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Abstract—Perception of transparent objects has been an open
challenge in robotics despite advances in sensors and data-
driven learning approaches. In this paper, we introduce a new
approach that combines recent advances in learnt object detectors
with perceptual grouping in 2D, and projective geometry of
apparent contours in 3D. We train a state of the art structured
edge detector on an annotated set of foreground glassware. We
assume that we deal with surfaces of revolution (SOR) and apply
perceptual symmetry grouping in a 2D spherical transformation
of the image to obtain a 2D detection of the glassware object and
a hypothesis about its 2D axis. Rather than stopping at a single
view detection, we ultimately want to reconstruct the 3D shape
of the object and its 3D pose to allow for a robot to grasp it.
Using two views allows us to decouple the 3D axis localization
from the shape estimation. We develop a parametrization that
uniquely relates the shape reconstruction of SOR to given a set
of contour points and tangents. Finally, we provide the first
annotated dataset for 2D detection, 3D pose and 3D shape of
glassware and we show results comparable to category-based
detection and localization of opaque objects without any training
on the object shape.

I. INTRODUCTION

From just a couple image views of a dinner or kitchen
scene, the current state of the art Structure from Motion and
object detection techniques allow for a reasonable scene re-
construction along with the localization of most scene objects.
However, there is a category of objects that persist as a point of
failure: objects made from transparent materials. Such objects
are omnipresent in home and commercial kitchens, as well
as in chemistry laboratories and manufacturing environments.
They remain challenging because they lack salient features,
with very little color or texture of their own. Due to their
high light transmittence and high specularity, even active light
sensors do little to improve our sensing capabalitiy.

With the recent resurgence of infectious diseases, robots
could work in portable quarantine labs minimizing the pos-
sibility of infection for the lab personnel. A solution for
interaction with such transparent objects calls for a reliable
perception algorithm as a key component.

While some approaches might detect image areas corre-
sponding to transparent materials or even place a bounding
box around a hypothesized object, a robot must know the 3D
location and the shape of the object in order to grasp it.

One can observe from a search query of “chemistry equip-
ment” or “glassware” that the majority of such objects are

Fig. 1: Annotated multi-view transparent dataset. The first
two rows each show a single viewpoint, with and without the
calibration pattern used to annotate groundtruth camera and
object pose. Example outputs The last row shows models and
poses automatically recovered by the proposed approach.

rotationally symmetric. For the purpose of perception, it makes
more sense to define all transparent 3D objects which are
rotationally symmetric as one class, instead of capturing
exemplars for each object class, such as glasses, cups, flasks,
tube, bottles, etc. The shape of such objects can be modeled
with Surfaces of Revolution (SORs).

In this paper, we propose a novel approach for the de-
tection, 3D localization, and shape estimation of the class
of transparent rotationally symmetric 3D objects from two
calibrated views, where the camera transformation is obtained
up to a scale using Structure from Motion on the scene as a
whole. The projected contours of an SOR in two views carry
information about the shape and pose of the object, but their
appearance defeats traditional salient edge detection methods.



To address this challenge, a structured prediction forest is
trained from annotated data in order to perform transparent
edge detection. Object hypotheses are then generated using
geometric properties of SORs projected in two views. Finally,
a novel algorithm is proposed to segment, reconstruct and
score object hypotheses by efficiently exploring the space
of possible SOR shapes to maximize the transparent edge
response of the projected contours in two views.

A precisely annotated dataset is introduced to evaluate
the visual detection, as well as pose and shape estimation
of multiple transparent SORs from two or more views. A
set of 34 transparent objects were used in 125 cluttered
scenes containing up to 3 transparent SOR instances. Up to
4 calibrated views of each scene were captured, with varying
baselines. Fig. 1 shows some views from the dataset, along
with annotations.

II. RELATED WORK

The present work lies at the intersection of transparent
object modeling, geometric reasoning on the projection of
SORs, and boundary detection and grouping.

