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Abstract—As the spatial scale of robots decrease in multi-
robot systems, collisions cease to be catastrophic events that need
to be avoided at all costs. This implies that less conservative,
coordinated control strategies can be employed, where collisions
are not only tolerated, but can potentially be harnessed as
an information source. In this paper, we follow this line of
inquiry by employing collisions as a sensing modality that
provides information about the robots’ surroundings. We envision
a collection of robots moving around with no sensors other
than binary, tactile sensors that can determine if a collision
occurred, and let the robots use this information to determine
their locations. We apply a probabilistic localization technique
based on mean-field approximations that allows each robot to
maintain and update a probability distribution over all possible
locations. Simulations and real multi-robot experiments illustrate
the feasibility of the proposed approach, and demonstrate how
collisions in multi-robot systems can indeed be employed as useful
information sources.

I. INTRODUCTION

Collision avoidance constitutes one of the key mechanisms
for making multi-robot systems operate in a safe and orderly
manner — to keep the robots safe, collisions should be avoided
at all costs. This certainly makes a lot of sense in a number
of applications, where collisions have the potential to be
catastrophic, e.g., for fleets of unmanned aerial vehicles or
platoons of self-driving trucks. As a consequence, a rich body
of work exists on the topic of collision avoidance, and the
design methodologies for achieving collision-free multi-robot
behaviors typically fall into two camps. The first approach
is to make collision avoidance an explicit part of the design
objectives, e.g., by minimizing a performance cost subject to
hard robot-to-robot separation constraints. This is typically
done for smaller teams, where such constraints can be enforced
in a computationally feasible manner, e.g., [9, 29]. As the
team size increases, however, collision avoidance tends to be
ignored when designing primary, coordinated controllers for
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tasks such as maintaining and achieving formations, covering
areas, or patrolling boundary curves, e.g., [7, [19]. But, as
collision avoidance is still of paramount importance, additional
safety controllers are subsequently wrapped around the coor-
dinated controllers that take over the control authority when
collisions are imminent, e.g., [2, 4].

Regardless of the approach, by necessity, collision avoid-
ance becomes the dominant behavior of the system as the
robot density increases. This is because more and more robots
occupy the same space. Consequently, the robots spend more
of their time avoiding each other as opposed to progressing
the overall team mission. In this paper, we sidestep this issue
completely and embrace collisions as a feature of the multi-
robot system. In fact, as momentum is velocity times mass,
collisions become less of an issue as the robots get smaller
and slower. As a consequence, for truly large teams of small
robots, collisions can no longer be considered catastrophic,
as observed in [20], which is relevant for a number of
miniature swarm robotics testbeds, such as the Kilobot testbed
[25]] or the Robotarium [23]]. This fact is moreover observed
in naturally occurring swarms, where “mild” collisions are
known to happen, with fish bumping in to each other during
rapid schooling maneuvers [21]], or among people navigating
through crowds [27].

Once one embraces the somewhat unorthodox position that
robots are allowed to collide, one can observe that there is
actual information to be extracted from the collisions. For
example, if a robot collides frequently with other robots, it
should be able to infer something about the robot density.
This has been observed frequently in biological systems, where
swarming animals use collisions with their neighbors to obtain
information about their surroundings. Ants frequently engage
in head-to-head contact to regulate traffic flow and ensure
efficient transport of resources in tunnels and narrow trails
[10]]. Bees have been shown to use aggregation behaviors and
the formation of tight clusters to find the optimal temperature
spot over a varying temperature field [[13]. By reacting to



collisions among the bees in a specific way, the swarm is
able to form a single large cluster around the right temperature
zone, a feat which cannot be achieved by isolated bees on their
own. This bee phenomenon provided inspiration behind the
development of a distributed multi-robot algorithm where the
robots collectively aggregate near a light source using inter-
robot collisions to trigger measurements from on-board light
sensors [26]. The experimental setup, outlined in [13], used
inter-robot collisions to enable specific spatial formations and
allow for collective decision making.

