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Abstract—Time series classification is an important task in
robotics that is often solved using supervised machine learning.
However, classifier models are typically not ‘readable’ in the
sense that humans cannot intuitively learn useful information
about the relationship between inputs and outputs. In this paper,
we address the problem of rich time series classification where
we propose a novel framework for finding a temporal logic
classifier specified in a human-readable form. The classifier is
represented as a signal temporal logic (STL) formula that is
expressive in capturing spatial, temporal and logical relations
from a continuous-valued dataset over time. In the framework,
we first find a set of representative logical formulas from the
raw dataset, and then construct an STL classifier using a tree-
based clustering algorithm. We show that the framework runs in
polynomial time and validate it using simulated examples where
our framework is significantly more efficient than the closest
existing framework (up to 920 times faster).

I. INTRODUCTION

Classification of time series data is an important task in
robotics and machine learning where a given data sequence is
assigned to one of a number of categories. In robotics, sensors
provide time series data, leading to many applications such as
behaviour classification [24], anomaly detection [7]], surveil-
lance [10] and self-diagnosis [[15], in which patterns of adver-
sarial trajectories and abnormal behaviours over time should be
learned. Beyond the assignment of data to categories, however,
it is interesting to consider how to enrich the classifier model
to be as intuitive as possible, so that humans can easily
understand the underlying rules, learn from the model and use
the classifier to inform decision making. This idea is aligned
with current interest in methods that describe hidden system
or environment models in a rich, readable manner so as to
enable a deep level of interaction between autonomous systems
and their designers and/or users [9, [2, [12]]. Such algorithms
should be computationally efficient in order to handle large
datasets and execute on a variety of platforms; we would like
to address the task of finding a rich and expressive classifier
in a computationally efficient manner.

Time series classification is well studied in supervised ma-
chine learning [3} (7} [14} 25 23| [16] 20]. However, the classifier
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models in traditional machine learning are often not in human-
readable form, such as a hyperplanes in high-dimensional
abstract parameter space [27]. Human readability is important
because it can provide intuition into the internal reasoning of
the classifier, which in turn can help non-expert users to gain a
qualitative and quantitative understanding of the classification
output. Recent work in temporal logic inference exploits the
expressivity of temporal logic in modelling such a time series
classifier [6, [13, 28, 21]. However, these frameworks are
too computationally expensive to handle large datasets and
may not run on mobile robots with limited resources, or
expressivity is limited due to their logical structure.

In this paper, we propose a novel framework for the
time series classification problem using natural language. The
objective of the framework is to learn a classifier in the
form of signal temporal logic (STL) formula from a set of
labelled sequences. The framework consists of two parts. First,
we extract regions of interest automatically from the data
using a kernel function. We use the regions to find a set of
logical formulas that represents the original dataset. Secondly,
we construct an STL formula using a tree-based clustering
algorithm given the set of logical formulas. On each node of
the tree, an STL formula that minimises the misclassification
rate is found. The framework is computationally efficient, and
we show that it runs in polynomial time.

The classifier is expressed in such a way that spatial,
temporal and logical relations are presented in human-readable
form. A surprising side effect is that the classifier itself
can be used online, prescriptively or proscriptively, to guide
system behaviour (such as in self-diagnosis and recovery) to
a desirable category.

We demonstrate the framework using two simulated exam-
ples, naval surveillance and self-diagnosis, and compare our
expressivity and complexity results against similar work [6].
For both examples, we present the resulting temporal logic
classifier and the corresponding misclassification rate. Our
results show that the proposed framework is significantly more
efficient than the closest work in the field.

This paper is organised as follows. In Sec. we briefly
summarise existing work. In Sec. we present preliminaries,
and in Sec. we provide the formal problem statement.
In Sec. [V-A] we present a set of recursive rules for con-



verting an STL formula into its logical form, and how the
misclassification rate of a formula can be computed w.r.t. a
dataset. In Sec. [VI and we introduce our framework with
a running example. In Sec. we show complexity analysis
of the framework and how we achieve significant efficiency.
Our simulated results are presented in Sec. [[X| and we discuss
conclusions and future work in Sec.

