RelaxedIK: Real-time Synthesis of Accurate

and

Feasible Robot Arm Motion

Daniel Rakita, Bilge Mutlu, Michael Gleicher
Department of Computer Sciences, University of Wisconsin—-Madison
{rakita,bilge,gleicher} @cs.wisc.edu

Abstract—We present a real-time motion-synthesis method for
robot manipulators, called RelaxedIK, that is able to not only ac-
curately match end-effector pose goals as done by traditional IK
solvers, but also create smooth, feasible motions that avoid joint-
space discontinuities, self-collisions, and kinematic singularities.
To achieve these objectives on-the-fly, we cast the standard IK
formulation as a weighted-sum non-linear optimization problem,
such that motion goals in addition to end-effector pose matching
can be encoded as terms in the sum. We present a normalization
procedure such that our method is able to effectively make trade-
offs to simultaneously reconcile many, and potentially competing,
objectives. Using these trade-offs, our formulation allows features
to be relaxed when in conflict with other features deemed
more important at a given time. We compare performance
against a state-of-the-art IK solver and a real-time motion-
planning approach in several geometric and real-world tasks
on seven robot platforms ranging from 5-DOF to 8-DOF. We
show that our method achieves motions that effectively follow
position and orientation end-effector goals without sacrificing
motion feasibility, resulting in more successful execution of tasks
compared to the baseline approaches.

I. INTRODUCTION

To perform real-time tasks, a robotic manipulator must
calculate how its joint angles should change at each update
in order to meet kinematic goals rooted in its environment.
For instance, a robot providing home-care assistance by spoon-
feeding an individual in a wheelchair would have to make real-
time motion decisions to simultaneously meet many objectives,
including the robot manipulator approaching the patient’s
head with smooth, self-collision-free motions, continuously
updating the position and orientation of the spoon to account
for potential head or torso motion, and keeping the spoon level
such that the food does not spill. In this problem, and many
other use cases for robotics, the robot must both accurately
match end-effector pose goals and exhibit motion feasibility.

Prior approaches to matching end-effector goals while pro-
ducing feasible motion provide only partial solutions. For
instance, direct point-to-point methods provide accurate end-
effector pose matching by solving inverse kinematics (IK)
problems at each update. However, this approach does not
guarantee feasible motion when generating a sequence of
solutions and may result in behaviors such as exhibiting
instantaneous jumps in joint space, causing damage to the
robot through self collisions, and exhibiting unsafe behavior
near kinematic singularities. Conversely, real-time motion-
planning methods that calculate a path to predicted state as
quickly as possible, do guarantee motion feasibility, but they

Side View Real-time Cartesian Space

3/4 View
Motion Synthesis Method :

Matches end-effector pose
goals in real-time without
sacrificing motion feasibility

RelaxedIK Features

- 1. Real-time
self-collision avoidance

2. Real-time kinematic -’
singularity avoidance

4. Real-time minimum-jerk
joint motions

Fig. 1. In this paper, we present a method for generating accurate and feasible
robot arm motions in real-time such that the arm not only can match end-
effector pose goals, but it also avoids self-collisions, singularities, and joint-
space discontinuities. This figure illustrates a DRC-Hubo+ robot performing
the square-tracing task from our evaluation using RelaxedIK.

do not ensure consistent matching of end-effector pose goals
throughout a continuous motion. For instance, if the planner
must compute a path between distant start and goal states, i.e.,
when the IK solver exhibits a discontinuous jump after the
prediction step, what the end-effector will do along the path
between the Cartesian waypoints can be difficult to dictate.
In this paper, we present a novel real-time motion-synthesis
method that simultaneously supports end-effector pose goal

matching and feasibility of motion. We achieve accurate, feasi-
ble motion through a generalized IK solver, called RelaxedIK,
that formulates the IK problem at each update as a weighted-
sum non-linear optimization. Each term in the weighted sum
encodes a specific motion objective, such as end-effector po-
sition/orientation goal matching, minimum-jerk joint motion,
distance from self-collision state, etc. While parameter tuning
can become unwieldy for multi-objective optimizations, we
present a normalization procedure over the weighted sum
terms that elicits expected and intuitive motion behavior.
Because these objectives may be in conflict during motion,
such as the robot trying to match a position goal within the
volume of its body, the method automatically relaxes features
that are in conflict with other features deemed more important
at a given time. Our formulation does not to rely on a specific
optimization technique and provides sufficient solutions using
many constrained non-linear optimization solvers.

Objective importances are specified through term weights
and thus can be tailored to a specific task. Weights can even be
dynamically adjusted during runtime to varying effect, such as
decreasing relative importance on orientation matching when
the robot must follow a fast-moving position goal [18]]. Unlike
many IK frameworks that achieve secondary goals through
regularization techniques [4} [17, 24], our method does not
require any redundant joints, and even provides as close as
possible results on under-articulated robots.

Our method affords motion features that enable the creation
of a sequence of feasible configurations, including minimum
velocity, acceleration, and jerk joint motion; self-collision
avoidance; and kinematic-singularity avoidance. While these
features are more commonly found in offline trajectory-
optimization and motion-planning methods [10, 21} 22], we
utilize efficient and robust techniques to achieve real-time
performance, such as using a neural network to approximate
distance from collision states and singular value decomposition
(SVD) to approximate distance to singular configurations.

We show the benefits of our method through various em-
pirical tests that compare performance on several geometric
and real-world tasks on seven robot platforms, ranging from
5-DOF to 8-DOF, against a state-of-the-art IK solver [1] and
a real-time motion-planning approach using the Open Motion
Planning Library (OMPL) [26]. Our method achieves motions
that effectively follow position and orientation end-effector
goals without sacrificing motion feasibility, leading to more
successful execution of tasks than the baseline approaches.