This paper takes these types of informal and anecdotal
observations about collisions and investigates whether or not
the collisions can be used as sufficiently rich sources of
information to enable the robots to localize themselves (in
particular environments). To this end, we envision a collection
of robots moving around somewhat randomly in a domain with
known characteristics, equipped with no other sensors than
binary, tactile collision sensors. The domain is assumed to be
partitioned into a set of connected cells and the task is for
the individual robots to establish what cells they are currently
occupying by counting collisions. We develop a probabilistic
localization technique that allows each robot to compute a
probability distribution over the different cells that tells the
robot how likely it is that it is currently occupying a given
cell.

To establish such a framework, we need mobility models as
well as collision models. And, it should be noted already at this
point that some of the mathematical models pursued to this
end are somewhat simplistic. However, these simplifications
should be understood in light of the underlying ambition to
harness the power of collisions, and they can ultimately be
justified by showing that they can indeed be used as generators
of successful, adaptive localization schemes.

In this paper, we assume that the motion of each robot from
one cell to another is derived from a static Markov chain,
where the set of cells represents the states of the Markov
chain. The Markovian motion model encodes the uncertainty
associated with the motion of the each robot, as well as the
interactions between the robots which may affect their motion
in unpredictable ways. Since each robot does not know its
current cell, the states of the Markov chain are hidden. How-
ever, each robot is getting some underlying information about
the states via the collision measurements. Hence, we have
an underlying stochastic process (the Markov chain), which,
though directly immeasurable, can be measured indirectly
through a second stochastic process (collision measurements).
As such, representing the localization problem in a Hidden
Markov Model (HMM) [24] framework allows each robot
to update the probability distribution over all the states by
incorporating sensory collision information at each time step.
The emission probabilities of the HMM correspond to the
probability of a robot experiencing a collision in a given cell.
A pointwise a posteriori probability (PMAP) estimator [3] is
used to compute the best guess of the robot’s current cell based
on the updated probability distributions.

The outline of this paper is as follows: Section [[I] uses

mean-field approximations and a spatial point process to
determine the probability of a robot experiencing collisions.
Section subsequently introduces the Markov chain-based
motion model of the robots, and develops the localization
algorithm. Simulation results illustrate the efficacy of the
proposed algorithm itself for robots satisfying the Markovian
model. In Section [[V] we implement the algorithm on a team
of real mobile robots. Finally, Section [V| concludes the paper.

II. COLLISIONS AMONG ROBOTS

In order to use collision information to localize the robots,
we first must establish a model for how often collisions occur
among the robots. This section introduces both the underlying
localization problem and provides estimates for the probability
of a robot experiencing a collision at a given time as a function
of the distribution of robots over the domain of interest.

Let ' = {1,...,N} be an index set of N robots de-
ployed over a compact and connected, planar domain D,
which is divided into M connected and non-overlapping cells

D1, Do, ..., Dy, such that,
M
D =] D;,
Jj=1
with the corresponding environmental index set being M =
{1,...,M}. Now, assume that the robots move in-between

cells, so that at time k, the fraction of robots in cell D; is
denoted by f;(k). We use u(k) to denote the vector over
all cells, [pq(k), pa(k), us(k), - ., uar (k)] and let the initial
robot distribution be given by u(1) = f.

In each cell, the robots may collide with other robots in that
cell. Since the fraction of robots in each cell differs, and so
does the size of the cell, the rate of collisions experienced by
the robots will be different, as illustrated in Figure E}

Fig. 1: An illustration of the deployment of N robots over
a domain D which is divided into M connected cells Dy,
7 =1,..., M. Due to the varying number of robots in each
cell and different cell sizes, the collision rates in each cell will
vary - the higher the density of robots, the more likely it is
for collisions to occur.

The path planning literature contains several ways in which
the probability of collisions can be calculated under motion



and sensory uncertainty e.g., [6, 8, 22]]. In many cases, Monte
Carlo based techniques have been used to obtain estimates
of the collision probabilities, e.g., [16], while the majority of
the analytical techniques developed compute the probability of
collision along a specific path taken through the workspace in
the presence of stationary or moving obstacles, e.g., [[15} 30].