II. RELATED WORK

Various models in supervised machine learning can clas-
sify continuous-valued time series. Support vector machines
(SVMs) extract features in parameter space and find hyper-
planes that separate data into one of the categories [27].
Neural networks also learn to perform the same task [14].
Other important work includes dimensionality reduction and
feature selection (e.g., principal component analysis or linear
discriminant analysis) [1, [18]. However, this work does not
provide features in intuitive form.

Some frameworks provide the output of classification in
more readable form. Hidden Markov models (22, 5] address
the classification problem of learning a classifier in the form
of a transition matrix, where the matrix describes the state
evolution. However, the matrix is insufficient in describing
sophisticated features.

Reasoning about temporal relations has been well studied
in artificial intelligence [26]. The main objectives are to find
how events are correlated in time and to describe the relations
using natural language. In [19], the authors use relations such
as after, before, begins and includes for two given events.
In [8) 28, 21]], the use of temporal logic, such as modal
temporal logic, reified temporal logic, metric temporal logic
and linear temporal logic, is shown to reason about temporal
relations. However, the focus of these approaches is to find a
temporal ordering of logical events, and they do not consider
important quantitative parameters such as time intervals and
spatial metrics.

Temporal logic has been studied extensively for robotic task
planning [29, [11} [17, 130]. More recent work attempts to use
STL as a means to express a classifier intuitively. Unlike modal
temporal logic, STL is capable of expressing time intervals
to which a system is constrained. Early work in learning an
inference parametric STL (iSTL) formula focused on finding
parameters of given types of formulas [13]]. The learning goal
is to find the unknown spatial and temporal parameters of the
formula. This approach is, however, not flexible in structure,
and not scalable in practice.

The closest framework to ours is proposed in [6]. This
work uses a decision tree to learn an STL classifier. In the
framework, a pool of STL formulas is enumerated to find an
optimal formula for a given decision tree node. The goal of the
framework is to complete the decision tree and construct an
overall STL formula. This work is similar to our approach in
the sense that we also partially use a tree-based clustering
algorithm, and the form of STL formula is quite general.
However, in our approach, we have a clear stopping condition
in the clustering algorithm, whereas their approach relies on an

arbitrarily chosen stopping level. More importantly, our work
is significantly faster in practice. The main reason is because
we reduce the size of the dataset by finding a set of logical
formulas that represents the raw dataset. We also have reduced
the computation time by proving that the misclassification
rate of a formula is related to the sum of individual logical
formulas.

III. PRELIMINARIES
A. Signals

An n-dimensional continuous-valued signal x is defined
over a finite discrete time domain T = {0,1,---,7 — 1},
where T is the length of the signal. We denote x(t) € R™ as
the ¢-th state of the signal (i.e., x = x(0)x(1)---x(T — 1)),
and x[t] as the suffix of the signal from time ¢ (i.e., x[t] =
x(t)x(t+1)---). Alabel d = T (i.e., true) is given if a signal
exhibits a desired behaviour (L, otherwise).

A finite set of labelled signals is given as X =
{{x1,d1}, {x2,d2}, -+ ,{xn,dn}}. We denote X; C X as
the set of desired signals and X; C X as that of undesired
signals, where X; N X; = ), and Ny, Nj and N are the
numbers of signals in X4, X7 and X, respectively.

B. Signal Temporal Logic (STL) and Notations
The syntax of STL is defined as:

Gu=T | p| 20| o1 Ada |G, )9, (1)

where T is true from Boolean algebra, p € P is a symbolic
predicate, — and A are regular Boolean operators for negation
and conjunction, respectively, and G is the temporal operators
for ‘Globally’ (‘always’) between the time interval [t,%s].
Disjunction operator V can be derived from conjunction and
negation operators. Likewise, temporal operators F and U for
‘in Future’ (‘eventually’) and ‘Until’ can be derived [4].

The semantics of STL is defined over a discrete-time
continuous-space signal x as:

X[t Ep <= x]t
X[t E ¢ — x|t
X[t] E ¢ <~ x|t
X[t] E ¢1 A 92 <= X[t] E ¢1 and x[t] = @2
X[t] |E Fity )0 <=3t €[t +t1,t + 1], x[t'| E ¢
X[t] |5 Gy 1) ==Vt € [t+t1,t +t] x[t'] = ¢,
where IT : P — {[R,R]™} defines a set of spatial predicate
as n-dimensional rectangles (i.e., hyperrectangles). For an n-
dimensional signal state x(t) = [z1, -+ ,2,|T and II(y) =

{Ip}, p3], -+, [P, p3]}, x[t] € T(u) holds true if and only
if /\ie[l,n] (p} < x; < pb) holds true.