A solver that implements the methods discussed in this
work is available for download as open-source software at
https://github.com/uwgraphics/relaxed_ik.

II. RELATED WORK

The development of our method for accurate and smooth
real-time motion synthesis draws from prior work in robotics,
especially from inverse kinematics, teleoperation and controls,
trajectory optimization, and motion planning, and from anima-
tion for methods that optimize over motions for real-time use.

Inverse Kinematics— The process of calculating joint-angle
values on articulated chains that produce desired pose goals
of end-effectors, called inverse kinematics (IK), has been
extensively studied in robotics and animation (see Buss [3|]
for a review of IK methods). The main objective of many IK
solvers is to reliably match the end-effector goal as quickly
as possible. A state-of-the-art solver to achieve these goals on
robot chains is the Trac-IK solver proposed by Beeson and
Ames [[1], which serves as the main comparison in this work.

While 6-DOF chains generally have one solution to fully
constrained position and orientation IK problems, prior re-
search has attempted to take advantage of joint redundancy,
if present, in order to achieve secondary goals by regular-
izing solutions—often called rask-priority IK [4} 15 [17, 24].
Although we find inspiration in the ability of these general
regularization techniques to achieve supplementary objectives,
our method does not require any redundancy and can even
work on under-articulated robots. Hauser [9]] has formulated a
framework for regularizing a smooth inverse of a multivariate
function, such as a forward-kinematics model, such that the
inverse is the same forward and backward along a path and
that discontinuity boundaries are avoided as much as possible.
This work has been shown to be effective with multiple
redundant DOFs, but it has not been used on fully constrained
IK problems. We believe that our methods complement the
overall framework presented in this prior work.

In animation, work by Shin et al. [23] introduced an IK
technique for real-time articulated character puppetry that
adjusted objectives on-the-fly depending on what is currently
important. Our method is inspired by this idea of importance-
based IK, as the terms in our weighted sum are formulated
such that their respective motion features automatically relax
if another more important term is in conflict.

Teleoperation and Controls—Synthesizing motions on the
fly is particularly important in direct and shared control, as
the system cannot look ahead to determine what motions will
be required in the near future. The approaches described in
seminal research, such as potential-field methods that afford
real-time collision avoidance [12]] and kinematic-singularity-
robust damped least-squares methods [5, [15]], serve as inspira-
tion for our real-time motion-feasibility techniques. Our prior
work has shown the benefits of optimization-based methods
for synthesizing motion across various task domains, including
a method for real-time human-to-robot motion remapping
to support intuitive teleoperation [18], a motion-remapping
technique used for motor task training [20], and a real-time
motion synthesis method used to drive a robot camera to
optimize a viewpoint for a remote teleoperation operator [[19].

Real-time Motion Planning—Our work shares parallels with
real-time motion planning techniques, which involve planning
to predicted end-effector pose goals as fast as possible to
meet real-time demands. Hauser [8] provides an adaptive
way to adjust the planning horizon time such that prediction
and planning steps can be interleaved in a stable manner.
Our work shares similar outcomes to this work, such as
planning around obstacles in real-time. However, as we show

https://github.com/uwgraphics/relaxed_ik

in this work, controlling the end-effector pose en route to a
predicted waypoint using motion-planning methods is difficult
and ineffective for certain tasks. Additionally, Murray et al.
[16] present a real-time motion-planning approach that can
solve for paths very quickly by reasoning about paths at
the hardware level using a custom chip. While this approach
enables feasible paths through joint space to be found nearly
instantaneously, it does not provide solutions that enable the
robot to follow precise Cartesian paths as done in our solution.
To overcome this problem, Murray et al. [16] used motion
planning to find a path that exhibited an end-effector pose at
the end point within 10 cm of the goal and then switched over
to a Cartesian planner to precisely approach the goal.

III. TECHNICAL OVERVIEW

The main goal of our method is to calculate robot motions
that match end-effector pose goals while also exhibiting mo-
tion feasibility. In this section, we provide a high level idea of
how our method is structured to achieve both of these goals,
leaving the mathematical treatment of our solutions for

A. Problem Formulation

Our method is rooted as a standard inverse kinematics (IK)
problem. At each system update, the method receives a goal
position p, and a goal orientation q, for the end-effector and
outputs joint angles corresponding to a desired robot state.

While standard IK approaches solely focus on matching
end-effector pose goals as accurately and quickly as possible,
our method also considers robot configuration feasibility upon
a sequence of solutions. Throughout this work, we define robot
configuration feasibility as meeting the criteria that the robot
(1) does not break velocity limits upon consecutive solutions,
i.e., the solver does not cause joint space discontinuities,
and the output motion upon a sequence of solutions should
be continuous; (2) does not collide with itself at any point
during run-time to avoid any damage to the robot or errors
during performance in critical applications; and (3) does not
enter kinematic singularity (when the robot’s Jacobian matrix
loses full column rank), which can cause dangerous diverging
velocities or joint lockups. Given this notion of feasibility, we
reformulate the standard IK problem as follows:

Match the end-effector pose goal corresponding to goal
position py and goal orientation qq as precisely and quickly
as possible without sacrificing robot configuration feasibility.

We expect that solving discrete IK problems at each update
with this central goal, each with an individual sense of
feasibility, will in turn yield continuous and feasible motions
upon a sequence of such solutions. This formulation does not
consider end-effector pose matching as a hard constraint; pose
goals may instead be relaxed if other, more important features
will be met. This is a key insight in our method, as this affords
feasible and smooth motions even when such a path does not
exist passing through exact IK solutions. It is also this relax-
ation characteristic that allows our method to work without any
joint redundancy, as our method will inherently “regularize”

solutions in operational space if deemed necessary, even if a
null-space is not present on a 6-DOF (or less) robot.