Neither of these approaches quite serve the purpose for this
paper, where the collisions experienced by a robot in a given
cell will depend on the motion of all the other robots in the
cell. Luckily, mean-field theory [12, [17] provides an elegant
way to simplify such complex interactions by allowing us to
replace the effect of other robots on a single robot by an
averaged effect. To perform the mean-field approximation, we
simply assume that the effect of the other robots on a given
robot can be approximated with a single collision probability.
Thus, at each time step k, we will compute the probability of a
robot experiencing a collision in a particular cell D;, j € M,
which we will denote by ¢; (k). (Note that the index here only
refers to the cell since this probability is the same for all robots
in a given cell under the mean-field approximation.)

To compute ¢;(k), we let z; € D denote the position of
Robot i, and let the footprint of each robot be a ball B(x;, )
centered at x; with radius r. We assume that the robots are
randomly distributed within the cell, and, in order to develop
a stochastic collision model that is rich enough to be relevant
yet simple enough to be analytically tractable, we make the
following assumptions:

1) The size of the domain is significantly larger than
the footprint of a single robot, i.e., |D| > r. This
assumption prevents boundary effects from playing any
significant role in the collision probability.

2) The point process [S] describing the distribution of
the robots in a given cell can be approximated by
a spatial Poisson point process [14], with intensity
Aj(k) = pj(k)N/|D;|. What this entails is that the
expected number of robots inside any subset of D; is
proportional to the fraction of D; that this subset covers.
In other words, the intensity A;(k) gives the expected
number of robots per unit area in cell D; at time k.

3) Collisions occur when the footprints of the robots over-
lap, i.e., when B(z;,r) N B(xj,r) # 0, ¢ # j. This
is obviously physically not valid, but it both allows for
mathematical simplicity yet will, as we will see, yield
empirically valid results under Monte Carlo simulation
scenarios.

If we say that Robot 7 is in a given region R C D; whenever
x; € R, the spatial Poisson process property immediately tells
us that the probability of having n robots in R (with area
|R| = A), at time k, is given by [5],

(A (k) A)re— (A
n! '

Pk, A) =

Here, the prefix letter j in ; P, (k, A) indicates the cell D; that
we are interested in.

In other words, if Robot ¢ is dropped down at a random
location within cell D; at time k, the probability of it over-

lapping spatially with another robot - which we take as a proxy
for collision - is equal to the probability of having at least one
robot in a circular region R of radius 2r centered at x; (see
Figure . Thus, the collision probability in cell D; at time &k
is given by,

oj(k) =1—;Py(k, A), (1)
with
jPo(k,A) = e N4
A = 7(2r)?
Aj(k) = p;(k)N/|D;.

Fig. 2: Robots 1 —4 are placed randomly in a non-overlapping
manner, and robot 5 is dropped at a random location. The
probability of robot 5 experiencing a collision is equal to the
probability of having at least one other robot in a circle of
radius 27 centered at the robot. The robots depicted in gray
have experienced collisions while the black robots have not.

We validate Eqn. (I) by comparing the derived expression
for the probability of collision in a given region against a
Monte Carlo simulation which computes the collision rate by
repeatedly dropping a robot, in a uniformly random manner,
into the region and then checking for collisions. The radius
of each robot was chosen as 0.01m while the domain was
a square of length 1m. The number of robots N was varied
between 10 to 120 and for each IV, the Monte Carlo simulation
was executed for 10, 000 iterations. Figure [3]illustrates that the
collision probabilities predicted by the spatial Poisson process
indeed reflect the collision rates experienced by the robots
despite the physically somewhat dubious assumption about
overlapping robots.

As the robots experience collisions while moving from one
cell to another, we fix our attention on a particular robot —
it does not matter which since they are all identical. Conse-
quently, in the rest of this paper, we will suppress the subscript
denoting the identity of the robot. To this end, we associate a
binary variable with the collision events experienced by this
robot, i.e.,

1 if the robot experiences a collision at time k,
(k) = .
0 otherwise.

The question then becomes, given a string of such observa-
tions I'(k) = [y(k),...,v(1)], can the robot figure out which
cell it currently is in? In order to answer this question, we
need a motion model, which is developed in the next section.
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Fig. 3: Validation of the collision probabilities predicted by
the spatial Poisson process model by comparing it against the
collision rates obtained using a Monte Carlo simulation. The
Poisson process probabilities closely match the simulation data
for a varying number of robots and serve as good estimates
of the true collision probabilities.