The challenging problem of detecting, localizing and recon-
structing transparent objects has received increasing attention
in recent work. Only a few approaches attempted to use visual
cues to perform this task. Specific appearance features in RGB
images such as transparent edge profile [20] and specularities
[21], [11] were modeled to perform localization with promis-
ing results on small experiments, but such approaches do
not allow for segmentation and reconstruction, only localizing
detections with a bounding box. Stereo pairs with a textured
background plane were used in [22] to achieve more precise
localization, but 3D object shape models are required. Most
recent work on transparent objects and glass material steered
away from RGB images, either leveraging failure modes of
Kinect depth sensors and estimating object pose with a known
3D shape model [28], [16], [17], using time-of-flight cameras
[13], sequences with varying illumination [30], or customized
structured light sensors [18], [15]. Because of the requirement
for prior object models or specific sensors, those approaches
do not allow a simple scenario where the only sensor is a stereo
camera, or a commercial camera taking a couple pictures of a
scene “in the wild”.

The modeling of projected SORs for pose estimation and
reconstruction has been addressed as a single-view problem,
where pose and camera calibration can be recovered either
from bi-tangent points on the apparent contour [31], [29],
imaged cross-sections detected as ellipses [4], [5], [10], or both
bi-tangent points and cross-sections [3]. Methods have been
proposed for the projective [27] and metric [5] reconstruction
of an SOR from a single calibrated view when the pose in
known, as well as image contours. The visual detection and
localization of SORs in cluttered scenes, before their pose and
shape can be recovered with the above approaches, has not
been extensively studied. An edge linking approach using SOR
geometry is described in [4], but it requires an initial window
localization of the object in order to be tractable, and reliable

edge detection and low clutter are necessary to prevent the
non-linear minimization from converging to a local minimum.
In this paper, the problem is related to that of 2D symmetry
detection, to which more recent efforts have been devoted [26],
[14].

Geometry driven edge grouping is one of the core aspects
of this paper. In [8], epipolar matching is performed on
curvelets to establish a 3D curve sketch from multiple views.
Curves were also used instead of points for SLAM in [24].
Another idea that inspired this work is the use multiple
images to cluster a common region while matching boundary
orientations [12].

Closest to this work are approaches on SOR reconstruction
and pose estimation, using two views and manually segmented
contours [23], or automatically segmenting contours in a single
view before applying reconstruction [3]. The goal of this work
is to jointly segment and reconstruct the object in an effort to
achieve more robustness. To the best of our knowledge, the
proposed framework is the first attempt to fully automatically
detect and reconstruct transparent SORs from two views.

III. PROPOSED APPROACH

The goal of the proposed approach is to detect transparent
rotationally symmetric objects, and to estimate their pose and
shape from two calibrated views of a scene. The 3D shape of
a rotationally symmetric object can be modeled with a Surface
of Revolution (SOR), obtained by rotating a generatrix around
an axis. The projection of an SOR produces apparent contours
that are view-dependent, as well as fully or partially visible
cross-sections. In the case of a transparent object, these image
boundaries appear as faint edges and ridges with a specific
image profile, and traditional salient edge detection methods
fail to detect those boundaries.

The present work addresses this issue in two ways. First, the
concept of transparent edge is learned from data, by training a
structured prediction random forest to detect transparent edges
and distinguish them from visually salient edges (Sec. III-A).
Second, segmentation and reconstruction are performed jointly
in two views, so that geometric reasoning and consistency
across views drive the edge linking process, allowing for more
robustness to edge detection errors. Geometric properties of
imaged SORs are used to generate object hypotheses from
edge detection score maps in two calibrated views (Sec.
III-B). Object hypotheses are then segmented, reconstructed
and scored in a process that combines edge linking and
geometric reasoning (Sec. III-C). Fig. 2 gives an overview
of the proposed detection, shape and pose estimation pipeline.

A. Detecting transparent object contours

The proposed approach detects and reconstructs a transpar-
ent SOR by leveraging the properties of its apparent contour
in several views. While the apparent contour of a Lambertian
object can generally be recovered with a variety of edge and
contour detection methods [2], [19], [25], the same methods
fail to extract transparent contours. Indeed, transparent edges
exhibit an image intensity profile different from general edges,



Fig. 2: Overview of the proposed approach. A structure prediction random forest trained from annotated data is used to
compute transparent edge detection maps. Cylindrical rectifications of the maps are computed and 2D-symmetric curves are
extracted and matched across views to generate object hypotheses. Hypotheses that pass consistency checks are then segmented,
reconstructed and scored in a process that combines edge linking and geometric reasoning.

closer to a ridge than a step edge. Additionally, it is harder
to leverage the differences in image statistics and texture on
either side of the contour as in [19], [25], since the background
of a glass object is refracted through it, causing the image
region inside the object boundaries to be less distinguishable
from the outside.