B. Importance-Based Inverse Kinematics

Because our method can relax certain features in favor
of other features, it must offer intuitive and robust ways to
set and tune relative weights between objectives. To achieve
this goal, we draw from a concept called importance-based
inverse kinematics, a technique pioneered in animation to drive
real-time performance capture [23]]. Prior work notes the key
observation that the main objective in an IK problem can
vary across scenarios, such as whether the animated character
should match the general arm shape of the actor, e.g., when
making a communicative gesture, or match the end-effector
pose of the actor in space, e.g., when picking up an object.

Our method provides two ways of setting objective term
relative importances: (1) defining static weights for each term
prior to run-time that will indicate how important features are
relative to each other; and (2) defining dynamic weighting
functions for each objective that can adjust relative impor-
tances on-the-fly. Dynamically adjusting weights could be
useful for certain tasks where relative importances will change
at run-time. To illustrate, precise end-effector pose matching
would be very important when a sewing robot is threading the
needle, but smooth, minimum-jerk joint motion would be more
important when the robot is making broad motions to pull the
thread through the fabric. In this work, we do not provide
examples showing dynamic weighting functions because they
are specific to a given task, although they have been shown to
be effective in prior work [18 [23]].

While tuning an array of parameters can become unwieldy
in multi-objective optimizations, we present a normalization
procedure, outlined in that ensures that the method
reasons over values in a standard range. This procedure
allows the weights described above to elicit expected behavior,
making parameter tuning practical over numerous terms.

C. Optimization Overview

Given the varying objective importances outlined in the
previous section, our method needs some way of reconciling
many, potentially competing goals of different priorities in
real-time. To achieve this, we use a non-linear constrained
optimization formulation, which attempts to drive down the
objective values of the various objective function terms, sub-
ject to a set of constraints.

Put formally, we express the IK problem as follows:

O =argmin f(0) s.t. ¢;(©) > 0, ¢.(©) = 0

©)

where ¢;(0) is a set of inequality constraints, c.(©) is a

set of equality constraints, [; and wu; values define the upper

and lower bounds for the robot’s joints, and f is an objective

function. Our challenge is to encode our motion and feasibility
goals within the constraints and objectives.

We express our objective function as a weighted sum of
individual goals, such as end-effector position matching, end-

effector orientation matching, minimum jerk joint motion, and
distance to singularity, and formalize it as follows:

k
£(©) :Z w; % hi(©,0(t) * fi(©,Q))

Here, w; is a static weight value for each term, as described
in which allows the user to incorporate prior knowledge
about what terms are most important for a given task. The
h;(©,v(t)) represents a dynamic weighting function, also
outlined in that can depend on the current robot
configuration, ©, or other time-varying values in the function
v(t). Finally, f;(0,€Q;) is an objective-term function that
encodes a single sub-goal, with §2; being model parameters
used to construct a particular loss function. The exact structure
of the f;(©,£2;) objective functions are covered in

Our full optimization formulation is comprised of seven
objective terms and two constraints. The objective terms en-
code the following kinematic goals: (1) End-effector position
matching; (2) end-effector orientation matching; (3) minimized
joint velocity; (4) minimized joint acceleration; (5) minimized
joint jerk; (6) minimized end-effector translational velocity; (7)
and self-collision avoidance. The two constraints are designed
to clamp joint velocities at each update and avoid kinematic
singularities, respectively. These objectives and constraints are
detailed throughout §IV]

IV. TECHNICAL DETAILS

In this section, we cover the mathematical details that
instantiate the high level ideas outlined in We first cover
the structure of our objective function, then detail the objective
terms and constraints that comprise our full optimization.

A. Objective Function Structure

While a weighted-sum objective function affords expres-
siveness by encoding each motion goal as a single term in the
sum, parameter tuning of the weights can become unwieldy,
often leading to unstable or divergent behavior if care is not
taken. Parameter tuning would be particularly troublesome
in our Cartesian-space motion-synthesis approach, as many
objectives may be in conflict at any given time. Ideally, the
term weights would correspond to easily explainable behavior,
such as a term with weight of two being twice as important
as a term with weight of one in the optimization. This
behavior is not observed using standard loss functions, such as
quadratic, because optimized terms can be over different units
at vastly different scales (e.g., joint-space velocities compared
to Euclidean distances in operational space).

To facilitate combining objectives, we normalize each term
using a parametric normalization function that is designed to
scale each function to a uniform range. This function places
a narrow ‘“groove” around the goal values, a more gradual
falloff away from the groove in order to better integrate with
other objectives, and exhibits a consistent gradient that points
towards the goal. We implement this normalization function
as a Gaussian surrounded by a more gradual polynomial:

Loss Function Examples
o

Fig. 2. Examples of the loss function used in our weighted-sum objective.
Left: Scalar multiplication by a weight fully controls the amplitude of the
reward region. Right: The value “c” controls the spread of the reward region.

(v (O) — §)2
(0, = (~1yeap(— D= 2T

+ 1 (xi(©) — 8)*

Here, the scalar values n,s,c,r form the set of model
parameters 2. Together, they shape the loss function to express
the needs of a certain term. Here, n € {0, 1}, which dictates
whether the Gaussian is positive or negative. Negative Gaus-
sian regions are areas of high “reward,” while the optimization
will push away from positive regions of high “cost.” The value
s shifts the function horizontally, and ¢ adjusts the spread of
the Gaussian region. The r value adjusts the transition between
the polynomial and Gaussian regions, higher values showing
a steeper funneling into the Gaussian region and lower values
flattening out the boundaries beyond the Gaussian. The scalar
function x (©(t)) assigns a numerical value to the current robot
configuration that will serve as input to the loss function.