III. COLLISIONS THROUGH HIDDEN MARKOV MODELS
A. The Forward Algorithm

In the previous section, we developed estimates for the
probability of a robot experiencing collisions in a given cell. In
order to utilize this information to localize the robot, we need
a mathematical model for the motion of the robots between the
cells. Due to the lack of locational information and detailed
sensing, as well as the constant interaction between robots,
the motion of the robots between cells is stochastic. This
lends itself naturally to a Markov chain-based motion model,
where the robots move between the cells based on transition
probabilities. This approach is commonly used when dealing
with uncertainty in robot motion since it efficiently models the
stochasticity inherent in the system, e.g., [1, 28] [31]. In this
section, we exploit this Markovian motion model and develop
a corresponding localization algorithm.

Let the current cell of our chosen robot at time k& be denoted
by q(k), i.e., if the robot is in cell D; at time k, then ¢(k) = j.
(Again, since all the robots are the same, we suppress the index
of the robots in the notation.) The robots move between cells
based on a Markov Chain with transition matrix P,

Py =Pr0b(Q(k+ 1) =il q(k) =j), i,jeEM. (2

These transition probabilities have to be chosen to reflect the
physical accessibility of one cell from another as well as other
mobility considerations. In Section [[II-B| a particular choice of
transition probabilities is made but for now, we simply assume
that these probabilities are somehow made available to us.

The mean-field approximation means that the fractions
of robots inside a given cell satisfy the same Markovian
properties, i.e., Eqn. (2) implies that

ulk +1) = Pu(k).

Note that the states of the Markov chain are hidden, since
the robots do not know which cell they are currently in.
However, they are making observations in the form of collision

measurements over the set {I'y, T2} = {0, 1}. The observation
probabilities — the probability of observing a 0 or a 1 in cell
D; — thus becomes

Gy (k) =Prob(y(k) = T | (k) = ),
=12, jeM.

Since the robots are homogeneous, we already know that the
probability of observing a collision in cell D; at time % is

(bj(k), i.e.,

Guj(k) =1—¢;(k)
Goj(k) = ¢j(k), je M.

Note that it is rather unusual that the observation probabilities
depend on time. This is due to the fact that even though we are
focusing our attention on a single robot, all the other robots are
moving around at the same time and it is the statistics of this
motion that ultimately determines the collision probabilities.

We have now finally obtained the hidden Markov model
H = (P,G, fn). This construction allows each robot to com-
pute and update the probability of being in a particular cell at
time k given observations up to and including time k.

Let dx(¢) denote the probability of the chosen robot being in
cell D; at time k, given the sequence of observations I'(k) =
[v(k),...,v(1)]. This is given by the posterior probability in
the context of the hidden Markov model H,

5u(i) = Prob(q(k) —i| P(k),H).

One way to estimate the current cell of the robot is thus to
simply pick the state corresponding to the highest posterior
probability,
q* (k) = argmax d(1).
1eEM

Such an estimator is called the pointwise maximum a-
posteriori probability (PMAP) estimator [3} [24]], since it picks
the state with the highest posterior probability. This estimator
is optimally accurate in the sense that it maximizes the
expected number of correct estimates, e.g., [LL1, [18]].

In order to compute dx(¢) at each time instant k, we define a
variable v (7) which denotes the joint probability of obtaining
a sequence of observations I'(k) and being in state D; at time
k,

ax(i) = Prob(I‘(k),q(k) =i H).

The probability of obtaining a sequence of observations is now
simply the sum of a4 (¢) over all the states,

M
Prob(F(k) | H) =3 ar(j).
j=1

Thus, 0y (¢) can be expressed as,

_ Prob(L(k), q(k) = i | )
N Prob(T'(k) | H) ’

Ox(1)



or, equivalently,

a (1)
Z?il ax(j)’
We can now use the recursive forward algorithm [24] to

compute values of §x(i). Algorithm [I| outlines the steps
required to generate the PMAP estimates.

