
formulate the expressions for the state dependent measurement
uncertainties. It should be noted that the measurement uncer-
tainties have a linear dependence on their state vector, which
allows for derivation of exact expressions of uncertainties [14].

In this work we look at two broad classes of applications
based on the type of measurements used to estimate SE(3)
elements: 1) those that use position measurements such as
registration from medical imaging [21], object tracking using
laser range scanners [32], etc. and 2) those that use pose (posi-
tion and orientation) measurements such as sensor calibration
using inertial measurement units [19], hand-eye calibration
using stereo vision [12], etc . The linear measurement models
and state-dependent uncertainties are derived for both of these
cases and the results are compared with non-linear filtering
variants. We evaluate the formulation through simulations
and experiments for two applications: registration and sensor
calibration. We show that our dual quaternion-based linear
filtering (DQF) produces more accurate and fast estimates even
in the presence of high initial errors.

II. BACKGROUND

Estimation of SE(3) elements has been of interest for a
long time in robotics literature. Horn et al [13] and Besl
et al [3] developed methods for least squares estimation of
SE(3) elements for point registration. Park et al [23] and
Chen et al [4] developed optimization based methods for esti-
mating SE(3) elements in sensor calibration problems. In the
presence of noisy measurements, deterministic optimization
methods have been observed to perform poorly [24]. However,
probabilistic estimation techniques such as Kalman filters
are effective at handling noisy measurements and producing
accurate estimates of the state and associated uncertainty [15].



Several researchers have noted that filters used for esti-
mating SE(3) elements have non-linear update models [11],
and hence linear Kalman filters produce poor estimates of
SE(3) elements. Several variants of the Kalman filter have
been introduced to handle this non-linearity. The extended
Kalman filter (EKF) and unscented Kalman filter (UKF) have
been used to estimate SE(3) elements for satellite orienta-
tion [27], manipulation [18], registration [24, 21] and sensor
calibration [9]. EKF based filters perform first-order linear
approximations of the non-linear update models and produce
estimates which are known to diverge in the presence of
high initial estimation errors [5]. UKF based methods do not
linearize the models but instead require evaluation at multiple
specially chosen points (called sigma points), which can be
expensive for a high-dimensional system such as SE(3).
In addition UKF based methods require tuning of multiple
parameters, which is not intuitive.

Prior work also has looked at several parameterizations of
SE(3) that would improve the performance of the filters.
In [11] the state variables are confined over a known Rie-
mannian manifold and a UKF is used to estimate the SE(3)
element. Lie algebra elements were used with an iterated
extended Kalman filter (IEKF) in [29]. Both these methods
involve highly non-linear update models with trigonometric
terms in them. Quaternions are used to parametrize the rotation
component of SE(3) and an EKF is used to estimate the state
in [20, 2]. Quaternions are used with a UKF in [17]. Quater-
nion representation-based filters usually involve a quadratic
update model. Dual quaternions with an IEKF has been used
in [10].

In this work, we use dual-quaternions to represent the
SE(3) element; using multiple simultaneous measurements,
we derive a linear update model which can be used with a
Kalman filter without the need for linearization.

III. DUAL QUATERNIONS

There are many representations for SE(3) elements such
as Euler angles, quaternions, axis angles, etc. for rotation
and Cartesian coordinates for translation. Dual quaternions
compactly represent both translation and rotation, and with the
methods presented in this paper, give rise to a linear update
model. A detailed discussion on dual quaternions can be found
in [16]. For the rest of this work, vectors will be described
in bold font, quaternions will be represented by a (˜) over a
bold font and dual quaternion by a (ˆ ) over a bold font.

A. Quaternions

A quaternion q̃ is a 4-tuple (q0, q1, q2, q3), where q0 is the
scalar part and q = (q1, q2, q3)T = vec (q̃) is the vector part
of the quaternion. A 3-vector can be denoted by a quaternion
with a 0 scalar part.

Multiplication of two quaternions p̃ and q̃ is given by

p̃� q̃ = p0q0 − p · q + q0p+ p0q + p× q, (1)

=

[
p0 −pT
p p× + p0I3

]
q̃ =

[
q0 −qT
q −q× + q0I3

]
p̃ (2)

where � is the quaternion multiplication operator and [v]×

is the skew-symmetric matrix formed from the vector v.
Given a quaternion q̃, its conjugate q̃∗ can be written as:
q̃∗ = (q0,−q1,−q2,−q3). If the scalar part of a quaternion
is 0,

q̃∗ = −q̃∗. (3)

The conjugate has the following property: vec
(
q̃ � q̃∗

)
= 0.