In our prototype solver described in all parameter and
weight values were selected empirically and were observed
to work well in practice; however, using the normalization
procedure described in this section, all parameters are robust
to tuning for differing results. In the remainder of this section,
we will outline the x(©(t)) functions and model parameters
used to formulate our motion-synthesis method.

) 3)

B. End-Effector Position Matching

The first term in our weighted sum objective function
involves matching up the robot’s end effector position to
a provided goal position p,. To achieve this goal, we try
to minimize the L2 error between the robot’s end effector
position given the joint configuration © and the goal position
pgy- Put formally, the objective term is formalized as:

Xp(0) = [| g — FK(O) [|2)

Here, F'K(O) signifies the end-effector position given joint
angles ©, calculated by the robot’s forward kinematics model.

We inject this objective term value x,(©) into the paramet-
ric loss function described in using model parameters
n=1,s=0,¢=0.2, and r = 5.0.

C. End Effector Orientation Matching

To match the robot’s end-effector orientation to a provided
goal quaternion qg, we introduce an objective term that will

be minimized as the orientations align. We measure the dif-
ference between orientations as the magnitude of the rotation
vector between them, disp(qi,qs) = log(q; " * q2)[14]. The
objective term is therefore:

Xo(©) = disp(q4,q[FK(O)]) (5)

Here, FAK(G)) specifies the end-effector rotation frame at
joint configuration ©, calculated through the robot’s forward
kinematics model, and q[.] indicates a conversion from rotation
matrix to quaternion.

Two quaternions can specify the same static orientation.
This quaternion pair, (ig; + jgy + kq. + qw) and (—ig, —
Jqy —kq. — qu), are called anti-podal equivalences. While the
two quaternions encode the same orientation, they produce
different results when used in the quaternion displacement
operator. Thus, in our orientation objective, we check the
result of both anti-podal equivalences at each iteration, and
we always minimize over the one with smaller displacement
to always encourage convergence.

We add this objective term value x,(©) into the parametric
loss function described in using model parameters n =
1,s=0,¢c=0.2, and r = 5.0.

D. Smooth Motion Synthesis

A main goal of our method is to produce smooth joint mo-
tion without exhibiting joint-space discontinuities. We achieve
this goal using four objective terms and one hard constraint.

The first three smoothness objective terms strive to mini-
mize joint velocity, acceleration, and jerk, respectively:

Xo(©) =110z ; xa(©) =IOll2 5 x;(©) =[I6ll2 (6)

Velocity, acceleration, and jerk are approximated using
backward finite differencing using a window of the past
four solutions. Having smooth joint motion up to the third
derivative is beneficial in terms of wear and tear on the robot.
Prior work also shows this characteristic to be present when
people move their arms to complete tasks [6], suggesting that
the generated motions may have a more human-like quality.

We also include an objective term that minimizes velocity
in the robot’s end-effector position space:

Xe(©) = [|FK ()|l ()

This term discourages large jumps in operational space, acts
as a real-time filter, reduces motion jitters when performing
fine-motion tasks, and facilitates motions along straight lines.
These four terms all use the same loss function model param-
eter valuesn =1, s =0, c = 0.2, and r = 5.0.

Lastly, because the aforementioned smoothing terms only
encourage motion properties, but do not place any bounds in
the case of errors, we include hard inequality constraints on
individual joint velocities to further account for failure cases:

Cy; = |61‘ < Vi, Vi e {17 aN} (8)

Here, v; refers to the joint-velocity limit for joint ¢ over a
single update, and NV is the number of robot DOFs.

E. Self-Collision Avoidance

A key feature of our real-time motion-synthesis method is to
provide a way for the robot to avoid any self-collisions, even
when using per-frame IK with no look-ahead or prediction.
While existing methods can detect when a robot model is
colliding with itself, a standard feature within the Movelt!
frameworkﬂ being alerted of a collision after it happens is not
appropriate in real-time motion synthesis. Instead, our method
can approximate how imminent the robot is to a collision state
and favor configurations that are as far away as possible from
self-collision states while still pursuing other goals.

Our approach follows two steps: (1) create a smooth,
continuous function that approximates a self-collision cost
given a joint state O, called col(©). This is essentially a
potential function, congruent with prior collision-avoidance
techniques, that is high when near collision and low otherwise
[12, [17]; and (2) train a neural network to learn the function
from step 1 to speed up the collision approximation process
by over two orders of magnitude, making this procedure
fast enough to be optimized over in real-time. Our prototype
implementation described in uses an approximation
of the robot’s geometry using line segments. However, the
approach extends to other geometric representations, such as
capsules or even full mesh models. Initial experiments show
that such extensions improve collision avoidance performance.

We start by characterizing the overall geometry of a robot
arm by assessing distances between its links in an initial,
non-collision state. This allows the method to discern when
a collision is likely imminent, as opposed to two links just
being naturally close together in a safe state. The method takes
as input a sample configuration that is not in self-collision,
which we will call ©4. We calculate the forward kinematics
at the ©; such that we have all the joint-point positions in
the robot’s base frame: [jy, jo,...jn] C R®. We abstract the
full robot geometry by connecting consecutive joint points to
make links [l1, 2, ...[y—1], and store the orthogonal distances
between all pairs of links /; and [; in a table d; ;. Note that
d; ; = 0 when [; and [; are adjacent, or when ¢ = j.