Ok (i) = 3)

Algorithm 1 PMAP Estimation - The Forward Algorithm

1 k=1, Ozl(i) = G’y(l)i(l)ﬂiv 1e€M
2: while true do o

N (i .
o) =sw g teM
4: q* (k) = argmax;¢ r4 0k (%)
5: v(k+1)«{0,1}
6.
7
8:

apy1(i) = (ij\il ar(3)Pij)Gykt1)ir 1 € M
: k=k+1
end while

Step [I] initializes the forward probabilities as the joint
probability of being in cell D; and making an observation
~(1). The posterior probabilities are computed in step [3| using
Eqn. (3). The PMAP estimator simply picks the state with
the highest posterior probability in step A Step [6] outlines the
induction step of the forward algorithm. The product «(5)P;;
gives the joint probability of reaching cell D; at time k41 via
cell D; at time &k and making the partial observation I'(k). By
summing over all the possible states, Z;‘il ag(j)Pi; gives
us the joint probability of reaching cell D; at time k + 1
and making observations I'(k). Finally, ay41(4) is obtained
by multiplying Zj\il ag(j)P;; with G 41):, Which takes
into account the latest collision measurement ~y(k + 1).

Algorithm (1] assumes that all robots know the initial dis-
tribution of robots f, the size of each cell |D,|,j € M and
the Markov transition matrix P. There is no communication
needed between the robots before or during the execution of
the algorithm.

As outlined in Algorithm the posterior probabilities
0(1),1 € M, which represent the probability of a robot being
in cell D; at time k given observations up to and including time
k, are updated at each iteration using collision measurements.
In order to analyze whether collisions among the robots indeed
contain the information content required to perform localiza-
tion, we study how the entropy of the posterior probability
distribution dx(¢),7 € M changes as collision information is
used to update it. The entropy of a probability distribution,
denoted by E,, measures of uncertainty associated with it [31]],
and is given by,

M
Br ==Y () logvk()-
i=1

Thus, lower the entropy of the probability distribution, the
more certain the robot is about its estimate ¢*(k). In order
to analyze how the entropy of the probability distribution
changes as collision measurements are made, we consider

a simplistic yet illustrative scenario where N robots are
distributed randomly over the cells of the domain, however,
they do not move between the cells, and simply remain in
the same cell for all time £ = 1,2,.... This motion can
be derived from a Markov chain with a transition probability
matrix P = Ip;«ps Where Ipyx s is the identity matrix. The
task for each robot now is to use collisions in order to estimate
the cell it is occupying. This scenario, while simplistic, helps
us observe how the entropy of the probability distribution
changes as collision measurements are made. Figure [4a| shows
the results of the simulation which was conducted over 1500
iterations. The cell estimate tracks the true cell of the robot
within a few iterations indicating that the robot has localized
itself. Indeed, as depicted in Figure [4b] the entropy Ej, of the
probability distribution 0 (4),% € M reduces as the algorithm
progresses. The reduction in entropy demonstrates how each
robot is able to use collisions with other robots to reduce the
uncertainty about its current location and thus, localize itself
in the domain.

The rest of this section presents simulations where the
robots are moving between cells and verifies the feasibility
of Algorithm

B. Simulations

In order to illustrate the operations of Algorithm [I} we
consider a scenario where N robots are moving around a
circular track comprised of M segments each of width w;,
i € M (see Figure[3). The Markov matrix P is chosen in such
a way that at each time step k, the robot can either remain
in the same segment or move to the next segment. Assuming
that the transition between cells occurs in only one direction,
the width of each segment w; not only affects the collision
probabilities but also the congestion in each cell. We model
this congestion by letting the probability of a robot staying
in the same cell be inversely proportional to the width of the
cell: the narrower the segment, the higher is the probability of
getting stuck,

P(i,i) = ei,P(i +i,i)=1—P(i,i),i=1,..,M -1
P(M,M) = EL,P(].,M) =1-P(M,M),
wnm
where € is chosen so as to restrict the probabilities between 0
and 1.
The Poisson parameter \; (k) for each cell D, is computed,
as before, as the average number of robots per unit area in the

cell, ")
i (k)N
Ai(k) =
! 1Dy
In the simulation scenario, we  develop a
circular track with 10 individual cells of widths