The norm of a quaternion is |q̃| =
√

scalar(q̃ � q̃∗) and a unit
quaternion is one with |q̃| = 1. Unit quaternions can be used
to represent rotation about an axis (denoted by the unit vector
k) by an angle θ ∈ [−π, π] as follows

q̃ = cos

(
θ

2

)
+ k sin

(
θ

2

)
. (4)

B. Dual quaternions

A dual quaternion x̂ is an 8-tuple
(p0, p1, p2, p3, q0, q1, q2, q3), which can be written in
the form: x̂ = p̃ + εq̃, where p̃ = (p0, p1, p2, p3),
q̃ = (q0, q1, q2, q3), and ε is an element having the following
property: ε 6= 0 and ε2 = 0. ε is a mathematical construct
with a defined property and is not to be confused as having
a small value close to 0. p̃ is called the real part and q̃ is
called the dual part of the dual quaternion.

Multiplication of two dual quaternions x̂1 = p̃1 + εq̃1 and
x̂2 = p̃2 + εq̃2 is given as

x̂1 ⊗ x̂2 = p̃1 � p̃2 + ε (p̃1 � q̃2 + q̃1 � p̃2) , (5)

where ⊗ is the dual quaternion multiplication operator.
Dual quaternions have three conjugates: 1) First conjugate:

x̂1∗ = p̃ − εq̃, 2) Second conjugate: x̂2∗ = p̃∗ + εq̃∗, and
3) Third conjugate: x̂3∗ = p̃∗ − εq̃∗. A dual quaternion
is called “unit” if x̂ ⊗ x̂2∗ = 1. An important property
of the third conjugate that will be used in this work is,
(x̂1 ⊗ x̂2)

3∗
= x̂3∗

2 ⊗ x̂
3∗
1 .

A dual quaternion used to represent a vector a ∈ R3 has
the following form

â = 1 + ε (ã) , where ã = 0 + a. (6)

A dual quaternion that is used to represent an SE(3) element
has the following form

x̂ = q̃r + ε
q̃t � q̃r

2
, (7)

where q̃r is the rotation quaternion whose form is as shown
in Eq. 4 and q̃t = 0+ t is the quaternion representation of the
translational component of the SE(3) element, t ∈ R3. For
the sake of simplicity, we rewrite Eq. 7 as

x̂ = q̃r + εq̃d, where (8)

q̃d =
q̃t � q̃r

2
. (9)

It is important to note that x̂ is a unit dual quaternion since
its dual-product with the second conjugate is unity.



Let point a ∈ R3 be obtained by transforming point
b ∈ R3 using a dual quaternion x̂. The transformation can
be mathematically described as

â = x̂⊗ b̂⊗ x̂3∗, (10)

where â and b̂ are obtained using Eq. 6.

Lemma III.1. For a unit dual quaternion, x̂ = q̃r + εq̃d,
the product of third and first conjugate equals unity:
x̂3∗ ⊗ x̂1∗ = 1.
Proof:

x̂3∗ ⊗ x̂1∗ = (q̃∗r − εq̃
∗
d)⊗ (q̃r − εq̃d)

= q̃∗r � q̃r − ε
(
q̃∗r � q̃d + q̃∗d � q̃r

)
, from Eq. 1

= 1− ε
(
q̃∗r �

q̃t � q̃r
2

+
q̃∗r � q̃

∗
t

2
� q̃r

)
. (11)

Using the property that q̃r is a unit quaternion and q̃∗t = −q̃t
from Eq. 3. Eq. 11 can be further simplified as x̂3∗ ⊗ x̂1∗ = 1.

IV. MATHEMATICAL MODELING

Most applications that estimate a time invariant SE(3)
element can be broadly divided into two cases: Case I, ones
that use position measurements and Case II, that use pose
measurements for updating the state. The measurement model
for both these cases are non-linear and algebraically very
different. Dual quaternions provide us the means to rewrite the
measurement models for both these cases in a linear form. The
rest of the section deals with the derivation of measurement
models for the two cases and the corresponding uncertainties.