Given these initial distances d;_ ;, the method exponentially
increases the self-collision cost as distances between links [;
and [; are observed to be increasingly less than their standard
distance d; ;. We use a sum of Gaussian terms to exponentially
scale up the cost based on distance between all pairs of links,
which are smooth and differentiable when taking gradients for
optimization. The function is defined as follows:

—dis(l: 1.)?
col(®) = Z b * exp(%)
i &)

c= —d?_’j/(2 * log(1_50/b))

Here, dis(l;,(;) signifies the orthogonal distance between
links corresponding to the query state ©. The b value defines
the amplitude of the Gaussian and normalizes a total range
of return values, and the c¢ value adjusts the spread of the

Uhttp://moveit.ros.org/

http://moveit.ros.org/

Gaussian such that it starts to trend upwards only when
dis(l;,1;) is less than its standard distance d; ;. When ¢ = 0,
i.e., when d; ; = 0, the division by zero is manually avoided
and nothing is added to the sum. In our prototype solver, we
used a value of b = 50.

The function in Equation [9] checks all combinations of links
in approximately 1 ms. While this performance is sufficient
for quick checks throughout run-time, it is not fast enough for
real-time optimization where the full objective function may
be called more than 100 times per solution. To speed up this
process, we train a neural network to learn col(©), which then
only requires a simple matrix multiplication for evaluation.

We used a multi-layer perceptron neural network with six
hidden layers to learn col(©). We observed that concatenating
the joint points [j1,j2,...jn] as inputs worked considerably
better than naively using the robot state ©. This adds little
overhead to the system as the forward kinematics are already
being calculated for use by other objective terms. All of
the six layers contains N * 3 + 5 nodes, such that each is
slightly wider than the input vector. Each node uses a ReLU
activation function. We used one million training inputs by
randomly generating states, and using outputs of the original
col(O) function. We used the Adam solver to run the network
optimization with an adaptive learning rate and a maximum
number of three thousand iterations. It takes about fifteen
minutes during preprocessing to generate all million input and
output pairs, and another twelve minutes to train the network.

Once the neural network is trained, we have a new function
col_nn(0O) that sufficiently matches the outputs of col(©) but
evaluates a cost in approximately 1e—05 s. This approximately
two orders of magnitude gain in speed over col(©) enables
real-time optimization. Our objective term is formally:

Xc(0) = col_nn(O)

This objective uses loss function model parameter values
n=20,s=0,c=0.08,and r = 1.0. Because a neural network
is used as a post-process efficiency optimization, the original
col(©) function could be generalized to include distances
between full mesh models and could incorporate objects in the
environment, which we plan to explore in future our work.

(10)

F. Kinematic Singularity Avoidance

Kinematic singularities are well studied in robotics [7]].
These objectionable robot poses occur when the Jacobian ma-
trix J(©) that maps joint and end-effector tool velocities, i.e.,
x=1J] (6)@, loses full column rank. Under these circumstances
the chain may lock since an instantaneous change in one
of the end-effector DOFs is unattainable. Further, when the
Jacobian matrix is near singular, small changes in the end-
effector tool space can induce large, diverging velocities in
joint angle space, which is unsafe for many applications.

To avoid singular configurations in our motion synthesis
method, we use the following approach: (1) find a metric that
can approximate distance to a singularity; (2) characterize the
robot’s general manipulability during preprocessing by ana-
lyzing the singularity distance metric in many configurations;

and (3) set a hard constraint that avoids configurations deemed
to be close to singularities based on the analyses from step 2.

Because kinematic singularities occur when the Jacobian
matrix loses full rank, we use a common metric that ap-
proximates distance to such a configuration, called the matrix
condition number, which we denote as c. This value is found
by taking the SVD of the matrix, then taking the ratio of
the smallest singular value and the largest singular value:
¢ = on/o1. When this value is small, it indicates that the
matrix is not well conditioned, and is close to losing full rank.

Because every robot arm has a distinct geometry and kine-
matic structure, the distribution of the conditioning number
will vary for each arm. This characteristic of a particular robot
arm is called its manipulability and is analyzed through a
multi-dimensional object called a manipulability ellipse [27].
We chose to analyze the matrix condition number of the
Jacobian as a proxy distance to singularity over the Yoshikawa
manipulability measure [27], because the condition number
favors general roundness of the manipulability ellipse, rather
than favoring a larger ellipse as a whole, which generalizes
better across different robots [17].

To assess the properties of an arm’s manipulability ellipse,
we randomly sample 500,000 robot configurations during
preprocessing and find the mean, p., and standard deviation,
std.., of all condition values c. We make the model assumption
that the condition-value random variable is approximately
normal and set a hard constraint in the optimization such that
configurations with condition values less than p. — bx* std,. are
avoided, for some scalar b. In our prototype solver, we used
a value of b = 2, such that approximately the bottom 2.5% of
configurations in terms of condition score will be avoided.

V. EXPERIMENTAL EVALUATION

In this section, we outline the empirical tests that we carried
out to validate our method. Specifically, we describe the
prototype solver that instantiated our method, provide detail
on our experiments, and finally discuss our findings.

A. Prototype Details

To demonstrate the effectiveness of our method on various
robot platforms and tasks, we implemented a prototype solver
that instantiates our real-time motion-synthesis method in
Python and pre-compiled performance-critical aspects of the
code to C++ using Cython. The solver integrates natively with
ROS, enabling real-time monitoring of optimization parame-
ters and constraints, multi-threading, and communication with
robot controllers. Our testing was performed on an Intel Xeon
W-2145 3.7 GHz CPU with 64 GB RAM.