T(p)

Je
I=o
}%sﬁ )

Example 1. Given a 2-dimensional signal x = [1,1]7[3, 3]T,
the term x(0) holds true for spatial predicate {0, 2],[0,2]},
whereas the term x(1) holds false. O

Throughout this paper, we use extra notations ¢, ¢ + ¢,
¢ - ¢ (or ¢p¢ without -) for Boolean negation, disjunction and
conjunction, respectively.
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Fig. 1. Learning an STL formula from a labelled dataset

IV. PROBLEM STATEMENT

In our classification problem, the objective is to find a binary
classifier for time series data in the form of an STL formula
from a training set. Using the classifier, a testing signal is
assigned to one of two classes: desired and undesired. The
problem of finding the classifying STL formula, as shown in
Fig. |1} is divided into two sub-problems:

Problem 1 (Feature extraction). Given a set of labelled
signals X, find a finite set of spatial predicates 11 of interest
and a set of logical expressions F (ie., symbolic strings)
corresponding to the signals. O

Problem 2 (STL formula construction). Given a set of logical
expression F over the set of predicates 1I, find an STL
formula ¢*, such that the misclassification rate of ¢* is
minimised with respect to F. O

V. SIGNAL FORMULAS AND MISCLASSIFICATION RATE

In this section, we formally define a geometrical represen-
tation of STL formulas and their mutually-exclusive form. We
then define misclassification rate and present properties.

A. Geometrical Representation of STL Formulas

Any discrete-time STL formula ¢ can be written in a logical
expression f = f(¢,t) over a discrete-time signal x at time ¢.
We call such an expression a signal formula.

Definition 1 (Signal formula). A signal formula f is a logical
expression evaluating the satisfaction of a given signal x over
time. The formula is of the form

fo=pml f+ 1T, 3)

where p; € Vi is a signal variable, V; = {u, | Yu €
{0,P} and Vt € T}, Vy(t) = {ur € Vy | 7 = t}
and (); = HpeP D¢. A signal variable y; holds true for signal x
if and only if x(¢) € II(x) holds true. O

Example 2. Suppose we have a signal formula f = A; +
By - By, where P = {A, B} and T = [0, 1]. The set of signal
variables is V; = {Ay, By, A1, B1}. A signal x has to hold
true for the following condition in order to satisfy the signal
formula: (x(0) € II(A)) v (x(0) € II(B)) A (x(1) € II(B))
(i.e., ‘the signal has to be in region A at time 0, or region B
at time 0 and 1°). O

A signal formula f can be derived for an STL formula ¢
by the following recursive rules:

£(T,t)=T
£(u,t) =
£(=¢,t) = ~f(¢,t)
£(p1 A @2, t) = £(1,t) A (g2, 1)
£(p1V d2,t) = £(1,t) V £(¢2, 1) )
£ty 1200 t) = /\ £(o,t +1)
' €[t1,ta]
£(Fiiy 1010, t) = \/ f(p,t + 1)
t' €[ty ,ta]

Example 3. Given an STL formula ¢ = Gjo 1)(Fjo,204 A
f[og]B) at time ¢ = 0, the signal formula is:
f(o, 0) :f(]:[OQ]A A ]:[0’2]3, 0) . f(f[o_’Q]A A .7:[0’2]3, 1)
Zf(}—[o’z]A, 0) . f(]:[og}B, 0)
£(Flo,24,1) - £(Fjo,B,1)
=(Ao + A1 + A2) - (Bo + By + Bs)-
(A1 + Ay + A3) - (B1 + Bz + Bs)

=A1B1 +A1By+ -+ AyA3By B3,
@)
where the set of signal variables is { Ay, Bo, 41, B1, A2, Ba}.
O

In this paper, we assume that no predicates overlap in space,
such that:

A; - B; = L and II(A) NII(B) = ,YA,B € P,Vi € T.
(6)

Under the assumption, the following interesting reduction
properties can be derived:

Ai+ B;
4B
Ai+Bi
for any + € T and A, B € P, where A # B.