A. Measurement model for Case I

Systems that use position-measurements for model update
have the following general form

a = Rb+ t, (12)

where a is the sensor measurement,R ∈ SO(3) is the rotation
matrix, b ∈ R3 is the point to be transformed and t ∈ R3 is the
translation vector. In an application such as rigid registration
of images, a is the sensed location of points and b is the
corresponding point on the CAD model of the object. Eq. 12
can be rewritten using dual-quaternions from Eq. 10 as shown

â = x̂⊗ b̂⊗ x̂3∗, (13)

where x̂ is as defined in Eq. 8. Applying Lemma III.1, Eq. 13
can be rewritten as

â⊗ x̂1∗ = x̂⊗ b̂. (14)

Let us consider the case of a pair of measurements ai, i = 1, 2.
From Eq. 14, we have

âi ⊗ x̂1∗ = x̂⊗ b̂i,
⇒(1 + εã1)⊗ (q̃r − εq̃d) = (q̃r + εq̃d)⊗ (1 + εb̃1), (15)

(1 + εã2)⊗ (q̃r − εq̃d) = (q̃r + εq̃d)⊗ (1 + εb̃2) (16)

Subtracting Eq. 16 from Eq. 15, we obtain

(ε (ã1 − ã2))⊗ (q̃r − εq̃d) = (q̃r + εq̃d)⊗
(
ε
(
b̃1 − b̃2

))
⇒ ε ((ã1 − ã2)� q̃r) = ε

(
q̃r �

(
b̃1 − b̃2

))
⇒ (ã1 − ã2)� q̃r − q̃r �

(
b̃1 − b̃2

)
= 0̃. (17)

Note that Eq. 17 does not have q̃d and contains only the rota-
tion quaternion. Using the quaternion multiplication described
in Eq. 1, Eq. 17 can be rewritten in the following form

Hq̃r = 0̃, where (18)

H =

[
0 −(a1 − a2 − b1 + b2)T

(a1 − a2 − b1 + b2) (a1 + a2 + b1 + b2)×

]
4×4

.

(19)

The rotation quaternion q̃r lies in the null space ofH . In order
to estimate q̃r we use a Kalman filter whose state vector is
q̃r. For this filter, the pseudo measurement model is

h = Hq̃r. (20)

We enforce the pseudo measurement model h = 0 ∈ R4.
The measurement in Eq. 20 is called “pseudo-measurement”
because the h does not represent a true measurement. The
pseudo-measurement is dependent on q̃r, ãi and b̃i all of
which have associated uncertainties. In section IV-C1, we
discuss the procedure to compute the uncertainty in the
pseudo-measurement. Subsequently in section V, we describe
the equations of the Kalman filter that estimates q̃r using the
linear measurement model.

After estimating q̃r using a Kalman filter, we need to
estimate q̃t. Adding the Eq. 15 and Eq. 16 we have

(2 + ε(ã1 + ã2))⊗ (q̃r − εq̃d) =

(q̃r + εq̃d)⊗
(

2 + ε(b̃1 + b̃2)
)
,

⇒2q̃t � q̃r = (ã1 + ã2)� q̃r − q̃r � (b̃1 + b̃2),

⇒q̃t =
ã1 + ã2

2
− q̃r �

b̃1 + b̃2
2

� q̃∗r . (21)

Thus, Eq. 21 determines q̃t directly using the estimated value
of q̃r without the need for a Kalman filter. This is a helpful
byproduct of using multiple measurements simultaneously in
Eq. 15. Since the scalar part of q̃t is 0 and vector part is t,
we can rewrite Eq. 21 in the following vector form

t =
a1 + a2

2
−Rq̃r

(
b1 + b2

2

)
, (22)

where Rq̃r is the rotation matrix formed using the quaternion
q̃r. Section IV-C2 describes the uncertainty associated with t.

B. Measurement model for Case II

Systems that use pose-measurements for model update
typically have the following general form [23]

AX −XB = 0, (23)

where A,X,B ∈ SE(3). A and B are pose-measurements
and X is the desired transformation to be estimated.



A Kalman filter used to estimate X such as
in [9], would have a pseudo-measurement of the form,
h3×3 = AX −XB. One again we enforce the pseudo-
measurement model h3×3 = 0. A UKF with a state matrix
instead of state vector can directly handle measurement
models in matrix forms [11]. The pseudo-measurements can
also be converted to a vector form as shown in [9] and then
estimated using a UKF. Using dual quaternions we rewrite
Eq. 23 in an alternate form, which would ultimately result in
a linear pseudo-measurement, thus allowing us to use a linear
Kalman filter for state estimation.