Because our method requires information about the kine-
matic structure and geometry of the particular robot arm before
run-time, it includes a one-time preprocessing step to gain
this information prior to the use of the solver. This step takes
as input a robot description in URDF format and initializes
various procedures to learn certain geometric and kinematic
features about the robot platform. The preprocessing step
takes approximately 20-30 minutes, and the resulting output
configuration file can be reused to seed the solver.

B. Optimization Solver

We aimed for the optimization formulation discussed in this
work to be as generalizable as possible and thus not tied to
a particular non-linear constrained-optimization algorithm. We
evaluated a testbed of thousands of solutions calculated by our
method using numerous algorithms, including derivative-based
non-linear solvers such as scipy slsqp, NLopt slsqp, NLopt
method of moving asymptotes (MMA), NLopt conservative
convex separable quadratic approximations (ccsaq) as well
as non-derivative-based non-linear solvers such as NLopt
BOBYQA (using an augmented Lagrangian method to include
the non-linear constraints). All algorithms produced smooth
and feasible results and returned solutions fast enough for
real-time use. The experiments reported in this paper used
the scipy slsqp solver, although our tests suggest that any
of the solvers listed above would have been sufficient for use
on the full testbed. We supply approximate gradients to the
solver using a finite differencing approach.

C. Experimental Procedure

Our evaluations aimed to compare our method to alternative
real-time motion-synthesis approaches with numerous robot
platforms and tasks. We designed five tasks, outlined in
and simulated them on seven robot platforms featuring 5 to 8
DOF arms, including the Fanuc LR Mate 200ig-| (5-DOF), a
Universal Robots URSE] (6-DOF), a Kinova Jacd™| (6-DOF), a
Rethink Robotics SawyeIE] (7-DOF), a Kuka ITWA 7@ (7-DOF),
a Rainbow Robotics DRC-Hubo+ arrr[] (7-DOF), and a DRC-
Hubo+ arm-and-waist rotation (8-DOF). We manually selected
initial configurations for the robots such that all robots faced
the same direction with matching end-effector orientations,
and the tasks operated analogously across platforms.

Because real-time motion tasks are very sensitive to an
initial configuration, we followed a randomization procedure
on initial configurations to account for experimenter bias. For
each trial, the system randomly generated a vector shorter
than 0.2 m and calculated a random configuration based on
this displaced starting position using Trac-IK. The maximum
displacement was selected such that the robot always stayed
within its manipulation envelope. We did not randomly offset
the orientation, because the absolute directions of the end-
effector’s coordinate frame were often important for a given
task. Each task was run with 100 random initial configurations.

Our testbed was run in simulation and consisted of a
total of 1,535,500 discrete solutions, including seven robot
platforms, five tasks, and 100 random initial configurations.
In this paper, we present aggregate results over the entire
testbed to give a high-level summary, and detailed statistical
results for all individual tasks and robots are provided at:
http://graphics.cs.wisc.edu/Robotics/RelaxedIK/Results/.

Zhttp://www.fanuc.eu/se/en/robots/robot-filter-page/Irmate-series
3https://www.universal-robots.com/products/ur5-robot/
4http://www.kinovarobotics.com/innovation-robotics/products/robot-arms/
Shttp://www.rethinkrobotics.com/sawyer/,
Ohttps://www.kuka.com/en-us/products/robotics-systems/Ibr-iiwa
Thttp://www.rainbow-robotics.com/products_humanoid

D. Experimental Tasks

Our experimental testbed consisted of five tasks, including
three geometric tasks that enabled us to analytically assess
the input curve if necessary and two use-case tasks involving a
robot home-care assistant. The geometric tasks included circle
tracing, square tracing, and isolated rotations. Tracing tasks
involved the end-effector following a perfect a circle or a
square centered at the robot’s base and scaled for each robot
to span close to the robot’s whole workspace range. The 1K
goal did not ease in and out at the square’s corner, instead
following a constant velocity even at the sharp corners. For
the tracing tasks, the robot’s end-effector remained static in its
initial orientation. Isolated rotations involved the robot’s end-
effector rotating 180-degrees and back around yaw, pitch, and
roll axes. No end-effector translation was present for this task.
The two home-care-scenario tasks were spoon feeding and
cooking. Spoon feeding involved the robot arm using a spoon
to retrieve food from bowls placed around the workspace using
a spoon and to offer the food to an individual in a wheelchair
for feeding. Cooking was a two-arm task involving moving a
pot from the stove top to the counter. Because the two arms
have to coordinate, end-effector configurations and motion
feasibility are both of particular importance, as highlighted in
previous work [25]. For the home-care tasks, the end-effector
traces were hand animated in a 3D-animation tool at 50 Hz.

E. Comparisons

We compared RelaxedIK against two alternative real-time
motion-synthesis approaches. The first comparison is a direct
point-to-point approach that uses a state-of-the-art IK solver,
Trac-IK [1], to perform per-update IK on the given end-
effector pose goal. Trac-IK is an slsqp optimization-based 1K
formulation that minimizes the distance between the given
pose goal and the pose of the end-effector, structured as
a displacement of dual-quaternions. This formulation also
minimizes velocity from a seed state to an optimized state. We
seed Trac-IK with the configuration from the previous update.
Our tests used the open-source C++ Trac-IK library [[1].

Our second comparison was real-time motion planning,
which predicts what pose the end-effector should have in the
future, calculates a goal state corresponding to the predicted
pose using an IK solver, plans a feasible motion from the
current state to the goal state, and finally executes the trajec-
tory along this planned path [8]. The planning and execution
phases proceed as fast as possible to meet real-time demands.
Our testing used the open-source OMPL [26] motion planners
that are integrated within the Movelt! ROS package.