<~ B;
— A @)
— T,

Example 4. With the assumption, the resulting formula in
Example [3] can further be simplified as

f(¢,0) =A1 By + B1 A,

8
+AyB1As + AgB2As + ByA1Bs + By A2 Bs. ®)

O

B. Mutually Exclusive-Signal Formulas

Any signal formula f can be expressed in disjunctive

form consisting mutually-exclusive signal formulas p, called
mutually-exclusive disjunctive normal form (exDNF)
Fempl i+
p = Hvt € V(t). ©)

teT



The set of disjuncts for f , denoted as Dy, is called an exclusive
set of f. Intuitively, each disjunct contains one signal variable
forall t € T.

Example 5. Continued from Example the signal for-
mula f = A; + BoB; expressed in exDNF and the exclusive
set are

f=00A1 + ByAi + AgA1 + By By

(10
Dy = {0oAy, BoA1, AgA1, By By }.

O

C. Misclassification Rate

Given a set of spatial predicates 1I and a set of labelled
signals X, the misclassification rate can be calculated with
respect to a signal formula or an STL formula ¢ € {f, ¢} as
follows:

Ng—g+b
N
where g is the number of desired signals satisfying the
formula v and b is the number of undesired signals satisfying

the formula, such that:

g=8) ={xeX[(xEy)A(dET}
b=b() = |{x e X|(xEY)A(dE L}
Throughout this paper, we call A = Ny/N a diminish-

ing constant. In a short form, we often use r(¢), instead
of r(¢, 11, X).

r(lﬂ;H’X) = ) (11)

12)

Lemma 1. The misclassification rate of a formula in the
form 1 Vahg is r(h1 Vihe) = r(h1) +r(v2) —r(P1Athe). O
Proof: From (IT)), we have

Ng  bi—g
) =24 : 13
r(f) =3+ (13)
We substitute (13)) into r(f; V fa):
r(¢1V 2)
_ Na— (91492 — gin2) + (b1 + ba — bip2)
B N
14
_Na =g ba—go bina—gine 19
N N N N

(Y1) +r(2) — (Y1 Aa),

where g1p2 and by o are the number of desired and undesired
signals in formula 1 A 5. [ ]

Assuming mutual exclusion between two signal formulas of
the form (9), we can simplify the equation further.

Lemma 2. The misclassification rate of a mutually-exclusive
disjunction formula is 7(¢1 V 1)2) = r(1) + r(1p2) — A O

_ Proof: When two signals are mutually exclusive, r(qul A
o) = A, since both g2 and biao are zero. Substituting the

equality into (I4) gives:
r(r Vb)) = () + (i) = N (15)

Remark 1. By Lemma [2} 7(¢)1 V ¢2) < 7(¢1) holds true if
and only if r(zl;g) < A for mutually exclusive formulas Uy
and 1)y of the form (9). For any added disjuncts satisfying the
condition, the misclassification rate always reduces. O

Derived from (II), we have the following equalities for
negations:

r(f)=1—-r(f)
r(fi+f2) =1—r(f1- f2).

VI1. FEATURE EXTRACTION

(16)

In this section, we present our approach to convert a set of
continuous-valued signals into the corresponding set of signal
formulas. In this approach, we first extract regions of interest
(ROI) from a set of continuous signals (spatial extraction), and
then construct a set of representative signal formulas (logical
extraction).

A. Extracting spatial predicates (spatial extraction)

With the set of continuous signals, we first extract a set of n-
dimensional hyperrectangles that represents a set of ROI in the
form of spatial predicates II. We use the following extraction
function over R™ to find a set of hyperplanes:

k(x,X) =) > exp(=Alx(t) = x(®)]*)

teT xeXy

=D > exp(=Ax(t) —x(8)]).

teTxeXy

a7

The function is smoothened using weighted average and the
positive and negative peaks over R™ with respect to X are
extracted. Intuitively, positive and negative peaks represent the
regions of high ‘traffic’ intensity for desired/undesired signals.

It is important to note that our spatial predicates are more
representative than the ones from [6]], since the extraction finds
multi-dimensional regions while the other work only considers
a single variable for a predicate. More details are in Sec.