[0.2,0.17,0.16,0.11,0.09,0.13,0.15,0.24,0.26, 0.28] and
e = 0.07 (Figure [5). The simulation is conducted over 300
iterations. The robots are initially placed into different cells
according to the distribution fi, and are then moved between
the cells based on the Markov chain probabilities. The
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Fig. 4: Illustration of the probabilistic localization technique
for a single robot in a team of N robots distributed with initial
distribution i over a domain. In this specialized scenario, the
robots do not move between the cells and simply remain in
the same cell. Each robot uses collisions with other robots to
update the probability distribution over the states. As seen in
Figure ffa] the robot is able to correctly localize itself in the
domain. This corresponds to a reduction in the entropy of the
posterior probability distribution ~yx(i),7 € M of the robot,
as shown in Figure b} The reduction in entropy illustrates
how collisions can indeed be used as sources of information
to reduce the uncertainty regarding a robot’s position in the
environment and thus can be used for localization.

location of a robot within a cell, is determined by dropping it
at a uniformly random location within the cell. As described
in Section [[I} if the robot spatially overlaps with any of the
other robots present in the cell, a collision is recorded.
Figure [6] shows the true cell and the cell estimates for a
randomly chosen robot in the team of 45 robots traversing the
circular track. As seen, using only collision measurements, the
PMAP estimator generates estimates which closely track the
true cell of the robot as the robot moves around the domain.
Figure [7] quantitatively analyzes the performance of the
localization algorithm by illustrating the distribution of the
localization error over the simulation time. The localization
error, computed as the difference between the true cell index
of the robot ¢(k), and its PMAP estimate ¢*(k), is an integer,
with 0 implying perfect localization, {+1, —1} implying that
the cell adjacent to the true cell was picked, etc. As seen,

Fig. 5: A circular track with 10 cells of varying widths. The
robots have been distributed randomly based on an initial
distribution ji.
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Fig. 6: Simulation results of the probabilistic localization
technique for a single robot in a team of 45 robots moving in

a 10-cell domain. As seen, the estimates closely track the true
cell of the robot.

for majority of the time, the estimator either performs perfect
localization, or localizes the robot to a cell adjacent to the true
one.

IV. EXPERIMENTAL RESULTS

Until now, we considered a discrete-time motion model for
the robots, where each robot transitioned between cells at
discrete time steps. In order to test the collision algorithms on
teams of actual robots, this has to be modified to a continuous-
time setting. To this end, let x € D denote the position of a
chosen robot — again, we suppress the index of the robot, since
all the robots are identical. The planar robots are assumed to
move according to the following dynamics,

T =u,

where w is the applied control velocity.

Since the robots do not know where they are based on tra-
ditional sensing modalities, we simply let each robot travel in
a randomly chosen direction for a fixed duration of time 7', at
which point another random direction is selected. Essentially,
each robot is performing a random walk where the direction
of motion is changed at regular intervals of time ¢, = k7T,
k = 1,2,.... The random walk of the robots implies that
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Fig. 7: Distribution of the quantized localization error for the
simulation described in Section The localization error
is the difference in the cell index between the true cell of
the robot ¢(k) and its PMAP estimate ¢*(k). As seen, the
estimator perfectly localizes the robot 33% of the time. Note
that a localization error of 5 and —5 correspond to the same
cell (see Figure [5).

transitions between cells is stochastic in nature. Consequently,
we model these transitions as a particular realization of a
Markov chain with transition probability matrix P, where
the states of the Markov chain are the different cells of the
domain. Similar to approaches used in [[1, 28} |31]], we generate
estimates of the transition probability matrices by conducting
repeated simulations of the robots executing this random walk
motion. At regular intervals of time tj, the cell occupied by
each robot is noted, and this information is used to generate
the transition probability matrix P. Thus, a discrete Markov
chain, evaluated at discrete times ¢y, is used as a simplified
and abstract representation of the motion of the robots between
the cells. While this may seem like an over-simplification of
the motion of the robots, it is sufficiently rich for the purposes
of estimating the current cell that each robot is occupying, as
will be seen later in this section.