Let â, x̂, b̂ be the dual quaternions corresponding to
A,X,B respectively. Eq. 23 can be rewritten as

â⊗ x̂− x̂⊗ b̂ = 0̂. (24)

Using Eq. 8, Eq. 24 can be written as

0̂ =(ãr + εãd)⊗ (q̃r + εq̃d)− (q̃r + εq̃d)⊗ (b̃r + εb̃d),

=
(
ãr � q̃r − q̃r � b̃r

)
+

ε
(
ãd � q̃r + ãr � q̃d − q̃d � b̃r − q̃r � b̃d

)
. (25)

Hence we have

0̃ = ãr � q̃r − q̃r � b̃r (26)

0̃ = ãd � q̃r + ãr � q̃d − q̃d � b̃r − q̃r � b̃d. (27)

Eq. 26 has a form very similar to Eq. 17, with the only
difference being that the scalar parts of ãr, b̃r are not 0. If
ãr = a0 + ar and b̃r = b0 + br, using Eq. 1 we rewrite
Eq. 26 as

Hrq̃r = 0, where (28)

Hr =

[
a0 − b0 −(ar − br)T
ar − br (ar + br)

×
+ (a0 − b0) I3

]
4×4

. (29)

The pseudo-measurement is

hr = Hrq̃r, (30)

and the pseudo-measurement model is hr = 0. The uncer-
tainty associated with hr is derived in section IV-C3.

Similar to section IV-A, we use the estimated value of q̃r
to estimate t. Using Eq. 9, Eq. 27 can be rewritten as

0̃ = ãr � q̃t � q̃r − q̃t � q̃r � b̃r + σ̃1, (31)

where σ̃1 = 2ãd � q̃r − 2q̃r � b̃d. Multiplying both sides of
Eq. 31 with q̃∗r , we obtain:

0̃ = ãr � q̃t − q̃t � q̃r � b̃r � q̃
∗
r + σ̃1 � q̃∗r ,

= ãr � q̃t − q̃t � σ̃2 + σ̃3, (32)

where σ̃2 = q̃r � b̃r � q̃
∗
r and σ̃3 = σ̃1 � q̃∗r . The structure

of Eq. 32 is similar to Eq. 26, with the only differences being
the addition of σ̃3 term and the scalar part of q̃t is 0. If
σ̃2 = σ0

2 + σ2, using Eq. 1 we rewrite Eq. 32 as

0 = Htt+ σ̃3, where (33)

Ht =

[
−(ar − σ2)T

(ar + σ2)
×

+
(
a0 − σ0

2

)
I3

]
4×3

. (34)

Unlike the case discussed in section IV-A, t cannot always
be directly obtained from the estimated q̃r. This is because
estimation of t would require inversion of Ht, which need
not always be invertible as it is formed from arbitrary sensor
measurements. As shown in section V, a linear Kalman filter
is employed with the following pseudo-measurement model to
estimate t,

ht = Htt+ σ̃3. (35)

We enforce the pseudo-measurement model ht = 0. The
uncertainty associated with ht is derived in section IV-C3.

C. Uncertainty in pseudo-measurements

In order to estimate the uncertainties associated with the
pseudo-measurements as well as the translational vector de-
scribed in the previous sections, we make use of an important
result from stochastic theory [14, pp. 90–91], [5, Appendix A]
described in Proposition 1.

Proposition 1. Let us consider b ∈ Rm and c ∈ Rn which are
sequences with zero mean. Let h ∈ Rn, x ∈ Rl and a linear
matrix functionG(·) : Rl → Rn×m, such that h = G(x)b+c.
Assume that x, b and c are independent. Then Σh is given
by

Σh = G(x)ΣbGT (x) +N(Σb ~ Σx)NT + Σc, (36)

where ~ is the Kronecker product, Σ{·} is the uncertainty
associated with {·} and N ∈ Rn×lm is defined as follows

N , [G1 G2 · · · Gm].

Gi ∈ Rn×m is obtained from the following identity:

Gix = G(x)ei,

where ei is the unit vector in Rm with 1 at position i and 0
everywhere else.

1) Uncertainty in pseudo-measurement for estimating the
rotation in Case I: To find the uncertainty in the linear pseudo-
measurement, we rewrite h from Eq. 20 in the following form

h = H(p1,p2, q1, q2)q̃r,

= G(q̃r)vtrue, where vtrue = (pT1 ,p
T
2 , q

T
1 , q

T
2 )T

=
[
G1 −G1 G2 −G2

]
vtrue. (37)

In Eq. 37, G1 =

[
−qTr

−q×r + q0I3

]
and G2 =

[
qTr

−q×r − q0I3

]
,

where q̃r = q0 + qr are obtained from Eq. 1. Eq. 37 is
the pseudo-measurement for a noise-free sensor measurement
vtrue. If v is the sensor measurement with noise δv, then

δv , v − vtrue. (38)

Solving for vtrue from Eq. 38 and substituting in Eq. 37 yields:

h(q̃r) = G(v − δv)

= Gv + ν1, (39)

where ν1 = −G (q̃r) δv is a zero mean noise. From Eq. 39,
the uncertainty in the pseudo measurement Σh can be obtained
using Eq. 36.