Example 6 (Running example). In Fig. we have a set of
1-dimensional signals x € X over two time steps (1" = 2),
where time is on the horizontal axis and the value of signal
is on the vertical axis. Signals are coloured in blue and red
for exhibiting desired and undesired behaviours, respectively.
In Fig. the signals are represented as a point in R? space
where the state at ¢ = 0 is on horizontal axis and the state
at t = 1 is on the vertical axis. Fig. shows two peaks
from spatial extraction resulting in two spatial predicates II =
{{[-1.07,—-0.01]}, {[1.02,1.91]}} shown in Fig. O

B. Constructing a set of signal formulas (logical extraction)

Given the set of spatial predicates II for n-dimensional
continuous signal X, we construct the corresponding set of
signal formulas F. This process is called logical extraction.
Suppose we have a signal x, we find a signal formula in
exDNF form

f=wvov1---v7_1, (18)
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(a) 1-dimensional signals over two time steps. Desired signals are
plotted in blue; undesired signals are in red.
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(c) i-th axis represents the value of a signal at time 7. Two
spatial predicates I1(a) and II(b) shown.

Fig. 2. An example set of desired and undesired signals (Ng = 534, Ng =
466 and N = 1000) over two time steps

where v; € V¢(t) and x(t) € II(v). By the definition from (9),
each signal formula is mutually exclusive. We find the set of
signal formulas for all X and prune any duplicates to obtain
a set of unique signal formulas.

Example 7. Continued from Example [6} we have a set of
9 representative signal formulas in Table [[] with diminishing
constant A = 0.534. Note that we only need to consider the
symbolic formulas as opposed to 1000 continuous signals. [J

VII. LoGicAL CLUSTERING

In this section, we present a decision tree-based algorithm
for converting the set of signal formulas F into an STL
formula. Starting from base node sy with Fy = F, the

TABLE I
A SET OF MUTUALLY EXCLUSIVE SIGNAL FORMULAS THAT REPRESENTS
ALL SIGNALS X FOR EXAMPLE[Gl THE FORMULAS ARE IN DESCENDING
ORDER OF MISCLASSIFICATION RATES. THE DIMINISHING
CONSTANT A = Ng4/N 15 0.534.

F |t=0 t=1 fi g(fi) | b(f) r

f1 a - ag - 01 176 13 0.371
f2 - a Do - a1 120 8 0.422
f3 a a ag - ail 82 0 0.452
fa b b bo - b1 39 22 0.517
fs a b ag - by 11 0 0.523
fe b a bo - a1 6 2 0.530
f7 b - bo - 01 6 59 0.587
fs - b 0o - b1 13 90 0.611
fo - - 0o - 01 81 272 | 0.725

algorithm is to find an STL formula ¢; by enumerating a
pool of STL formulas ® at each node sj, such that the
misclassification rate of ¢; with respect to Fj is minimal.
The set Fj is separated into two sets Fj . and Fj 4 for
subsequent nodes, namely conjunction and disjunction nodes.
The recursive algorithm is shown in Alg. [I]

Particularly in this paper, we are interested in the following
forms of STL formulas

P = {(Ph g, P3, (1)4}
where &, = {g[tl,tg]/u‘}7 Py = {}—[thtz]f“}’
D3 = {‘F[n,tz]_‘:u}v by = {g[thtﬂ_‘p’}’

forall p € P, t; € [0,7 — 1] and t5 € [t1,T — 1]. Note
that the framework can use any forms. For example, more
complex forms such as G, 1,1 F[ts, 1 @nd pi1lUy, 4,102 can
be used. For the forms in (T9), we only need to compute
misclassification rates for ®; and ®4 using (]E[) and those
for &5 and P53 can be computed using (ie., r(P3) =
1—r(®1) and r(®4) = 1—7(®2)). Line[3of Alg. [[]enumerates
the pool to find the optimal formula and the misclassification
rate. For a given STL formula (ﬁk and set of signal formulas F,
for node k, the misclassification rate is computed, as described

in (13), by
r(¢>>r< V f)

f€Ds(g)
< > 7“(f)) = (IDggyl = 1) - Aw
f€Ds(g)

It is important to note that computing the misclassification for
a given STL formula is simply the sum of all misclassification
rates of the formulas in the exclusive set. If the rate were
calculated without the table, we had to enumerate all signals
to count the numbers in each category.