Our implementation used Trac-IK, as incorporated into
Movelt!, as the IK solver after the prediction step. We allow
the IK solver to have perfect pose prediction up to 0.2 s ahead
at the prediction step to prevent negative results due to poor
prediction or an inadequate planning horizon to be able to
observe real-time motion planning under ideal conditions.

For the motion-planning phase, we first use an RRT-Connect
planner [13]] and then a PRM planner[11] as backup if the first

http://graphics.cs.wisc.edu/Robotics/RelaxedIK/Results/
http://www.fanuc.eu/se/en/robots/robot-filter-page/lrmate-series
https://www.universal-robots.com/products/ur5-robot/
http://www.kinovarobotics.com/innovation-robotics/products/robot-arms/
http://www.rethinkrobotics.com/sawyer/
https://www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-iiwa
http://www.rainbow-robotics.com/products_humanoid

Pos. Rot. Joint Joint
Error (M) Error (M) Velocity (M) Accel. (M)
RelaxedIK (A) | 0.004 + 0.003 | 0.009 + 0.016 | 0.018 £ 0.008 | 0.002 + 0.001
RelaxedIK (B) | 0.011 £ 0.020 | 0.034 + 0.031 | 0.011 + 0.008 | 0.001 + 0.001
Trac-IK 0.005 + 0.005 | 0.023 £ 0.040 | 0.080 £ 0.084 | 0.113 £ 0.148
Real-time MP | 0.252 + 0.241 | 0.251 +0.275 | 0.035 £ 0.025 | 0.014 + 0.013
Fig. 3.

planner failed to find a path. Because state-of-the-art tech-
niques, such as parallelization using GPUs [2] and hardware-
level planning using custom chips [16], allow real-time use
of motion planning, we also provide motion planners with as
much time as they needed to converge, even when tracking the
real-time goal in the testbed. We report solution times based
on the implementation described above, although we make the
assumption that these real-time approaches could keep up with
such goals given their reported timing information.

We tested RelaxedIK with two different importance weight
configurations. In RelaxedIK (A), the configuration empha-
sized end-effector accuracy with the following weights: {w, =
50, w, = 40, w, = 0.1, w, = 1,w; = 2,w, = 0.1, w, = 2}.
The configuration in RelaxedIK (B) emphasized smoothness
and feasibility with the following weights: {w, = 10,w, =
9, wy, =5, we =4, w; =3, we = 2,w. = 5}

F. Measures

We assessed eight objective measures to compare the three
real-time motion synthesis methods in our evaluation: mean
position error (meters), mean rotational error (radians), mean
joint velocity (rad/s), mean joint acceleration (rad/s?), mean
joint jerk (rad/s®), total number of joint discontinuities, total
number of singularities, and total number of self-collisions.

G. Results

Our results are summarized in Figure E} RelaxedIK (A)
was shown to have higher end-effector accuracy than all
other comparisons. RelaxedIK (B) did show some motion
smoothness benefits, as seen by having lower joint velocity,
acceleration, and jerk results than all other comparisons;
however, these benefits come at the cost of inducing more end-
effector position and rotation errors than RelaxedIK (A). Both
instantiations of RelaxedIK exhibited feasible motions on all
solutions, without exhibiting any discontinuities, singularities,
or self-collisions. In contrast, direct point-to-point using Trac-
IK encountered many of these errors, which would result in
infeasible motions when run on a robot platform.

At a high level, real-time motion planning exhibited con-
sistent motion feasibility, showing no joint discontinuities, but
did not reliably get close to end-effector position and rotation
goals. These errors followed one of two patterns: (1) when
the motion planner had to interpolate a long path due to a
discontinuity, the end-effector had to deviate from the path to
reach the goal state; and (2) when the motion planner failed
to find a path, the robot stayed at its previous state, caus-
ing significant end-effector pose-matching errors. In contrast,

Joint. Number of Number of Number of Solution
Jerk (M) |Discontinuities | Singularities | Self-Collision | Times (M)
0.003+ 0.002 0 0 0 0.017 £ 0.008
0.001 + 0.001 0 0 0 0.017 + 0.009
0.211 £ 0.270 2,260 633 1,350 0.002 = 0.002
0.026 + 0.025 0 9 0 0.054 £ 0.039

Summary of aggregated results from our experiments.

RelaxedIK showed the same level of motion feasibility while
reliably matching end-effector poses throughout the tasks.
Our method takes on average 17 ms to find a solution.
Although Trac-IK provided a solution in 2 ms on average in
our testing, in many scenarios, the feasibility benefits provided
by our method may outweigh the cost of the extra computation
time. Our results also indicate that the joint motion generated
by RelaxedIK is considerably smoother than direct point-
to-point and real-time motion planning, demonstrating the
feasibility of real-time minimum-jerk plans discussed in

VI. GENERAL DISCUSSION

In this paper, we presented a real-time motion-synthesis
method for robot manipulators to reliably match end-effector
pose goals while considering motion feasibility objectives on-
the-fly. We showed through many empirical tests that our
method performs more favorably than state-of-the-art baselines
including direct Trac-IK or real-time motion planning on
numerous tasks and robot platforms.

Limitations—Our method has a number of limitations that
suggest many extensions. First, because we rely on a general
constrained non-linear optimization formulation, we cannot
provide proofs that our method will always converge and lead
to desirable results. We instead provide substantial empirical
evidence of the robustness of our method in practice. Ad-
ditionally, certain guarantees can be achieved by integrating
our method as the IK solver in an overall real-time motion-
planning framework, thus falling back on the completeness
and feasibility guarantees of the motion planner as a backup.