2) Uncertainty in translation for Case I: The expression
for t assuming perfect measurements pi and qi is given in
Eq. 22. In the presence of noise in the measurements, similar
to the derivation of Eq. 38, we obtain from Eq. 21

t =
p1 + p2

2
− vec

(
q̃r �

q̃1 + q̃2
2

� q̃∗r
)

+ ν2, where,

ν2 = −δp1 + δp2
2

+ vec
(
q̃r �

δq̃1 + δq̃2
2

� q̃∗r
)
. (40)

From Eq. 40, ν2 is a zero mean noise with variance Σt ∈
R3×3,

Σt =
Σp1 + Σp2

4
+ Στ , (41)

where τ = vec
(
q̃r �

δq̃1+δq̃2
2 � q̃∗r

)
, δq̃i = 0 + δqi. Στ is

computed using Eq. 36 as shown below

τ =vec
(
q̃r �

δq̃1 + δq̃2
2

� q̃∗r
)

=vec (q̃r � (0 + σ)) = −G2σ

where σ̃ = 1
2

[
G3 G3

] [δq̃1
δq̃2

]
and G3 =

[
q×r + q0I3

]
is

obtained from Eq. 1. Eq. 36 is then used to find Σσ,Στ .
3) Uncertainty in pseudo-measurement models for Case

II: For pose based measurements, there are two pseudo-
measurements corresponding to estimation to q̃R and t. Eq. 30
and Eq. 35 are rewritten in the following form

hr = Grutrue, (42)
ht = Gtwtrue + σ3, (43)

where Gr =

[
q0 −qTr −q0 qTr
qr q0I3 − q×r qr −q0I3 − q×r

]
,

utrue = (a0,a
T
r , b0, b

T
r )T , Gt =

[
0 −tT 0 tT

t −t× t −t×
]

and

wtrue = (a0,a
T
r , σ

0
2 ,σ

T
2 )T .

Eq. 42 and Eq. 43 are the pseudo-measurements for
noise free sensor measurements utrue, wtrue. If u and w
are the sensor measurements with noise δu and δw respec-
tively, then hr = Gru+ ν3, ht = Gtw + σ3 + ν4, where
ν3 = −Grδu and ν4 = −Gtδw − δσ3 are zero mean noise
with covariance Σhr and Σht respectively, which can be
obtained using Eq. 36.

V. KALMAN FILTER EQUATIONS

As shown in Eq. 17 and in Eq. 25, q̃r and t can be estimated
in a decoupled manner. In this work, we formulate a Kalman
filter that first estimates q̃r and then uses the estimated q̃r
to estimate t. For Case I, t and Σt can be directly estimated
from Eq. 22 and Eq. 41 upon estimating q̃r and Σq̃r . However
for Case II, a Kalman filter is used to estimate the mean and
uncertainty in t.

The state vector of the Kalman filter that is used to estimate
q̃r is xk = q̃r, xk ∈ R4.. The state vector is initialized with
a suitable guess for mean and uncertainty. In the absence of a
good initial guess, the state is initialized to x0 = (1, 0, 0, 0)T

with a large initial uncertainty. If the uncertainty in rotation
is known in terms of some other parametrizations such as
Euler angles, then the uncertainty is propagated to the space
of quaternions using a Jacobian mapping as shown in [22].

Since the SE(3) element to be estimated is time-invariant,
the process model is static, i.e., xk|k−1 = xk−1|k−1. Upon ob-
taining pi and qi (i = 1, 2) for Case I, or â, b̂ for Case II, we
formulate the pseudo-measurements h(xk|k−1) = Hkxk|k−1.
The observation matrix Hk is given by Eq. 19 for Case I
and by Eq. 29 for Case II. The measurement uncertainty Σhk
is then calculated as shown in section IV-C1 for Case I and
section IV-C3 for Case II.

The state is updated using standard equations of the Kalman
filter [15]

xk|k = xk|k−1 −Kk

(
Hkxk|k−1

)
, (44)

Σxk|k = (I −KkH)Σxk|k−1, (45)

where Kk = Σxk|k−1H
T
(
HΣxk|k−1H

T + Σhk

)−1
.