19)

(20)

Example 8 (Misclassification rate of an STL formula). For
¢ = Flo,1)a, the signal formula and its exclusive set are

£(¢) = ao+ a1
Df(¢) = {a’O@l; a0b17 apany, @0(117 boal}
= {f15f57f2af3,f6},

21



where f; is from Table [II The misclassification rate of ¢ can
be computed, as defined in (I)), using Table [} such that

(@) = r(f1) +7(f2) +7(fs) +r(f5) +7(f6) — 4A @2)
=0.162.

O

By Remark we are guaranteed to reduce the overall
misclassification rate with ¢, if and only if r(¢g) < Ag.
Therefore, the algorithm stops when the rate is greater than the
diminishing constant, returning ¢, = L. If the misclassifica-
tion rate of the formula is less than the diminishing constant,
we use the formula to separate Fj into F . and Fy 4, such
that

Fk7C:{f€Fk ‘ fEDq;k}
Fia={f€F.|f¢D, ).
If Fj, q is empty, it means there is no atomic formula that can
separate F;, further. In this case, we finish branching from the
node. Otherwise, we call another instances for Fy, . and Fy, 4

to find the corresponding ¢} . and ¢} ;.
The STL formula ¢;, for node sj, is recursively found by

Ok = (96 A Pre) V (20 A D),

where ¢ = ¢y, if the node is terminated. The overall formula
for the whole dataset is ¢* = ¢y.

(23)

(24)

Example 9 (Decision tree). Continued from Example [6] we
demonstrate the decision tree in Fig. 3] In the base node s, we
find the optimal atomic formula ¢ that separates F into F;
and F5. At node s1, no separation occurred for F; since ¢; =
oo (i.e., Fy is empty). Hence, the STL formula for node s;
is ]'—[0,1}& Similarly at node so, we get g[O,l]b- At the base
node, we take the formulas ¢; and ¢ to construct the overall
STL formula ¢*. With simplifications, we have

¢" = (o A ¢1) V (m¢o A $2)
= (.7:[071](1 A }'[071](1) \Y (ﬁ]‘—[o,ua N g[071]b)
= Floa V Go,1b.

(25)

The misclassification rate of the formula r(¢*) is 0.145,
where D¢* :{f15f27f3af47f57f6}' O

VIII. ANALYSIS

The time complexity for solving feature extraction is O(n -
N - T - |P| + N?). This is to perform the tasks of spa-
tial/logical extraction and finding unique set of signal formu-
las. The worst-case number of signal formulas is maxF =
min(N, (|[P| + 1)7). However, the number is usually much
smaller in practice since spatial predicates are found by
locating the regions where signals commonly pass.

For each node s; in the logical clustering algorithm in
Alg. the most time consuming task is to enumerate a
pool to find the minimal signal formula with respect to the
misclassification rate over F. For the given forms of the
formula pool in (I9), the time complexity of enumeration

Algorithm 1 Decision tree-based logical clustering
1: function DECISIONTREE(F, g, b)

2: initialise ¢} < T, ¢} + L

3: Ok, 7q — MINFORMULA(F, g, b)

4 A< lgl/(Ig]+Ib])

5: if r, > )\ then

6: return ¢ < L

7: F. Fg4,8:,84 be, by < Separate F, g, b w.rt. ¢
8 if ISEMPTY(F,.) then

9: ¢} < DECISIONTREE(F 4, g4, bg)

10: else if \ISEMPTY(F.) and ~ISEMPTY(F) then
11 ¢} < DECISIONTREE(F ., g., b,)

12: ¢} < DECISIONTREE(F 4, g4, bg)

130 @7 (Pe A D7)V (2k A7)

14: return ¢*

Fig. 3. The decision tree for Example [6] with respect to Table[[] The overall
formula is ¢* = Fg 1ja V G|p,11b.-

is O(|P|-T?). Note that the complexity of enumeration varies
with a different pool. The worst-case number of nodes in the
logical clustering is (4 - |F| — 1). Hence, the worst-case time
complexity for logical clustering is O(|F| - |P| - T?). Overall,
the running time is polynomial in |F|, |P|, T and N.