This section describes a way to address these challenges
by learning and predicting the appearance of a transparent
edge from collected image data. More specifically, transpar-
ent edge detection can be treated as a structured prediction
problem applied to random forests, the same way salient
edge detection is addressed in [6]. Given many examples of
transparent objects and their annotated apparent contour and
cross-sections, an ensemble of decision trees are used to learn
the mapping between an image patch and its corresponding
local segmentation mask.

1) Annotated dataset for transparent edge detection: A set
of 34 rotationally symmetric transparent objects were used
in a dataset aimed at evaluating transparent edge detection,
transparent object detection as well as pose and shape esti-
mation using multiple views. The dataset consists of cluttered
scenes containing up to three transparent objects. The scene
also contain textured objects so that SfM can provide an
estimate of the camera transformation. A total of 100 scenes
were captured as a stereo pair from a calibrated Bumblebee
camera. In order to evaluate the approach on a wide range
of larger baselines, another 25 scenes were captured with a
calibrated DSLR camera with fixed focal length and large
depth of field, from up to 4 viewpoints. The scenes were
split in half for training and evaluation of edge detection and
the overall proposed approach. Fig. 1 showcases the variety
of object shapes, background and clutter captured by the
dataset. A checkerboard was placed at a fixed location in
the scenes using fiducial markers in order to estimate the
camera poses and object poses. The transparent objects were
placed at a known offset with the checkerboard, and each
view was captured twice, with and without the checkerboard.
Fig. 1 illustrated the process and shows, for a couple views,

Fig. 3: Salient VS transparent edge detection. The second
column shows the output of the structured forest edge detector
[6], trained on the BSDS500 dataset [1]. The third column
shows the output of the same detector, trained on the annotated
transparent edge detection dataset. The latter scores transparent
edges higher than background edges.

the checkerboard and the ground truth annotations for each
object. The apparent contour was automatically annotated by
rendering the contours of the object’s 3D model in the image.
The 3D model of each object was obtained by spray-painting
it, manually segmenting its apparent contour in multiple views
and applying the reconstruction process described in [23],
which is exact when the object pose in the camera frame is
known.

2) Learning a transparent edge detector: We desire a
detector that responds to the transparent edges that make
up the object’s apparent contour and visible cross sections,
some portions of which may be seen through the surface
of the glass itself. Ground truth labels for these features are
generated using the SoRs scaling function in conjunction with
the annotations described above. Different labels are given to
the outside of the object, the inside of the fully visible cross-
section, and the rest of the object interior. Using these labels
with the framework described in [6], a structured prediction
forest is learned in order to predict, for any color image
patch, a patch of segmentation labels of the same size such



that transparent edges are located at the boundaries between
clusters of different labels. This section provides a very short
summary of the structured forest framework, the reader is
invited to refer to [6] for more details.

Structured random forests are an extension of the random
forest framework for a structured label space. In the present
case a label is a patch of the annotated view segmentation
mask, typically of size 16-by-16, with three different values
given to the background, top cross section and rest of the
object interior. In order to address the high dimensionality of
such a label space and the difficulty to define an information
gain for such labels, the idea proposed in [6] is to map
the structured labels to a discrete set of labels, such that
similar segmentation masks will be mapped to the same label.
The mapping proposed in [6] first encodes label patches in
a training set as binary vectors by randomly sampling a
small number of pairs of pixel locations and encoding for
each patch whether the label values at those locations are
the same. Principal Component Analysis (PCA) is then used
to further reduce dimensionality, and the resulting vectors
are clustered, the cluster numbers being used as discretized
labels. Typical parameter values used in [6] are 256 pairs of
pixel locations out of 32640 in a 16-by-16 patch, followed
by clustering on 5 PCA dimensions. The discretization is
randomized and different for the training of every node,
resulting in very diverse decision trees better able to cover
the large and complex label space. When the maximum tree
depth is reached during training, a single patch is stored for
prediction. It is obtained applying the above binarization and
PCA to all patches in the training subset associated to the
leaf and computing the medoid of the obtained vectors. The
associated patch is stored for prediction. The same process is
used to combine the patches predicted by the trees forming
the random forest.

The apparent contour segmentation masks described above
were used for training, patches containing a point on the
ground truth apparent contour were randomly sampled as
positive, all other locations (including any visually salient
edges) were randomly sampled as negative, for a total of 106

patches, split equally into positive and negative. A typical set
of image features were used, namely LUV channels, gradient
magnitude at 2 scales and 4 orientations.