Let ¢(ty) denote the index of the cell occupied by the robot
at time t. The distribution of robots across the cells u(t;) =

(11 (tr)s 2 (tr), - - par ()] T evolves as,
pultre1) = Pu(ty).

Similar to the previous section, the states of the Markov
chain are hidden since the robots do not know which cells
they occupy. Consequently, let ¢(¢) denote a binary variable
associated with the collision of the chosen robot at continuous
time ¢,

(1) = 1 if the robot experiences collision at time ¢,
0 otherwise

The observations from the Markov chain thus becomes

tht1
1, if/ c(t)dt > 0,
'y(tk) = ty

0, otherwise.

As a result, () encodes whether the robot experienced any
collisions over the time interval [ty, tx11), and can be used as
the observation variable in the hidden Markov model.

These constructions give us both the transition probabil-
ity matrix P and the emission probability matrix G. As a
result, we have constructed the hidden Markov model as
H = (P, G, 1). Proceeding as described in Section [l we can
thus utilize the forward algorithm to obtain estimates g* (¢ )
of the cell that the robot is occupying at time tj.

The probabilistic localization algorithm was implemented
on actual, physical robots on the Robotarium [23], which
is a remotely accessible multi-robot testbed where code is
uploaded via a web-interface and the experimental data is
returned after the experiments. The experiments involved 12
differential-drive mobile robots traversing a simulated track
with 4 cells of varying widths (see Figure [§). Each robot ex-
ecuted a random walk as described earlier in this section, and
used the collision information for localizing itself on the track.
As can be seen in Figure [§] the collisions involve physical
contact between real robots and have not been simulated in
any way.

Figure [9] shows the result of the localization algorithm for
an experimental run of 600 seconds. As can be seen, after a
few seconds, the estimate tracks the true cell that the robot
is occupying. Similar to the analysis in Section Figure
illustrates the distribution of the localization error over the
experiment time window.

V. CONCLUSIONS

In this paper, we argue that for certain classes of multi-
robot systems, collisions can not only be considered as a
feature of the multi-robot system, but can also be viewed as a
sensing modality. We envision a team of robots moving around
equipped with only binary tactile collision sensors, and use the
information derived from these sensors to localize the robots in
the domain. To do this, we first use mean-field approximations
to compute the probability of a robot experiencing collisions
in the different regions of the domain. Using this information,
each robot maintains and updates a probability distribution
over all the possible regions in the domain which tells the robot
how likely it is that it is currently occupying a given region.
Collision measurements are incorporated via a hidden Markov
model framework to update this probability distribution, and
a pointwise maximum a posteriori (PMAP) estimator is used
to obtain the best guess of the robot’s current region.

To the effect of providing an information-theoretic valida-
tion of this idea, we show that the entropy of the probability
distribution reduces as collision measurements are used to
update the probability distribution, implying that inter-robot
collisions indeed contain information which can be used
by a robot to reduce the uncertainty regarding its current
location. After verifying the functionality and performance of
the proposed probabilistic localization technique in simulation,
we conduct multi-robot experiments involving actual mobile
robots. In these experiments, collisions involve physical con-
tact between the robots, in-line with our belief that for large



(a) (d)

Fig. 8: Experimental Setup: 12 mobile robots are traversing a rectangular track on the Robotarium - a remotely accessible
multi-robot testbed [23]]. Collisions among the robots involve actual physical contact and have not been simulated in any way.
Each robot executes a random-walk algorithm, and using only collision information, generates estimates of the current cell
that it is occupying.
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Fig. 9: Experimental results of the localization algorithm for Locahzatlon error: dlfference between q(k) and q*(k)

12 mobile robots operating on a multi-robot testbed. Fig. 10: Distribution of the quantized localization errors for

the experiment described in Section [[V] The localization error
is the difference in the cell index between the true cell of
teams of smaller robots, collisions are no longer catastrophic, (he robot q(k) and its PMAP estimate ¢*(k). As seen, the
and in faet, can allow robots to gather information about their  egimator perfectly localizes the robot 36% of the time. Note
surroundings. that a localization error of 2 and —2 correspond to the same
cell (see Figure [8).
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