The data size also plays an important role in reducing com-
putational load in practice. The raw signal size is (IV-T') bytes
assuming 8 bytes for each variable as used in Matlab. After
feature extraction, the size reduces to (T - |F| - ceil(log, (|P|+
1))/8) bytes since each signal variable can be represented
using ceil(log, (|P| + 1)) bits.

The form of our classifier is significantly more readable
than that of other existing supervised learning frameworks.
For instance, support vector machine (SVM) can be used for
similar set of problems. However, the form of SVM classifier is
a set of hyperplanes in feature space [27], from which human
operator cannot understand and learn behaviours intuitively.

IX. RESULTS

The framework is validated using simulated examples to
demonstrate the expressivity of the learned classifier and the
computational efficiency of the framework. For comparison,
we use naval surveillance and self-diagnosis examples similar
to [6]]. In the simulations, we used MATLAB R2016b on Intel
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(a) Result of spatial extraction showing ROI, where blue
and red represent high intensity of successful and failed

signals, respectively. Three regions a, b and c are extracted
in descending order of absolute intensity.

(c) Vessel is likely to fail (i.e., return) when it does not visit
region b between ¢ =16 and 21

Fig. 4. Naval surveillance dataset. Trajectories are over 61 sampling points
(blue for desired, red for undesired). Starting and ending points are marked
in circle and square.

17 processor with 8Gb RAM without parallel computation. We
have empirically validated the efficiency of the framework,
presented in Table [, where the computation time and the
reduction in data size are shown with 8 bytes for each real-
valued variable. The numbers are compared against [6].

A. Naval Surveillance

In this example, a robot system surveils a waterway to look
for anomalous behaviour of vessels. The simulated dataset of
observations consists of 2000 2-dimensional vessel trajectories
over 61 time steps entering Boston harbour as shown in Fig. 4]
where the vessels are approaching from right to left. Starting
and ending points are marked using circles and squares,
respectively. Half of the trajectories, coloured in blue, are
desired trajectories (i.e., successfully entered the harbour), and
the rest, coloured in red, are undesired. Figure E| shows a
portion of the dataset.

The result of spatial extraction over R? is presented in
Fig. #al The dark red/blue colours represent the ROI, where
blue regions have high intensity of desired trespass and vice
versa for the red. In this example, we have chosen the top three
peaks. Using the result, we extract three regions of interest a,
b and ¢, in descending order of absolute intensity (i.e., |k|).

TABLE I
RUNNING TIME, DATA SIZE FOR THE EXAMPLES ARE SHOWN. THE
RUNNING TIME FOR [|6]] IS COMPARED.

Feature Logical

Sim. N, T Extraction C]ustering Total Total [6]
Naval | 2000, 61 29.7s 64.2s 93.9s = 24h

(953kb) (23.7kb)
Fuel 1200, 200 6.69s 7.48s 14.2s

(1.83Mb) (2.73kb)

o = Fla7,3010
b2 = Fi59,60]
= Flie21)b

¢3 =

[0,60] €

o7 = [0,60) € ¢8 =1 $9 = Gjo,60] ¢10 =

Fig. 5. Decision tree for naval surveillance example

The extracted spatial predicates are

I(a) = {[11.5,17],[27.5,31.5]}
II(b) = {[41.5,45], [27,29]}
II(c) = {[34.5, 38], [20, 22.5]}.

(26)

After logical extraction, we use the decision tree algorithm,
as shown in Fig. 3] to find the following STL formula:

®" = Go,601 ¢ A (Flar,3010 V Fiso,601a V Flie21pb),  (27)

where the overall misclassification rate of the formula
is 0.029. Glancing at the dataset, the most intuitive STL
formula Fg g0a A Gjo,60)7c (‘eventually reach region a and
always avoid region ¢’) has a misclassification rate of 0.125.

Intuitively, it is easy to see that region a is to be visited
while region ¢ is avoided, but the role of region b is not
as obvious as the others. In Fig. we show a portion of
undesired trajectories passing region b in the early part of the
trajectories (i.e., between time 0 and 13). From this figure,
we could conclude that the vessels approaching region b in
the early stage are likely to head back to the entrance (i.e.,
failed to enter the harbour). Our proposed framework was
able to capture and reveal such a hidden and non-obvious
behaviour, and reason about the classification result. Such
important information is not captured in [6].