A 5-fold cross validation was performed on the annotated
dataset, to evaluate edge detection accuracy. Average precision
is 0.61 for boundary accuracy, as evaluated in [19]. Fig.
3 shows the interest of fine-tuning the structured prediction
forests for transparent edge detection as opposed to visually
salient edges.

B. Generating transparent SOR hypotheses

The input of the proposed approach consists of two RGB
images from two calibrated views with known relative motion
R, T . The views are modeled with a pinhole camera model
of calibration matrix K, such that the 3D point X projects
to xi ∼ K[Ri|Ti]X, i = 1, 2 in the two views, and R =
R>1 R2, T = T2 − T1.

Once transparent edge response maps are generated, the
next step is to generate object hypotheses, using the symmetry
properties of SORs. A rotationally symmetric object to be
detected can be modeled as a surface of revolution (SOR)
defined by rotating a generatrix around a 3D axis, yielding
the following possible parametrization:

S(h, θ) = (ρ(h) cos(θ), ρ(h) sin(θ), h). (1)

As described in [27], [5], [23], the cross-sections (visible
coaxial circles) of the SOR are projected to ellipses and are
view-independent, whereas points on the occluding curve Γ
are projected to an apparent contour γ that is view-dependent.
Indeed, the 3D curve Γ is view-dependent since changing
position of the camera center with respect to the object also
changes the locus of points where camera rays are tangent to
the object. However complex Γ is, it is symmetric with respect
to the plane Πs containing the camera center and the SOR axis,
which means γ is self-invariant through a homology of axis
ls and of vanishing point v∞ orthogonal to ls:

HS = I − 2
v∞l

>
s

v>∞ls
, (2)

The projected axis ls is the projection of the plane of
symmetry ΠS , and v∞ is the projection of the direction
orthogonal to Πs. Therefore K>ls = K−1v∞, or equivalently
ls = ωv∞ where ω = K−>K−1 is referred to as the image
of the absolute conic.

Projected axis image search Given the edge detection score
map of a view, object hypotheses can be generated by search-
ing for clusters of points with high edge detection response
that are self-invariant with respect to a homology of parameters
ls, v∞ to be determined. Since the views are calibrated and K
is known, there are only two parameters to estimate since the
choice of an axis ls determines the position of the correspond-
ing vanishing point v∞ = ω−1l∞. A RANSAC procedure
is performed over the edge response map, where a pair of
image points x, x′ can be hypothesized to be the projection of
two symmetric points on the occluding curve Γ of an SOR.
The relationship x′ = HSx determines a hypothesized axis ls
and corresponding vanishing point v∞. This hypothesis can be
scored locally by using HS to examine the edge responses of
homologous points. The RANSAC procedure returns an axis
ls and a set of pairs of point that are coherent with ls and
could belong to the contours of an SOR of projected axis
ls. In order to detect multiple instances and speed up the
search, the RANSAC procedure is made local by sampling
seeds in the image, and for each seed only considering points
within a certain distance of the seed. Seeds are randomly
sampled according to a distribution that’s obtained by applying
a mean filter of large size to the edge map: regions with higher
average edge response have a higher probability to contain
sampled seeds. For each seed, an axis and cluster of inliers
are obtained. The local axes and clusters obtained this way are
then merged to form complete SOR localization hypotheses.
Two axes ls, l′s and their corresponding clusters are merged
when the corresponding planes of symmetry Πs,Π

′
s are close,



which means their normals K>ls,K>l′s are almost collinear,
and their inner product is above a certain threshold. For the
experiments on the proposed dataset, the following parameter
values were used: a mean filter of size 100 × 100 pixels to
obtain the seed sampling distribution; a set of 30 seeds; a seed
radius of 150 pixels; a total of 1000 sampled pairs for each
seed; a threshold of 0.98 on the inner product of plane normals
for axis merging.

The result of this stage is a set of SOR object detection
hypotheses in a single view. A hypothesis is scored by
summing the edge response of the corresponding inliers, and
an oriented bounding box along the direction of axis captures
the extent of the object hypothesis. The detection performance
of this stage is evaluated in Sec. IV-A. The rest of the
pipeline matches hypotheses across two calibrated views to
recover 3D localization of multiple SORs from two views,
and reconstructs their shapes.