It has already been discussed that q̃r is a unit quaternion;
which implies that the state vector has to be a unit vector.
This requirement is not enforced by the equations of the
Kalman filter directly. However, there are three methods
to enforce unit-normalization of state vector (1) including
the constraint as an additional pseudo-measurement [2], (2)
reducing the dimension of the state vector by substituting
q0 =

√
1− q21 − q22 − q23 [27], (3) normalizing the state vector

at the end of each update step [5]. The first two methods result
in non-linear measurement models, which defeats our purpose
of developing equations for a truly linear filter. As a result we
resort to the third method of normalizing the state vector after
every update and suitably scaling the uncertainty,

x∗k|k =
xk|k∥∥xk|k∥∥ , Σx

∗

k|k =
Σxk|k∥∥xk|k∥∥2 . (46)

Such an approach has been shown to estimate efficiently in
[20] and [10].

Upon estimating xk|k and Σxk|k, Eq. 22 and Eq. 41 are used
to estimate tk|k and Σtk|k, for Case I. For Case II, we initiate
another Kalman filter whose process model is static as in the
case of q̃r. The measurement model is also linear as in the
case of q̃r. The equation for the measurement model is as
shown in Eq. 35. The observation matrix is evaluated at the
estimated value of q̃r.

VI. RESULTS

We apply the filtering method developed in the earlier sec-
tions to two examples: rigid registration and sensor calibration
representing Case I and Case II respectively. Simulation as
well as experimental results are provided in the following
sections.

A. Rigid registration

The rigid-registration problem can be defined as finding the
SE(3) element that aligns points in one reference frame to the
points in another reference frame. Usually points in one frame



are computed from a CAD model of the object and points in
the other frame are estimated from images, position sensors,
laser range scanners, etc.

Iterative closest point (ICP) is one of the most popular
methods to perform rigid-registration [3]. A number of variants
to the ICP have been introduced [25, 30]. ICP and most of
its variants are batch processing tools; i.e., one needs to wait
for all the measurements to be collected before estimating the
transformation. Also in the presence of noisy data, ICP and
most of its variants have been observed to perform poorly [24].
As a result, online estimation techniques have been developed
to account for noise in the measurements [24, 21, 11].

In this work, we apply DQF method to register 100 points
randomly sampled from the surface of a “Stanford bunny”, to
its CAD model. We first assume that the point correspondence
is known and estimate the registration with DQF, whose actual
registration parameters are all 0s. We sample 1000 initial
registration estimates uniformly drawn from large initial errors
in position, for x, y, z ∈ [−10000, 10000]mm and orientation
θx, θy, θz ∈ [−180, 180]deg. From Fig. 1, we observe that
DQF correctly estimates the registration for all the initial
estimates. Following this, we perform two more experiments
with noise added to the sampled points. The noise is uniformly
sampled from [−2, 2]mm along each axis, in one case and
[−3, 3]mm in the other. Fig. 1 shows that the RMS error for
all the estimates is only due to the noise in the measurements
and its magnitude matches well with the noise added to the
points. Thus, when the point correspondences are known,
DQF accurately estimates the registration parameters even in
presence of very high errors in the initial estimate.
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Fig. 1. RMS error upon estimating registration parameters with DQF for
1000 runs with different initial estimates, when the point correspondence is
known. Three experiments were carried out: 1) noise uniformly sampled from
[-1,1], 2) noise uniformly sampled from [-2,2] and 3) no noise was added.
DQF accurately estimates he registration parameters in all cases

Following this observation, we now perform registration
in a more realistic scenario where point correspondence is
unknown. Point correspondence to the CAD model is found
using a closest point rule as in [3, 24, 21]. We repeat the
exercise by adding noise to the points and then estimating
the transformation. In both the cases, we compare the dual
quaternion based filtering to an EKF based estimator [24] and
a UKF based estimator [21]. We choose an initial guess of
zero rotation and zero translation and an initial covariance of
Σ
q̃r
0 = 5I4 for rotation and Σt0 = 100I3 for translation. DQF,

EKF and UKF are implemented with 40 initial starts obtained

by locally perturbing the initial guess by translation sampled
uniformly from [−15 15]mm along each axis and a rotation
sampled uniformly from [−30 30]deg along each axis. Since
the problem has several local minima, using multiple initial
guesses improves the chances of finding the global minimum.
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Fig. 2. (a) Initial position and DQF estimated position of 100 points are
shown against the CAD model of the “Stanford bunny”. DQF accurately
registers the points to the CAD model. (b) A plot of the RMS error wrt
number of points for DQF, EKF and UKF. DQF and EKF converge quickly,
while UKF takes a while to converge. DQF however converges to lower RMS
error, with computation time an order of magnitude lower than EKF and UKF
as shown in Table I.

Fig. 2(a) shows the CAD model of the Stanford bunny in
green. The blue diamond markers show the initial guess for
the location of the points and the red circular markers show
the DQF estimated location of the points. Fig. 2(b) shows
the RMS error versus number of points used to estimate the
parameters. The RMS error decreases with the usage of more
point measurements. DQF and EKF converge to a smaller
RMS error at about 10 points, while the UKF takes many
more points to converge. First four rows of Table I show the
actual registration parameters and the estimated registration
parameters. The right column of Table I shows the time taken
by the filters to update for 100 point measurements. DQF
converges an order of magnitude faster than EKF and UKF
and also has the lowest RMS error.

Fig. 3 shows the results for the case where the sampled
points are corrupted with a noise uniformly sampled from
[−2 2]mm along each axis. DQF accurately registers the points
to the CAD model as shown in the last three rows of Table I.
DQF once again performs better than EKF and UKF, and takes
lower computational time 1.

1The computational time taken is calculated for a code running on
MATLAB R2015a software from MathWorks, running on a ThinkPad T450s
computer with 8 GB RAM.



TABLE I
REGISTRATION RESULTS FOR STANFORD BUNNY

No noise x y z θx θy θz RMS Time
(mm) (mm) (mm) (deg) (deg) (deg) (mm) (s)

Actual 22 -23 20 15 -10 -10 – –
DQF 22.54 -21.52 20.03 17.28 -9.94 -10.15 1.12 23.44
EKF 22.35 -26.39 21.11 11.43 -11.44 -14.76 3.88 155.02
UKF 21.36 -23.89 18.94 16.39 -5.95 -10.55 2.47 247.56

With noise

DQF 22.34 -24.22 18.79 13.37 -9.09 -10.18 2.70 47.05
EKF 20.29 -26.09 20.69 8.76 -12.79 -8.08 3.81 324.23
UKF 20.08 -24.78 14.6 11.90 -6.08 -8.04 4.80 510.73
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Fig. 3. (a) Initial position and estimated position of 100 points with added
noise are shown against the CAD model of the “Stanford bunny”. DQF
estimates the registration parameters accurately even in the presence of noise.
(b) A plot of the RMS error wrt number of points for DQF, EKF and UKF.
DQF and EKF converge quickly, but UKF takes a while to converge. Overall,
all the three filters converge closely to one another, with the DQF performing
marginally better. The DQF converges with computation time an order of
magnitude lower than the other two as shown in Table I.

B. Sensor calibration

The sensor calibration problem is as follows: given the
pose of two bodies Ai and Bi, defined with respect to
two different inertial frames: {1} and {2}, we would like to
estimate the rigid transformation between the two bodies, by
tracking Ai and Bi, where the index i denotes an instance
of time. Fig. 4(a) shows the various frames described above.
This problem can be described as AijX = XBij , where
Aij = A−1i Aj and Bij = B−1i Bj . X is the rigid transfor-
mation between the two bodies which needs to be estimated
as shown in Fig. 4(b).

If the measurements are noise-free, then X can be obtained

Fig. 4. (a) The setup shows a da Vinci robot with an EM tracker rigidly
attached to the tool. The reference frame for the EM tracker is shown in red.
The reference frame for the robot is located at its remote center of motion
(RCM), shown in yellow. The pose of the tip of the robot, Ai is shown in blue
and the pose of the sensor, Bi is shown in green. X is the transformation
between the tip of the robot and the EM tracker. (b) The robot is shown at
two time instances i and j. Aij is obtained from kinematics and Bij is
obtained from the EM tracker measurements. The unknown to be solved for
is X , which can be posed in the form: AijX = XBij .

analytically from a pair of measurements: A12X = XB12

and A23X = XB23 [23, 4]. But sensors are seldom noise-
free, and hence several optimization based approaches exist
to solve this problem [13, 26], whose solution drives many
applications [7, 1, 8, 12]. Recently Faion et al [9] developed a
filtering based solution to this problem, which could perform
online estimation using a UKF to estimate the pose which
is parameterized using axis-angle and Cartesian parameters.
We compare our DQF to this UKF based estimation. We
also develop an EKF based estimation using the measurement
model described in [9] for a second comparison.

C. Simulation

We first tested our algorithm with simulated data and then
with data collected from real experiments. For the simulated
case, we first generate 500 random poses for the tool tip,
Ai (i = 1, . . . , 500). We then choose a ground truth SE(3)
element X to generate the corresponding poses for the EM
tracker Bi. We initialize the filters to zero translation and
zero rotation with an initial covariance of Σ

q̃r
0 = 5I4 for

rotation and Σt0 = 100I3 for translation. We assume that
the correspondence between the sensed poses is known. Such
an assumption is reasonable as the sensor measurements can
be easily time-synchronized. If this synchronization is not
possible, correlation between the sensor measurements can be
obtained as shown in [19].

The SE(3) elements estimated by DQF, EKF and UKF
are shown in Table II along with computation time for each
algorithm and the error in position and orientation parameters.



DQF provides faster estimates and is more accurate, especially
in the translation estimation, compared to UKF and EKF.

Following this, we perturb Bi that is computed from the
ground truth X . The pose is perturbed by a translation
uniformly sampled from the interval [−2 2]mm along each
axis and a rotation uniformly sampled from [−10 10]deg along
each axis. The estimated parameters are shown in Table II.
Once again DQF estimated faster and is more accurate than
UKF and EKF.

D. Experimental validation

In order to test our formulation with real data, we use an
experimental setup as shown in Fig. 4(a), which consists of a
da Vinci R© surgical robot (Intuitive Surgical Inc., Mountain
View, CA) and an electromagnetic (EM) tracking sensor
(trakSTARTM from Ascension Technologies, Burlington,VT).
The tracker is rigidly attached to a known point on the tool of
the robot. The robot is then telemanipulated and the position
and orientation of the tip of the robot is measured from the
kinematics. The position and orientation of the EM tracker
with respect to the inertial frame attached to the magnetic
field generator is also simultaneously recorded. We then use
DQF, EKF and UKF to estimate the transformation between
the frames of the tip of the robot and the frame of the EM
tracker. Last three rows of Table II shows the parameters as
estimated by DQF, EKF and UKF.
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Fig. 5. (a) The plot shows the estimated value of the quaternion that
represents the rotation. The values converge at around 100 measurements.
(b) The plot shows the estimated value of the translation vector. The values
converge at around 200 measurements.

Fig. 5 shows the values of the quaternion and the translation
vector as estimated by the dual quaternion filter. The estimated
values converge at around 100 measurements for rotation and
200 measurements for translation. Since the rotation estimation
does not depend upon translation estimation, we can stop
running the filter that estimates rotation after convergence and
continue to run the translation filter until convergence. We

TABLE II
SENSOR CALIBRATION RESULTS

Simulation: No noise in sensor measurements
x y z θx θy θz Time

(mm) (mm) (mm) (deg) (deg) (deg) (s)

Actual 5.73 8.59 11.46 10.00 -16.00 35.00 –
DQF 5.73 8.59 11.46 9.96 -15.95 34.91 0.25
EKF 3.38 1.82 5.25 10.09 -15.93 35.05 1.20
UKF 3.56 10.59 10.81 9.98 -15.98 35.05 3.11

Simulation: With noise in sensor measurements
DQF 5.59 8.22 11.38 9.95 -15.95 34.81 0.24
EKF -3.48 4.22 8.36 10.14 -16.01 35.01 1.15
UKF 5.89 10.44 10.01 10.83 -16.81 34.81 3.20

Robot experiments
Actual -4 -20 45 105 88 109 –
DQF -4.10 -17.50 -45.10 105.55 87.88 108.69 0.27
EKF -3.60 -22.00 -45.10 105.97 86.15 107.08 1.39
UKF -4.40 -14.1 -47.50 132.11 87.05 135.01 3.70

observe that it takes around 0.08s for the DQF estimate to
converge which is roughly 5 times faster than EKF and 15
times faster than UKF, while being more accurate than both
EKF and UKF. Since the estimation is close to real time,
we implement this algorithm in an online manner to estimate
SE(3) elements as needed.

VII. CONCLUSION

In this work, we have developed linear measurement models
to be used with Kalman filters for the estimation of SE(3)
elements. This was possible due to our choice of using dual
quaternions to represent SE(3) elements and combining mul-
tiple sensor measurements simultaneously. All the information
contained in the non-linear update model was encoded in the
linear measurement model and its corresponding uncertainty,
which happens to be state dependent in this case. Since the
dependence on the state was found to be linear, results from
stochastic theory were used to determine the exact expressions
for the uncertainty. We show that the new linear measure-
ment model allows for decoupled estimation of rotation and
translation using independent Kalman filters. The decoupled
estimation potentially has the advantage of running in-parallel
and accelerating the estimation process.

We have shown through simulations and experiments that
the dual quaternion-based linear filtering is capable of es-
timating the SE(3) more accurately with less computation
time compared to state-of-the-art filtering methods for SE(3)
estimation. These characteristics of the dual quaternion-based
filter, make it an ideal candidate to be used in applications
that require real-time estimation of SE(3) elements such as
sensor calibration, localization and manipulation. Adapting the
method for applications that involve estimation of time varying
SE(3) elements, whose process model may not be linear, will
be a subject of future work.
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