The running times for feature extraction and logical clus-
tering are 29.7 and 64.2 seconds, respectively (93.9 seconds
overall). Compared to [6] where the algorithm running time
was as large as nearly 24 hours (6 splits, 4 hours/split), our
framework is dramatically more efficient (920 times faster).
The substantial gain in computational complexity is due to the



EGO Sensor MAP Sensor
. 4
WKE&E :
L] F
~— o 0 f

i & 7

[ 2
EGO 0 50 100 150 200 O 50 100 150 200

(a) Spatial extraction over 2-d space.
One positive ROI is found.

Fig. 6.
Regions of interest are shown as boxes with black border.

feature extraction part where the continuous-valued signals are
abstracted into symbolic strings with much smaller data size.
In this example, the size of the raw signals was approximately
953kb which reduced down to 23.7kb (40 times smaller).

B. Self-Diagnosis of an Engine Fuel Control System

In this example, a robot performs self-diagnosis of its engine
fuel control system. We use a dataset of simulated observations
of fuel system inputs and outputs that consists of 1200 signals
over 200 time units, (600 desired). At each time point, the
state of signal is represented by two values, EGO and MAP,
as shown in Fig. [f] where blue represents desired behaviour
and red represents undesired. More details can be found in [6].

Figure [6a] shows the result of the spatial extraction over
MAP and EGO space, where one spatial predicate is found:

(a) = {[-0.2,1.2],[~0.1,1.4]}. (28)

Using the spatial predicate, the number of signals reduced
from 1200 to 112 (signal formulas). The inferred STL formula
after running the decision tree algorithm is:

¢" = Gjo,199)@ 29

The result is visually demonstrated in Fig. [6b] and

In [6], each predicate is in the form (x ~ c¢) where ~€
{>,<} and x,c € R!. Because of its nature, it is not easy
to capture high-dimensional regions of interest intuitively. For
instance, the inferred STL formula in [6] is

bl = P1 NP2 NP3 N @y
$1 = Go,199) (x2 > —0.536), p2 = Gyo,190) (x2 < 1.91)

¢3 = Go,109) (x1 > —0.819), ¢4 = Gi79,190) (x1 < 1.78),
(30)

where x; and x5 are EGO and MAP values, respectively. This
result aligns with ours in a sense that the values are bounded
most of the time, however, the formula is subtle and not easily
readable as the spatial relations are not considered like in ours.

Our algorithm took 6.69 and 7.48 seconds for feature
extraction and logical clustering, respectively (14.2 seconds

(b) EGO sensor readings over 200 time steps

(c) MAP sensor readings over 200 time steps

Fuel control dataset. Desired and undesired signals are in green and red; undesired signals are shown in red. A portion of the dataset is shown.

in total), whereas the algorithm in [6] took about one hour
(3 splits, 18 min/split). Again, our framework is significantly
faster (253 times faster). The data size was reduced from
1.83Mb to 2.73kb (686 times smaller).

C. Complex Scenarios and Readability

The overall inferred STL formulas for complex sce-
narios beyond those demonstrated should remain human-
interpretable. For a complex case, the framework is likely to
consider a large number of spatial predicates, atomic formulas
and logical relations compared to simple scenarios, which
could result in an unreadably large formula. However, because
spatial predicates and atomic formulas are induced in the order
of importance, it is possible to keep the length of overall
formula within a reasonable bound. If feature extraction gives
too many regions, we could increase the threshold to accept
only a top portion. Likewise, we could limit the number of
iteration in logical clustering to restrict the number of induced
atomic formulas. As a result, the limits could serve as tuning
parameters for misclassification rate and readability.

X. CONCLUSION AND FUTURE WORK

This paper has successfully addressed the problem of ex-
pressivity and computational efficiency in classifying time
series datasets. The learned classifier is represented in a
highly intuitive form that expresses spatial, temporal and
logical relations using STL. The framework produces a set
of symbolic formulas that represents the raw dataset. From
this reduction, the framework is significantly more efficient
compared to existing work in the field, and the time complexity
is polynomial in important variables of interest.

The proposed framework has a number of important po-
tential areas of future work, including online detection of
faults (i.e., anomaly detection) and incremental learning. It is
interesting to consider an extension to the unsupervised case,
and this is relatively straightforward since our framework is a
special case of the unsupervised setting.
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