Two-view coarse shape matching and 3D localization For
each pair of self-invariant clusters detected in two views, it
must be determined whether they could originate from the
same object. First, the two cluster axes are backprojected and
intersected, to form a 3D SOR axis hypothesis. Then, for each
of the two clusters, the points with minimum and maximum
height along the projected 2D axis are used to estimate the
3D height range along the 3D axis (hmin,i, hmax,i), i = 1, 2
of a potential object projecting to the symmetric cluster.
Insufficient overlap of the heights results in discarding the
pair of clusters. The hypotheses are further selected by roughly
segmenting the apparent contours in each view and evaluating
if their shape is consistent with a single SOR shape. For each
of the clusters, an edge linking algorithm is applied to the
edge response map in the cluster bounding box, to obtain a
coarse estimate of γ. The rough segmentation is performed by
a predictive filter dynamic program described in Appx. A. The
small-size dynamic program takes a finds an optimal smooth
symmetric curve with high edge response and symmetric edge
orientations. The curve and the 3D axis are used to perform
single-view SOR reconstruction with known pose, as described
in previous work [5], [23]. The construction used in this step
is the one from [23], and leverages the fact that for a point
X at height h and radius r on the occluding curve Γ and its
corresponding image point x ∈ γ, the imaged cross-section at
height h and radius r (appearing as an ellipse in the image) is
tangent to γ at x, as shown in Fig. 4. The tangent orientation
at x is therefore used to recover h, r = ρ(h) and reconstruct
the generatrix ρ point by point. Edge linking followed by this
single-view reconstruction yields an imperfect generatrix, as
will be discussed in Sec. III-C. However the coarse shape
estimates can be used to further filter hypotheses: for two
generatrices ρ1(h), ρ2(h) recovered from a pair of clusters
in two views, residuals δρ(h) = |ρ2(h) − ρ1(h)| for h in
the intersected height range capture the discrepancy between
the two reconstructions. The count of inliers such that δρ(h)
is used to score the localization hypothesis. The maximum
radius of the coarsely reconstructed generatrices, along with
the intersected height range, are used to defined a 3D cylinder

Fig. 4: SOR reconstruction issues with noisy data. Left:
Edge response map and a detected axis ls. Right Reconstruc-
tion process on the symmetric curve obtained by edge linking
(homology is rectified to put v∞ at infinity). Points pi are
reconstructed using cross-section tangency.

bounding the object hypothesis.

C. Multiple view segmentation and reconstruction

Once object hypotheses are formulated as 3D cylinders,
the edge information from both views is used to reconstruct
the 3D shape of each hypothesis. Previous work on SOR
reconstruction takes as an input a 3D axis pose and an apparent
contour in a single view, as was just described in the coarse
shape matching step. The input contour is either manually
segmented [23], or obtained through edge linking [4]. Fig.
4 illustrates accuracy and inconsistency issues that arise when
attempting reconstruction on a 2D curve segmented from
noisy edge data. Two examples are illustrated to provide some
intuition on those issues: 1) a “wiggly” section of the curve,
where tangents to the 2D curve vary rapidly, cause two points
p1, p2 close to each other to be reconstructed at incorrect
heights and radii, with a large height gap |h2 − h1|; 2) some
sections of the curve contain inconsistencies, for instance the
tangent cross-section at p4 is not contained inside the area
enclosed by the curve, which is inconsistent with the fact
that the apparent contour γ of an SOR is the envelope of
the tangent cross-sections at all of its points, as stated in [27].
Intuitively, the same cross-section at height h3 is tangent to
the curve at p3, p5, but given the axis pose (object seen from
above), p4 is reconstructed at height h4 < h3. This means
p5 should not be visible and should be instead occluded by
a surface that contains the green cross-section p4. The 2D
segmented curve is not a proper SOR apparent contour for the
given axis pose.

The proposed algorithm is designed to address these issues
by integrating 3D geometric reasoning into the edge linking
process, instead of committing to segmenting an image curve
before reconstruction. The objective is to find a generatrix
ρ(h) that has good edge support when projected into the
image. The core of the algorithm is a dynamic program
that recovers ρ(h) by going through heights h monotonically,
thus preventing inconsistencies described above. Similarly to
previous work, the algorithm works with a single view and
a hypothesized 3D SOR axis. However, it is formulated in a



Fig. 5: 2D point supporting a hypothesis for radius ρ and and tangent ρ′ at a given height h.

way that also allows to aggregate information from two or
more views, and perform reconstruction and segmentation in
all views simultaneously. This provides more robustness to
edge localization errors in a single view. The space of all
scaling functions ρ within the hypothesis cylinder is explored
through dynamic programming, in order to recover a smooth
3D shape that gets most support from the edge detection maps.