While the overall framework presented in this paper may
generalize to consider dynamics objectives and constraints,
we have not yet explored this possibility and plan to consider
dynamics, particularly how exerted forces and moments could
fit into our relaxation framework, in our future work. Lastly,
while our method is sufficiently fast for real-time use, it
is slower than standard IK solvers. Although the feasibility
benefits may outweigh the cost of the additional computation
time in many scenarios, we plan to explore ways of speeding
up our method so that it can generalize to more domains and
more easily work as a subroutine within larger frameworks.

VII. ACKNOWLEDGEMENTS

This research was supported by the National Science Foun-
dation under award 1208632 and the University of Wisconsin—
Madison Office of the Vice Chancellor for Research and
Graduate Education with funding from the Wisconsin Alumni
Research Foundation.

REFERENCES

[1] Patrick Beeson and Barrett Ames. TRAC-IK: An open-
source library for improved solving of generic inverse
kinematics. In 2015 IEEE-RAS 15th International Con-
ference on Humanoid Robots (Humanoids), pages 928—
935. IEEE, 2015.

[2] Joshua Bialkowski, Sertac Karaman, and Emilio Frazzoli.
Massively parallelizing the RRT and the RRT. In 2011
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 3513-3518. IEEE, 2011.

[3] Samuel R Buss. Introduction to inverse kinematics
with jacobian transpose, pseudoinverse and damped least
squares methods. IEEE Journal of Robotics and Automa-
tion, 17(1-19):16, 2004.

[4] Pasquale Chiacchio, Stefano Chiaverini, Lorenzo Sciav-
icco, and Bruno Siciliano. Closed-loop inverse kinemat-
ics schemes for constrained redundant manipulators with
task space augmentation and task priority strategy. The
International Journal of Robotics Research, 10(4):410—
425, 1991.

[5] Stefano Chiaverini. Singularity-robust task-priority re-
dundancy resolution for real-time kinematic control of
robot manipulators. IEEE Transactions on Robotics and
Automation, 13(3):398-410, 1997.

[6] Tamar Flash and Neville Hogan. The coordination of arm
movements: an experimentally confirmed mathematical
model. Journal of neuroscience, 5(7):1688-1703, 1985.

[7] Clement Gosselin and Jorge Angeles. Singularity analy-
sis of closed-loop kinematic chains. IEEE Transactions
on Robotics and Automation, 6(3):281-290, 1990.

[8] Kris Hauser. On responsiveness, safety, and completeness

in real-time motion planning. Autonomous Robots, 32(1):

35-48, 2012.

Kris Hauser. Continuous pseudoinversion of a multivari-

ate function: Application to global redundancy resolu-

tion. In 12th International Workshop on the Algorithmic

Foundations of Robotics, 2016.

Mrinal ~ Kalakrishnan, Sachin Chitta, Evangelos

Theodorou, Peter Pastor, and Stefan Schaal. STOMP:

Stochastic trajectory optimization for motion planning.

In 2011 IEEE International Conference on Robotics and

Automation (ICRA), pages 4569—4574. 1EEE, 2011.

Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H

Overmars. Probabilistic roadmaps for path planning in

high-dimensional configuration spaces. [EEE transac-

tions on Robotics and Automation, 12(4):566-580, 1996.

Oussama Khatib. Real-time obstacle avoidance for ma-

nipulators and mobile robots. The international journal

of robotics research, 5(1):90-98, 1986.

James J Kuffner and Steven M LaValle. RRT-connect:

An efficient approach to single-query path planning. In

2000 IEEE International Conference on Robotics and

Automation (ICRA), volume 2, pages 995-1001. IEEE,

2000.

(9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

Jehee Lee. Representing rotations and orientations in
geometric computing. IEEE Computer Graphics and
Applications, 28(2):75-83, 2008.

Anthony A Maciejewski. Dealing with the ill-conditioned
equations of motion for articulated figures. IEEE Com-
puter Graphics and Applications, 10(3):63-71, 1990.
Sean Murray, Will Floyd-Jones, Ying Qi, Daniel J Sorin,
and George Konidaris. Robot motion planning on a chip.
In Robotics: Science and Systems, 2016.

Yoshihiko Nakamura. Advanced robotics: redundancy
and optimization. Addison-Wesley Longman Publishing
Co., Inc., 1990.

Daniel Rakita, Bilge Mutlu, and Michael Gleicher. A
motion retargeting method for effective mimicry-based
teleoperation of robot arms. In Proceedings of the 2017
ACM/IEEE International Conference on Human-Robot
Interaction, pages 361-370. ACM, 2017.

Daniel Rakita, Bilge Mutlu, and Michael Gleicher. An
autonomous dynamic camera method for effective remote
teleoperation. In Proceedings of the 2018 ACM/IEEE
International Conference on Human-Robot Interaction.
ACM, 2018.

Daniel Rakita, Bilge Mutlu, Michael Gleicher, and
Laura M. Hiatt. Shared dynamic curves: A shared-
control telemanipulation method for motor task training.
In Proceedings of the 2018 ACM/IEEE International
Conference on Human-Robot Interaction. ACM, 2018.
Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and
Siddhartha Srinivasa. CHOMP: Gradient optimization
techniques for efficient motion planning. In 2009 IEEE
International Conference on Robotics and Automation
(ICRA), pages 489-494. IEEE, 2009.

John Schulman, Yan Duan, Jonathan Ho, Alex Lee,
Ibrahim Awwal, Henry Bradlow, Jia Pan, Sachin Patil,
Ken Goldberg, and Pieter Abbeel. Motion planning
with sequential convex optimization and convex colli-
sion checking. The International Journal of Robotics
Research, 33(9):1251-1270, 2014.

Hyun Joon Shin, Jehee Lee, Sung Yong Shin, and
Michael Gleicher. