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Abstract—Having many degrees of freedom is both a blessing
and a curse. A mechanism with a large number of degrees
of freedom can better comply to and therefore better move in
complex environments. Yet, possessing many degrees of freedom
is only an advantage if the system is capable of coordinating them
to achieve desired goals in realtime. This work supports the belief
that a middle layer of abstraction between conventional planning
and control is needed to enable robust locomotion of articulated
systems in complex terrains. The basis for this abstraction is
the notion that a system’s shape can be used to capture joint-
to-joint coupling and provide an intuitive set of controllable
parameters that adapt the system to the environment in real time.
This paper presents a generalizable framework that specifies
desired shapes in terms of shape functions. We show how shape
functions can be used to link low-level controllers to high-level
planners in a compliant control framework that directly controls
shape parameters. The resultant shape-based controllers produce
behaviors that enable robots to robustly feel their way through
unknown environments. This framework is applied to the control
of two separate mechanisms, a snake-like and a hexapod robot.

I. INTRODUCTION

Decoupling planning and control for locomotion in com-
plex terrains does not, in general, produce robust real-time
solutions. A planner can generate a motion plan, and then a
closed-loop controller can execute it, but any slight uncer-
tainly in modeling can easily cause the system to fail. In
other words, decoupled planning/control solutions tend to be
brittle. To address this, we fuse planning and control with a
coherent middle layer that adds robustness to and decreases the
complexity of coordinating many degrees of freedom during
locomotion. Shape functions are presented as the element
that helps define this middle layer for articulated systems.
A shape function 1) analytically encodes the interdependent
joint-to-joint motions necessary to produce desired behaviors
in nominal locomotion, 2) provides sets of parameters that can
be controlled to adapt mechanisms to complex environments
while moving through them, and 3) offers low-dimensional,
straight-forward connections to higher-level planners.

In terms of adapting locomotion in unstructured terrains,
this work shows that admittance control can be specified in
terms of shape parameters, which are the parameters used
to define shape functions. By mapping joint torques into
equivalent forces on shape, shape-based compliant controllers
autonomously modify the system’s shape to better comply to
the environment during locomotion. Results of implementing
shape-based controllers on two systems - a snake-like robot
and a walking hexapod - are presented to highlight both the
generality of this approach, as well as to provide different
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Fig. 1: Snake-like robot autonomously moving through a peg
array with no a priori knowledge of the array parameters.

examples of systems compliantly feeling their way through
complex terrains.

Our approach to mid-level, shape-based control bears re-
semblance to concepts in the motion planning and control
communities. In particular, the controllers derived in this work
can be interpreted as special cases of dynamic movement
primitives (DMPs) [8], [5]. More specifically, decentralized
implementations of shape-based compliance are closely related
to work that appears in [7], which presents a method for
online trajectory generation of an articulated body using a
central pattern generator (CPG) [6]. Relative to these prior
works, we make extensions that show how distributed joint
torque measurements can be incorporated into shape-change
dynamics. Additionally, we show how decentralized control
methods can be modified to propagate shape information
that improves locomotive performance. Direct experimental
comparisons between our approach, a CPG-based controller,
as well as a torque-modified CPG controller are presented.

II. RELATED WORK

The shape-based compliant control framework presented in
this work combines and makes extensions to several existing
components in the literature on snake robot control, admittance
control, and DMPs. Brief reviews of these topics are provided
in this section.

A. Snake-Like Robots

Previous work on the control of snake-like robots can be
grouped into two general categories: 1) model-based control
and 2) model-free control. Model-based snake-robot control
methods have previously been derived for both kinematic as
well as dynamic system models. Examples of model-based
controllers for snake-like robots include work in [12], [19], [9],
[10], [15]. Model-based approaches make it possible to apply
conventional planning and control techniques to snake robots,
but, like all model-based approaches, rely on the accuracy



of the environmental model. This is an especially limiting
assumption in complex terrains.

Model-free control methods typically define feed-forward
joint-space trajectories that are shown to empirically produce
desired net behavior of the robot. Examples of model-free
controllers for snake-like robots are presented in Hirose’s
pioneering work in [1], the pedal wave approach found in [22],
the modal approach of Chirikjian [2], compound serpenoid
model in [20], and a variety of others [21]. Recent work in
[16] presents an interesting extension to model-free control
for snake robots. Using an approximate force measurement,
[16] derived an impedance-like controller [4] that adapted
parameters in a feed-forward gait model. The work we present
is related to [16], but extends to a variety of unstructured
environments.

B. Admittance Control

Model-free control methods, like those discussed for snake-
like robots in Section II-A, provide one way to connect high-
level motion planning to low-level control under nominal
conditions. A high-level planner selects between different pre-
defined feed-forward trajectories, and low-level controllers
regulate the system to follow these desired open-loop policies.
In environments that make nominal operation either ineffective
or impossible, we believe that locomotion control is better
suited to adapt nominal feed-forward signals, θ0, to produce
augmented desired signals θd, than to attempt to generate
entirely new motion plans altogether. The dynamic relationship
that specifies how θ0’s are transformed to produce θd’s forms
the basis for what we consider to be a middle layer between
planning and control for locomotion.

Admittance control provides one way to augment nominal
system trajectories in the presence of external forcing. For
example, consider a system with N joints, θ ∈ RN , that
is in contact with the environment. Considering a simplified
dynamic model, an admittance controller for this system is
specified by the following second-order system dynamics [13],

mθ̈ + kdθ̇ + kp(θ − θd) = τext (1)

Md(θ̈d − θ̈0) +Bd(θ̇d − θ̇0) +Kd(θd − θ0) = τext, (2)

where m is an inertia, kd and kp are positive gains, τext is
the torque due to the external force, Md is an effective mass,
Bd an effective damping, and Kd an effective spring constant.
Equation (1) represents the controlled second-order dynamics
for the system, where the low-level controller is a standard
PD control law. What makes this an admittance controller is
that the desired set point θd in (1) has its own set of dynamics
that adjust θd in response to external forcing, measured by
τext. Equation (2) specifies that the desired joint signal θd has
the linear dynamics of a forced spring-mass-damper, with a
nominal trajectory defined by θ0. Note that in the absence
of external forcing, the desired trajectory θd will converge to
the nominal trajectory θ0, and thus the admittance controller
becomes a standard PD controller.

C. Dynamic Movement Primitives

Similar to the method of adjusting desired trajectories as a
function of external forcing in admittance control, the method
of dynamic movement primitives (DMP) also assigns dynam-
ics to parameters that govern open-loop desired trajectory
generation [17], [8]. While DMPs are more general than
admittance controllers, the fundamental concept is similar:
assign relatively simple stable dynamics that are modulated
to create desired behaviors in the region of an attractor (or
nominal set-point). For example, as noted in [8], the most
basic form of a DMP is

εÿ = ν(ρ(g − y)− ẏ) + f, (3)

which is a forced spring-mass-damper system, where ε and
ν, ρ > 0 govern the dynamic response of the system. The
term f in (3) is a forcing term that can be used to modulate
the response of y. The freedom in choosing f is what makes
DMPs more general than admittance controllers. In other
words, an admittance controller can be thought of as a special
case of a DMP, where the forcing signal f in (3) is explicitly
a function of proprioceptively-measured environmental forces.
This point is made clear by rewriting (3) as,

Mÿ +Bẏ +K(y − g) = f (4)

where M = ε, B = ν, and K = νρ.

III. SHAPE-BASED COMPLIANT CONTROL

Shape-based compliant control provides a middle-layer of
abstraction between planning and control that naturally ex-
tends admittance control to articulated locomotion. This exten-
sion begins with shape functions. These geometric abstractions
are composed of two core elements: shape bases and shape pa-
rameters. Shape bases determine the spatial coupling between
different degrees of freedom. Shape parameters determine how
a system’s shape evolves as a function of time, i.e., shape
parameters determine how different shape bases are blended
together during locomotion.

A shape function h is formally defined as a function that
maps a point σ in the shape parameter space (or just shape
space) Σ, into the joint space of a mechanism, i.e., h : Σ →
RN , where θ ∈ RN defines the joint space for an N -joint
mechanism.

A. Linear Shape Functions

We consider first the special case where h is a linear
function in the shape parameters σ, i.e.,

h(σ) =

M∑
i=1

σi(t)βi(s), (5)

where the βi(s)’s are linearly independent shape basis func-
tions. These basis functions spatially encode static joint-to-
joint coordination, i.e., these basis functions encode static
shapes for a particular mechanism. The expression for h in
(5) can be used to map (1) and (2), that define an admittance



controller in joint space, into an equivalent expression in the
shape parameter space Σ using the following relationships,

θγ = h(σγ), (6)

θ̇γ =
∂h(σγ)

∂σγ
σ̇γ = Jσ̇γ (7)

θ̈γ = J̇ σ̇γ + Jσ̈γ , (8)

where γ = {d, 0}; σd defines a desired shape parameterization
and σ0 a nominal shape parameterization. The Jacobian matrix
J in (7) is an analytical Jacobian that arises from changing
coordinates from the shape parameter space to the joint space
[18]. Substituting (6)-(8) into (2) yields,

M ′d(σ̈d − σ̈0) +B′d(σ̇d − σ̇0) +K ′d(σd − σ0) = τ ′ext, (9)

where M ′d = JTMdJ , B′d = JTBdJ + JTMdJ̇ , K ′d =
JTKdJ , and τ ′ext = JT τext. The second-order dynamics in (9)
along with the shape function (5) provide an analytical basis as
well as interpretation for shape-based compliant control. The
compliant control of shape parameters is effectively equivalent
to compliant control of joint angles, but the overall shapes a
mechanism is allowed to take on are constrained to remain
within a particular basis (specified by the βi’s). While a shape
can freely change within a particular basis, the fundamental
structure of the shape will remain fixed relative to the nominal
shape pattern. Note that, similarly to admittance control in
joint space, admittance control in shape space double inte-
grates (9) at each time step to solve for σd. This value is then
used to define a set of desired joint trajectories via the shape
function, i.e., θd = h(σd).

B. General Shape Functions

In the case where the shape function h is not necessarily
linear in the shape parameters, or where the shape-basis
functions βi(s) are not linearly independent, shape-based
compliant control is no longer equivalent to admittance control
defined in the joint space. We discuss this case in Section 4,
noting that admittance control is a special case of a DMP and
that (9) is thus effectively a special case of a DMP defined in
shape space. Furthermore, dropping the explicit relationship
on J in the definitions of M ′d, B′d, and K ′d in (9), a general
DMP in the shape space can be defined by

Mσ
d σ̈d +Bσd σ̇d +Kσ

d (σd − σ0) = Fσ, (10)

where the values of Md, Bd, and Kd directly control the
dynamic response of the shape parameters and Fσ is an
arbitrary forcing term. Based on the fact that we know from (9)
that the Jacobian J maps joint torques into equivalent shape
forces, this work selects Fσ to be an explicit function of the
externally applied forces, e.g., Fσ = Jτext where J = ∂h̃(σ)

∂σ

and h̃(σ) is a general shape function on Σ.

IV. SHAPE-BASED COMPLIANCE FOR SNAKE-LIKE
ROBOTS

Shape-based compliance is implemented on a snake-like
robot in this section and a number of experimental results are

provided. The robot hardware used in the experiments, and
used throughout the snake robot experiments in the rest of
this work, was composed of eighteen identical series-elastic
actuated modules [14]. The modules were arranged such that
the axes of rotation of neighboring modules were torsionally
rotated ninety degrees relative to each other. Deflection in
a torsional elastic element, made from natural rubber, was
measured at the output of the motor drives using two absolute
angular encoders. The value of this deflection was used to
compute the output torque experienced by each module.

A. Whole-Body Compliance

The serpenoid model, defined in the snake robot literature,
has the following form,

θ = κ+A sin(ηs− ωt), (11)

where κ is an offset parameter, A an amplitude parameter, η
is referred to as a spatial frequency parameter, ω is a temporal
frequency, s = {0, δs, 2·δs, . . . , N ·δs}, δs is a link length, and
N is the total number of joints in the mechanism. Note that in
(11), θ, κ, t ∈ RN , where κ and t are actually N × 1 vectors
of ones multiplied by the corresponding parameter values, and
sin() acts component-wise. The serpenoid model in (11) is a
whole-body kinematic model in the sense that changing any
of the parameters κ, A, η, or ω changes the shape of the entire
robot.

Equation (11) is conventionally used to specify open-loop
desired trajectories θd, defined as static functions of κ, A, η,
and ω, that are tracked by low-level motor controllers under
nominal conditions, i.e., when the system is unconstrained by
the environment. This work extends conventional approaches
by using (11) to define both nominal as well as desired
trajectories, where the nominal signals are held fixed in κ, A,
η, and ω, and the desired signals are enabled to compliantly
vary in these parameters.

To accomplish this, the expression for θ in (11) is first
rewritten in the form of a shape function as,

θ = h(σ) = κ+A1(t) sin(ηs) +A2(t) cos(ηs), (12)

where A1(t) = A cos(ωt) and A2(t) = −A sin(ωt), and σ =
(κ,A1, A2) and β = (1, sin(ηs), cos(ηs)). Because this shape
function is linear in the elements of σ, a shape-based compliant
controller of the form (9) can be derived and implemented on
the snake robot hardware.

It is possible to use the formulation (9) to produce simulta-
neous compliance in σ = (κ,A1(t), A2(t)), but we isolate here
only the amplitude parameters for simplicity of presentation.
Figure 2 shows an experiment where the amplitude parameters
of a static wave, i.e., ω = 0, were compliantly controlled. Note
that in this case A1(t) = A and A2(t) = 0.

The plot in the left column of Figure 2 shows that during
the trial, at time t = 1s, a force was applied to the robot that
produced a corresponding negative force (τ ′ext) on the desired
amplitude parameter Ad. The effect of this force caused the
value of Ad to decrease. The pictures in the right column of
Figure 2 show the original shape of the robot at t = 0s, as well
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Fig. 2: Plot of the offset parameter A in (11) as well as forcing
term τ ′ext in (9). The right column shows picture of the robot
at different times during the experiment.

as the augmented shape with decreased amplitude at t = 3s.
The external force was removed at t = 3.5s, after which the
the robot’s shape returned to its unperturbed form, as shown in
amplitude plot as well as picture taken at t = 6s in Figure 2.

B. Localized Shape Modulation

Whole-body shape compliance is a centralized method of
controlling the shape of a snake-like robot; all of the robot’s
degrees of freedom are simultaneously controlled to achieve
a single objective. In environments with regularized struc-
tures like the peg array shown in Figure 3(a), a centralized
shape controller may be a reasonable control strategy. In
environments that do not contain regularized structure, like the
randomized peg array shown in Figure 3(b), a decentralized
extension, that allows the system to locally comply different
portions of its body, is desirable.

1) Shape Modulation : This section introduces spatial ac-
tivation windows as a method of decentralizing shape-based
control for snake-like robots. More specifically, we define the
following extension to the serpenoid function (11),

θ = A(s, t) sin(ηs− ωt), (13)

where

A(s, t) =

W∑
j=1

Aj exp

(
− (s− µj(t))2

2ψ2

)
, (14)

and W is the number of desired activation windows, each
Aj is the independent amplitude in window, ψ defines the
window widths, and each µj defines the location of the center
of a window as a function of arc length s. Note that, without
loss of generality, we have dropped the dependency on the
curvature offset term κ in (13). Equation 13 makes it possible
to independently modulate the amplitude of different portions
of the waveform sin(ηs− ωt) by independently adjusting the
amplitude parameters Aj in (14).

It is possible to freely choose the window center locations,
the number of windows, as well as the window widths.
When adjusted together, these parameters provide an intuitive
means for specifying different spatial coupling relationships

a b
Fig. 3: Snake robot in a) structured peg array and b) random-
ized peg array. Videos of the robot traversing the randomized
peg array are included in the supplementary material.

between portions of the robot’s body. For example, in the lower
limit, selecting a single window located at each joint with a
small window width effectively decouples shape modulation
completely. In the upper limit, a single window located in the
center of the mechanism with a large window width represents
entirely coupled shape modulation. The fact that any joint-
to-joint coupling relationship between these two limits can
be specified, by defining different shape functions, implies
that the degree to which a shape controller is centralized or
decentralized is effectively a free parameter in the control
design.

One additional freedom in (13) is the ability to specify how
or if the activation windows move as a function of time. The
method chosen in this work is to allow activation windows
to move with the waveform sin(ηs − ωt) as it travels down
the robot’s body. Allowing the activation windows to move
with the waveform provides an intuitive method for passing
shapes down the robot’s body (see Figure 4). This behavior
is helpful during locomotion, as passing shapes down their
bodies appears to dramatically help snakes, biological and
robotic, propel themselves forward.

Allowing the spatial activation windows to move with the
waveform sin(ηs− ωt) necessitates either an infinite number
of windows be defined, or, as we select, that a spatial recir-
culation condition be introduced. For example, assuming that
the number of waves specified by η in (13) remains constant,
e.g., η = 1.5, a static number of activation windows is defined,
e.g., W = 2η, and is used to subsequently define the window
center locations as,

µj(t) = (1 + 2 · (j − 2)) · π
2

1

η
+ mod

(
ω

η
t,
π

η

)
, (15)

where j = 1, 2, . . . ,W . In this example, the window center
locations at t = 0 are chosen to correspond with the points of
highest curvature on the waveform sin(ηs−ωt). The modulus
π/η in (15) was chosen to correspond to the static distance
between these window centers. When each window center
travels the distance that brings it to the original position of
the window center in front of it, the window is recirculated
back to its original position.

When recirculating the window centers, an additional set
of constraints are needed to ensure that shapes are smoothly
transferred from one window to the next. These constraints
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Fig. 4: Amplitude modulation signal A(s, t) moves with carrier
waveform sin(ηs−ωt) as a function of time. The effect of this
choice is that shapes propagate down snake-like mechanism
from head (red dot) to tail.

are defined by

Ak+1(t) = Ak(t)|t=π/ω (16)

where k = [1, 2, . . . ,W − 1]. The constraints in (16) pass
shape parameters from one window to the next at the times
when the window center locations are recirculated.

2) Compliant Shape Modulation : It is not possible to
extend the same derivation of admittance control in the
shape space presented in Section IV-A to the shape function
associated with (13), as the shape basis functions in this
function will no longer be linearly independent. Thus, the
DMP approximation to shape-base admittance control (10) is
used in this case.

Figure 5 shows an experiment using an implementation
of DMP-based shape compliance, where, W = 3 and σ =
(A1, A2, A3). The initial shape of the robot was specified by
the parameters A1 = A2 = A3 = 1, ψ = π/6, η = 1.5,
ω = 0, and µ1 = π/3, µ2 = π, µ3 = 5π/3. During the
experiment, at about t = 2s, forces were applied to the robot
near the middle of its body as well as near its head, as shown
in the pictures in the right column of Figure 5. The result
of applying these forces was a decrease in the value of the
amplitude parameters in the first-two windows centered at µ1

and µ2. At t = 5s, the forces on the front portion of the robot
were relaxed and the system restored to nearly its original
shape (where A1 = A2 = A3 = 1). At t = 6s, a set of forces
was again applied to the robot, but in the middle and back
portions of its body. This combination of forces resulted in
the amplitude of the windows centered at µ2 and µ3 to be
decreased. At t = 8s the second set of forces were released
and the robot again converged back to nearly its original shape.
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Fig. 5: Independent amplitude modulation in three spatial
activation windows.

C. Three-Dimensional Shape Modulation

One of the main benefits in the shape function and resultant
shape-based compliant control framework is that this approach
is easily generalizable to a variety of different shape models.
For example, this section presents an extension of the model in
(13) that enables compliant shape control in three-dimensional
spaces.

The snake robot used in the experimental demonstrations
in this work has N -joints, where every other joint is rotated
ninety degrees out-of-plane relative to its neighbors. The
following shape model can thus be defined in terms of the
odd o and even e joints for the mechanism as,

θoi =

W∑
k=1

Ak cos(ϕk) exp

(−(s− µk(t))2

2ψ2

)
sin(ηs− ωt)

(17)

θej =

W∑
k=1

Ak sin(ϕk) exp

(−(s− µk(t))2

2ψ2

)
sin(ηs− ωt),

(18)

where i = 1, 3, . . . , N − 1 and j = 2, 4, . . . , N . The
inclusion of the sin(ϕk) and cos(ϕk) terms in (17) and (18),
respectively, makes it possible to effectively rotate amplitudes
Ak, in different spatial windows, from one plane in the joint
space (odd/even) into the other (even/odd). For example, if
ϕk = 0, the amplitude of the sin(ηs − ωt) waveform in that
window will be contained in the plane of the odd joints. As
ϕk is increased (or decreased), the waveform will begin to
twist out of the odd-joint plane and into the even-joint plane.
At ϕk = π/2, the sin(ηs − ωt) waveform in window k will
be completely contained in the plane of the even joints.

An example in which the rotational parameters ϕk are
compliantly controlled using a compliant DMP defined in the
shape space, where W = 3 and σ = (ϕ1, ϕ2, ϕ3), is shown
in Figure 6. The robot is this experiment was initialized with
η = 1.5, ω = 0, A1 = A2 = A3 = 1, W = 3, ψ = π/6,
and µ1 = π/3, µ2 = π, µ3 = 5π/3. The pictures in the
right column of Figure 6 show that the robot was placed in a
position at t = 0s where a significant portion of its body was
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activation windows.

cantilevered out from its middle section. When the experiment
began, the plot in the left column of Figure 6 shows that
the values of ϕ1 and ϕ3 initially decreased, while the value
ϕ2 increased. As the robot settled, the value of ϕ1 returned
to nearly zero. The picture of the robot in the bottom right
corner of Figure 6 shows that the net effect of this torsional
compliance at t = 3s caused the robot’s body to conform to
the rock feature that it was originally resting.

Figure 7 shows the same controller as that used in the
experiment shown in Figure 6, except where ω = 1, i.e., the
waveform sin(ηs−ωt) was propagated down the robot’s body
during this trial. Figure 7 shows, to the best of the authors
knowledge, the first autonomous trial of a snake robot adapting
three-dimensional locomotion without a priori knowledge of
the terrain. The rock pile shown in Figure 7 is meant to
approximate unstructured rubble, and thus this type of control
may have a potential impact on the practical application of
snake-like robots in search and rescue tasks.

V. SHAPE-BASED COMPLIANT CONTROL IN LEGGED
LOCOMOTION

Shape-based compliance is not limited to snake-like robots.
In terms of the framework presented in this work, any robot
for which a reasonable shape function can be defined and
that can sense torques at its joints, is able to be compliantly
shape-controlled. To demonstrate this, a shape function as well
as shape-based compliant controller was developed for the
hexapod robot shown in the top row of Figure 8. This legged
robot was constructed using the same series-elastic modules
used to construct the snake robot used in the experiments
included in Section IV.

Defining a shape function for the hexapod robot began by
first considering each of the mechanism’s legs independently.
Each leg is composed of three actuated joints. Relative to a
frame attached to the base of each leg, the proximal joint
is aligned with yaw axis, followed by two distal joints each
aligned with the pitch axis. Motions that effect only the two
distal joints of each leg are considered. This choice is made
for the sake of simplicity. The presented approach can easily
be extended to more complicated examples.

We derive an isolated shape function for each leg by first
defining the set of desired leg shapes to be all configurations

t = 10 t = 30

t = 40 t = 50

Fig. 7: Autonomous locomotion over unknown rock pile using
torsional shape compliance. A video of this behavior appears
in the supplemental material.

that approximately match the geometry of the leg in the
workspace to continuous sigmoid curves of the form,

αi(s) =
Ai

1 + exp(λ(s− µ))
, (19)

where the parameters λ and µ fit the curve α to the physical
parameters of leg and s is arc length measured from the base of
the leg outward toward the toe. Figure 8b shows a desired con-
figuration of the hexapod leg where the amplitude parameter
Ai in (19) is positive. Figure 8c shows a desired configuration
of the hexapod leg where the amplitude parameter Ai in (19)
is negative.

A shape function that produces the desired leg configu-
rations in the workspace can be defined by intuition, i.e.,
h(σ) = Aiβi, where βi = [1,−1] and Ai is appropriately
scaled for the leg. In more general cases, the curvature of
continuous shapes in the work space, specified by smooth
functions of s, e.g., (19), can be used to derive shape functions.
This is related to the fact that joint angles approximate
continuous curvature defined as function of arc length.

Returning to the composite robot, i.e., considering all six
legs, the shape function can be defined defined by θ = h(σ) =∑6
i=1 σiβ̃i, where each β̃i ∈ R12×1 and contains all zeros

except for the two entries corresponding to βi. A DMP-based
shape compliant controller for this system was then derived
by computing J = ∂h/∂σ, which was used to project the
measured joint torques into shape forces.

Figure 9 shows an example of shape-based compliant con-
trol applied to the hexapod robot. During the experiment, the
value of Fσ in (10) included a term that compensated for
gravity. While the robot is standing in a nominal position,
the joint torques will measure the gravitational load produced
by the robot’s body. A feedforward gravity model (Fg) was
thus incorporated in the the compliant controller. Addition-
ally, the robot in this experiment was anti-compliant, i.e.,
Fσ = Fg−JT τext. Anti-compliance caused the robot’s shape to
reject disturbances as opposed to being compliant to them. We
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Fig. 8: Walking hexapod robot (a). Valid configurations for
hexapod leg in positive (b) and negative (c) amplitude poses.

note that the experiment in this section is related to [3], except
we assume the robot uses only joint torque measurements to
adapt to changing slopes.

During the experiment shown in Figure 9, the height of the
robot’s feet on the left side of its body was suddenly changed
by raising the platform the robot was standing on. Using no
inertial sensors, the robot compliantly adjusted its body pose
to counteract the forces induced on its body by raising the
platform.

VI. COMPARISON OF CONTROL METHODS

This section presents experimental results that compare
several different implementations of shape-based compliant
control, an implementation of a CPG-based control method,
as well as a compliant CPG controller.

A modification to the dynamic shape model in (10) was
necessary in the peg experiments due to the fact that torque
measurements measured at the joints included frictional forces
in addition to forces generated by interacting with the pegs
(due to the robot’s undulatory motion). Due to the complexity
of modeling frictional interaction between the robot and the
ground, we used an engineered solution to generate a “feed-
forward frictional model.” Specifically, we add an offset term
directly to Fσ in (10), i.e., Fσ = Jτext − Foffset, where the
magnitude of Foffset was selected so that the mechanism main-
tained its nominal shape during unconstrained locomotion.

The experimental testbed used to compare the different
controllers consisted of the snake robot and the peg board
shown in Figure 3b. The pegs were placed in an approxi-
mately random pattern. The robot was covered with a braided
polyester expanding sleeve to reduce friction, with nine re-
flective markers attached along the backbone over the joint
axes. The isotropic friction of the polyester sleeve prevented
the robot from moving without using the pegs. Data was
collected with a four-camera OptiTrack motion capture system
(NaturalPoint Inc., 2011).

t = 0 t = 4

Fig. 9: Hexapod robot anti-compliantly adapting to variation
in slope. A video of this behavior appears in the supplemental
material.

For each trial, the position of the robot was tracked until
either two minutes passed or the front half of the robot left the
convex hull of the pegs. Five trials were conducted for each
controller, with the same wave parameters (η = 1.5, A0 = 1,
ω = 1) and controller constants held fixed.

The robots were compared by a metric that divided the
number of cycles, which is the number of times a nominal
wave propagated from the robot’s head to its tail, by the
total distance traveled during a trial, measured in terms of
the integral of arc length in meters. This metric provided a
measure of how many cycles it took for the robot to travel one
meter. Controllers that result in the robot frequently thrashing
in place therefore have a high value, and controllers that allow
the robot to move smoothly through the pegs have a low value.

Figure 10 presents data associated with four experiments
that tested implementations of shape-based compliant control
(labeled “Single Amplitude” through “Nine Windows”) and
two experiments that implemented variants of CPG-based
control. The data for each of the five trials conducted in each
experiment is represented by the black horizontal bars, where
the average performances for each experiment is represented
by the corresponding red bar.

The four different shape-based compliant control exper-
iments, for which data is presented in Figure 10, varied
the number of spatial activation windows used to define the
shape space in each case. “Single amplitude” corresponds to
a centralized shape controller where the amplitude parameter
was compliantly controlled over the entire body of the robot
as it traversed the pegs. Following the example in Section
IV-B1, “three windows” corresponds to placing three moving
windows at the points of highest curvature on the underlying
waveform sin(ηs−ωt). In the “six windows” experiment, six
spatial activation windows were placed at the points of highest
curvature as well as points of zero curvature of the underlying
sin(ηs − ωt) waveform, starting from the head. The “nine
windows” experiment corresponds to assigning independent,
but spatially traveling, spatial activation windows for each
joint (the robot contained nine in-plane joints). The data in
Figure 10 shows the general trend that up to a certain point,
as the number of spatial activation windows was increased,
the robot’s performance also increased, as the time taken to
traverse the pegs decreased.

The data for the two CPG experiments represented in
Figure 10 was collected using modifications of the CPG model
presented in [7]. This CPG approach represents a decentralized
control scheme. For the “CPG” experiment, the algorithm in



Fig. 10: Comparison of control methods using snake robot
traversing the randomized peg array in Figure 3. The black
bars represent individual trials and the red bars the mean, with
error bars included, for each experiment.

[7] was modified to include estimated values of the individual
amplitude parameters in each oscillator model (using a simple
fitting procedure). Additionally, only a single oscillator was
used for each degree of freedom. The fundamental frequency
parameters for each oscillator were all assumed to be equal. In
the “CPG with force” experiment, the CPG model in [7] was
modified such that the stabilizing amplitude dynamics in the
oscillator equations were augmented to include an “amplitude
force” equal to that used in the nine-window shape controller,
i.e., Fσ = Jτext−Foffset. The resulting amplitude dynamics for
the forced CPG controller were thus equivalent to those used in
the shape-based compliant control implementation. The only
practical difference between the forced CPG control and the
nine window shape-based compliance was that the shape-
based controller used traveling spatial windows where the CPG
approach had windows fixed at the joint positions. We note
that each of these two approaches are related to the simulated
results in [11], but where admittance controllers in shape space
are used instead of a more conventional impedance controller.

The CPG experiments showed that in the case where force
measurements were not included, the CPG-based controller
did significantly worse than each of the compliant control
implementations. When force measurements were included,
the CPG approach did better but was still outperformed
by each of the shape-based controllers that included spatial
activation windows, i.e., “three” through “nine windows.”

VII. CONCLUSION

This work put forth the idea that shape is an important
component in creating a middle layer that links high-level
motion planning to low-level control in the robust locomotion
of articulated systems in complex terrains. Shape functions
were introduced as the layer of abstraction that formed the
basis for creating this middle layer. Shape functions for two
different systems, with very different nominal locomotive
modes, were derived and subsequently used to define shape-
based compliant controllers, highlighting the generality of this
approach.

The general framework for shape-based compliant control
enabled a snake-like robot to traverse random peg arrays
and unknown rock piles, and enabled a hexapod platform
to autonomously adapt to variations in slope. These robust
behaviors were made possible using model-free controllers
that relied only on the ability to sense joint torques and on
the existence of shape functions.

The experimental results in Section VI present evidence
for several preliminary conclusions that can be made with
respect to the application of shape-based compliant control to
snake-like robots. First, adding shape compliance in general
improves performance. Second, the degree to which shape-
based control is decentralized increases performance and re-
duces uncertainty, but only up to a certain point. This suggests
that the additional complexity associated with adding new
parameters to account for each possible degree of freedom may
not be necessary. Third, the comparison of the “nine window”
shape controller to the “CPG with force” controller, shows
that there are measurable increases in performance when shape
information is spatially propagated.

In the future, the framework for shape-based compliant con-
trol will be extended in two primary directions: 1) automatic
shape function generation and 2) adaptive shape-parameter
modulation. Section V presented a generalizable method for
extracting shape functions, but we would like to have a
method that truly automates this process, starting from either
a generic kinematic specification of a robot or from biological
data. We will also develop methods that adaptively tune the
nominal shape of different mechanisms to different environ-
ments. The compliant shape modulation presented in this work
produces robust locomotion, but still requires the nominal
parameters to be reasonably tuned for a given platform in
a given environment. By enabling platforms to adaptively
learn the best shape parameters for an environment as they
move through it, the role of shape-based compliant control
can be expanded beyond serving as the middle layer between
planning and control. In effect, adaptively learning nominal
shape parameters will enable systems to autonomously modify
motion plans in addition to robustly connecting the plans to
lower-level controllers.

REFERENCES

[1] Biologically Inspired Robots. Oxford University Press, 2003.
[2] G. Chirikjian and J. Burdick. A modal approach to hyper-redundant ma-

nipulator kinematics. IEEE Transactions on Robotics and Automation,
10:343–354, 1994.



[3] S. Gay, J. Santos-Victor, and A. Ijspeert. Learning robot gait stability
using neural networks as sensory feedback function for central pattern
generators. In IEEE International Conference on Intelligent Robots and
Systems, 2013.

[4] N. Hogan. Impedance control: An approach to manipulation. In
American Control Conference, 1984.

[5] N. Hogan and D. Sternad. Dynamic primitives in the control of
locomotion. Frontiers in Computational Neuroscience, 7(71):1–16,
2013.

[6] A. J. Ijspeert. Central pattern generators for locomotion control in
animals and robots: A review. Neural Networks, 21:642–653, 2008.

[7] A. J. Ijspeert and A. Crespi. Online trajectory generation in an
amphibious snake robot using a lamprey-like central pattern generator
model. In IEEE international conference on robotics and automation,
2007.

[8] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal.
Dynamical movement primitives: Learning attractor models for motor
behaviors. Neural Computation, 25:328–373, 2013.

[9] F. Matsuno and K. Mogi. Redundancy controllable system and control
of snake robots based on kinematic model. In IEEE Conference on
Decision and Control, 2000.

[10] F. Matsuno and K. Suenaga. Control of redundant 3d snake robot based
on kinematic model. In IEEE International Conference on Robotics and
Automation, 2003.

[11] B.T. Mirletz, R.D. Quinn, and V. SunSpiral. Cpgs for adaptive control
of spine-like tensegrity structures. In IEEE International Conference on
Robotics and Automation, 2015.

[12] J. Ostrowski and J. Burdick. Gait kinematics for a serpentine robot. In
IEEE International Conference on Robotics and Automation, 1996.

[13] Christian Ott, R. Mukherjee, and Y. Nakamura. Unified impedance and
admittance control. In IEEE International Conference on Robotics and
Automation, 2010.

[14] G. Pratt and M. Williamson. Series elastic actuators. In International
Conference on Intelligent Robots and Systems, 1995.

[15] P. Prautsch and T. Mita. Control and analysis of the gait of snake robots.
In IEEE International Conference on Control Applications, 1999.

[16] D. Rollinson and H. Choset. Gait-based compliant control for snake
robots. In IEEE International Conference on Robotics and Automation,
2013.

[17] S. Schaal. Dynamic movement primitives - a framework for motor
control in humans and humanoid robots. In The International Symposium
on Adaptive Motion of Animals and Machines, 2003.

[18] B. Siciliano, L. Sciavicco, L. Villani, , and G. Oriolo. Robotics:
Modelling, Planning and Control. Springer Publishing Company,
Incorporated, 1st edition, 2008.

[19] M. Tanaka and F. Matsuno. Control of 3-dimensional snake robots by
using redundancy. In IEEE International Conference on Robotics and
Automation, 2008.

[20] M. Tesch, K. Lipkin, I. Brown, R. Hatton, A. Peck, J. Rembisz, and
H. Choset. Parameterized and scripted gaits for modular snake robots.
Advanced Robotics, 23:1131–1158, 2009.

[21] D.P. Tsakiris, M. Sfakiotakis, A. Menciassi, G. La Spina, and P. Dario.
Polychaete-like undulatory robotic locomotion. In IEEE International
Conference on Robotics and Automation, 2005.

[22] H. Yamada and S. Hirose. Steering of pedal wave of a snake-like robot
by superposition of curvatures. In IEEE International Conference on
Intelligent Robots and Systems, 2010.