Given a 3D cylinder hypothesis of axis A (given as an
origin at the base of the cylinder, and a direction), height
H and radius R, the edge map for a given view is rectified
in order to make the projected axis ls vertical through the
image center: the homography described in Eq. (2) becomes a
simple 2D symmetry since v∞, orthogonal to ls, is at infinity.
In this section, the left and right parts of γ with respect to ls
are considered seperately, as well as the corresponding parts
of Γ on either side of Πs for a given view. The algorithm
considers the left and right apparent contours in both views
as four observations of the object to be combined to estimate
the scaling function ρ(h), where h is the height along the 3D
axis. For simplicity, Γ and γ will refer to the right side of the
3D occluding curve and 2D contour for one view.

1) Axis-based 2D-3D mapping: The space of all SORs
within a 3D cylinder of axis A, height H and radius R can
be seen as the set PA of all possible C1 (smooth) scaling
functions ρ from [0, H] to [0, R]. A possible generatrix can be
evaluated by projecting the corresponding SOR and evaluating
the edge responses along the apparent contour γ. An efficient
way of exploring this space can be designed by asking two
questions. First, for a possible ρ(h) value at height h, what
image evidence (edge response) supports ρ(h)? Second, for
a given point x in the image space, what are the possible ρ
functions such that x ∈ γ?

At a given height h and for a possible value ρ(h), the point
that would be on the occluding curve Γ at height h belongs to
the cross-section circle at height h and radius ρ(h). This circle
projects to an ellipse in the image space, as shown in Fig. 5 a.
The slope of the generatrix ρ′(h) = dρ

dh (h), determines exactly
which point on the cross-section circle is on Γ: for instance, in
Fig. 5 b, assuming the object is seen from above (l∞ appears
above the object in the image), a negative ρ′(h) (object getting
thinner as h increases) will cause the occluding 3D point to
lie further away from the camera than the cross-section center
(θ < 0), whereas a positive ρ′(h) will have the opposite effect
(θ > 0). For a given height h, a possible radius ρ(h) and
tangent ρ′(h), there is a unique point on Γ at height h, and
a unique corresponding point on the apparent contour γ [3].

Fig. 6: Pre-image of a single point in the image space by γA.

This enables the definition of the function, γA(h, ρ(h), ρ′(h))
mapping h and possible ρ(h), ρ′(h) to a unique point in the
image space and edge score map supporting the choice of
ρ(h), ρ′(h). Note that γA is defined for the axis A of the
object to segment.

For a given point x in the image space, the question of which
scaling functions would produce a contour γ such that x lies on
γ can be answered by finding the pre-image of x by γA. The
function γA is not one-to-one since many apparent contours
could go through x and the corresponding point X ∈ Γ would
be at a different depth, as shown in Fig. 6 a. However, the
restriction of γA for a constant ρ′ is invertible, as illustrated
in Fig. 6 b and stated in the following theorem.

Theorem: Consider the space PA of scaling functions and
the corresponding SORs within a cylinder in the camera frame.
For a given value of ρ′ = τ , the function γA,τ (h, ρ) =
γA(h, ρ, τ) from [0, H] × [0, R] to the image space is one-
to-one.

Proof: Consider a point x in the image space reachable by
γA,τ . Because of the definition of γA,τ , any input h, ρ mapped
to x means that one or several scaling functions ρ ∈ PA such
that ρ(h) = ρ and ρ′(h) = τ create surfaces that are tangent
to the ray λx from the projection center through x. Since for
any such surface, ρ′(h) = τ , this means the surface is tangent
to a cone C(h) of axis A and generatrix defined by τ and
the locus of tangency is the cross-section circle at height h, r.
This means that no matter where on this circle the ray λx
is tangent to the surface, the ray is also tangent to the cone
C(h). Considering the family of cones C(h) for any h along
the axis, there is only one such cone that is tangent to the ray
λx, and it defines h and r. This means h, r are unique for a
given x.

2) Joint segmentation and reconstruction: Given a coarse
SOR localization hypothesis, segmenting and reconstructing
the object can be interpreted as exploring the space PA of all
possible scaling functions within the cylinder. This space can
be discretized by considering an array of uniform values of h



and r within the cylinder, and performing a cut in this array,
choosing one radius value ρ(h) for each height, and enforcing
smoothness properties. If γA were invertible each location x in
the image space could be mapped to a single h(x), r(x) value
in the array, meaning that the edge response at x supports the
choice of ρ = r(x) for the height h = h(x). While this is
not achievable because of the ambiguity illustrated in Fig. 6
a, the invertibility of γA,τ enables the mapping from an image
point x to a unique h and r for a given tangent orientation
at x. In practice, the mapping γA,τ is computed using the
following geometric reasoning: for a fixed ρ′ = τ and for a
given image point x, the ray from the camera center through x
is tangent to the SOR, and therefore orthogonal to the surface
normal. The surface normal is at an angle of π/2− τ with the
SOR axis. This means that the plane orthogonal to the ray, at
distance λ of the camera center such that X = λx, intersects
the SOR axis at a point Xaxis such that the angle between−−−−→
XXaxis and the axis is π/2 − τ . This enables to solve for λ,
and X is projected on the SOR axis to find h, ρ = γ−1

A,τ (x).
This procedure is vectorized and applied to all image locations.

The tangent angle arccos(ρ′) is sampled into nρ′ = 40
values, and the corresponding mappings between the image
space and the generatrix space are stored as lookup tables:
mapped edge responses form a volume spanned by values
of (h, ρ, ρ′) as shown in Fig. 7. Responses from the left
and right folds of each of the clusters from the two views
are aggregated in this way, a volume location (h, ρ, ρ′) is
therefore supported by edge responses at four image locations.
Finding the generatrix getting most support from the evidence
corresponds to finding a path through the volume with highest
score, with the constraint that ρ and ρ′ be consistent with
ρ′ = dρ/dh.

A dynamic program (Alg. 1) is used to optimize the path,
traversing the volume from top to bottom as the height h
along the axis varies. The height and radius are sampled in
the volume at resolutions hres, ρres (in the experiments, both
resolutions are set to 1mm) within the bounds of the object
localization hypothesis (hmin, hmax, ρmax). For instance, a
height range hmax − hmin = 150mm and ρmax = 25mm will
be stored as an array of 150 × 25 × 40 nodes for the given
resolutions and number of orientations. In order to enforce
the constraint between ρ and ρ′, heights are discretized with
a step ∆h (in the experiments, ∆h = 1cm), such that the
path constraint can be expressed as ρ = ρprev + ρ′prev ∗ ∆h,
where ρprev, ρ

′
prev are the previous values chosen by a given

path. The resulting generatrix is therefore piecewise linear,
but the relatively small step ∆ = 1cm resulted in good shape
estimation results.

The aggregateScores function mentioned in Alg. 1 aggre-
gates edge scores from left and right folds of the of the clusters
in both views, using a γA.τ mapping for each volume slice of
corresponding ρ′ = τ . The lineSum(h, ρ, ρ′) function sums
values along the 2D segment (h, ρ), (h + ∆h, ρ + ρ′∆h) in
the slice corresponding to ρ′, and corresponds to evaluating
the edge support of a small segment of generatrix of constant
ρ′. When OPT is computed, the argmax ρ′ value is stored for

Fig. 7: Dynamic programming for joint segmentation and
reconstruction from an edge map.

Algorithm 1: Volume DP segmentation and reconstruction

Input: Edge map(s) E = {Ei} from calibrated view(s)
3D SOR axis A in camera frame

Output: Scaling function ρ(h)
H ← {hmin + k ∗ hres, k = 1 . . . (hmax − hmin)/hres}
P ← {k ∗ ρres, k = 1 . . . ρmax/ρres}
P ′ ← {cos(k ∗ π/nρ′ ), k = 1 . . . nρ′}
aggregateScores(H,P, P ′, A, E)
H∆ ← {hmin + k ∗∆h, k = 1 . . . (hmax − hmin)/∆h}
for (h, ρ, ρ′) ∈ H × P × P ′ do

hprev = h−∆h

// Use only neighboring tangent angles
N(ρ′)← {ρ′prev ∈ P s.t. |θ(ρ′)− θ(ρ′prev)| ≤ π/8
for ρ′prev ∈ N(ρ′) do

ρprev ← ρ− ρ′prev∆h

score(ρ′prev)← OPT(hprev, ρprev, ρ
′
prev) + lineSum(hprev, ρprev, ρ

′
prev)

end
OPT(h, ρ, ρ′) = maxρ′prev∈N(ρ′) score(ρ′prev)

end
backTrack(maxρ,ρ′ OPT(hmax, ρ, ρ

′))

the backTrack function to recover the optimal generatrix.
An example of the optimal path for a given volume is shown

in Fig. 6 b.

IV. EXPERIMENTS

A. Single view detection and localization

Fig. 8: 2D detection and localization results. Left: PR
curve for transparent SOR detection in a single view, with
comparison to a DPM model trained on the dataset. Right:
2D axis error for correctly detected instances.



Using a single view as an input, the transparent edge
detection followed by RANSAC axis detection (Sec. III-A and
III-B) can be used for the detection of transparent SORs. The
performance is evaluated similarly to object class detection in
the PASCAL VOC challenge [7], with a required bounding box
overlap of 0.5. The dataset introduced in this paper contains
scenes where one or multiple (up to three) SOR instances are
present in any given view, therefore this evaluation includes
multiple instance detection. A DPM model [9] with 3 com-
ponents was trained on ground truth bounding boxes in the
training set, and a comparison is shown in Fig. 8. Additionally,
axis angle and distance error distributions were computed for
the boxes that have sufficient overlap. The distributions suggest
that the specific symmetry properties of imaged SORs enable
the approach to achieve reliable 2D localization that is more
informative than a bounding box hypothesis.

B. 3D localization from two calibrated views

The matching step described in Sec. III-B is evaluated as a
3D detection and localization task, where one or multiple SOR
instances are imaged in two views. A correct detection requires
an overlap of at least 50% between the hypothesized bounding
cylinder and the ground truth cylinder encasing the SOR
instance. In order to isolate the performance of the matching
step and capture only errors occurring in that step, the output
2D bounding boxes of the single view detection task were
examined, and the matching task was to detect any 3D instance
for which the two corresponding 2D boxes were correctly
detected in both views. Similarly to the 2D task evaluation,
Fig. 9 shows precision and recall for the 3D detection, as well
as distributions of 3D axis pose error for correctly detected
hypotheses. The reliability of the pose estimation pictured in
those distributions validates the proposed pipeline where an
axis pose is first hypothesized and used to reconstruct the
object.

Fig. 9: 3D localization results. Left: PR curve for 3D local-
ization from matching in two views. Right: 3D axis error for
correctly detected instances.

C. Shape reconstruction

The shape reconstruction is evaluated by computing shape
residuals δρ(h) = ρ(h) − ρGT(h) between all points of the

Fig. 10: Shape reconstruction results. Generatrix shape error
cumulative distribution, for the proposed Volume DP and
baseline.

reconstructed and ground truth scaling functions, and com-
puting a cumulative distribution of those residuals (Fig. 10).
A baseline in the spirit of previous work was implemented
for comparison: symmetric curve segmentation as described
in Appendix A is performed in a single view, followed by
reconstruction with known axis pose as described in [23], [5].
Two observations can be made: 1) the volume DP yields more
accurate results than the baseline, as it is designed with noisy
edge responses in mind, 2) results obtained with the proposed
Volume DP formulation are also computed with evidence from
a single view, and the results from two views only provide a
marginal improvement. It can be hypothesized that using two
views helps in a few cases where edge data is missing or
noisier in one of the two views.

V. CONCLUSION

A full framework and an annotated dataset were proposed
to address the problem of detecting, localizing and segmenting
glassware in two calibrated views. It was shown that targeted
learning of transparent edges combined with shape-based
reasoning are a good way to capture the most informative
part of an imaged transparent SOR, namely its contour. Future
work will explore extensions to other classes of transparent
objects, and to the case of uncalibrated views.
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APPENDIX A

Symmetric edge linking The dynamic program runs verti-
cally along a cluster’s axis, operating over image coordinates
u, v. The score of the best path that ends at point (u, v) is rep-
resented as O(u, v) = maxu−∈(u−5...u+5) [O(u−, v−)]+Cedge.
The edge score is Cedge =

√
El ∗ Er, where v− = v−1 is the

previous pixel height along the axis, El, Er are the left and
right fold edge responses, and E is a combination of the left
and right edge responses.
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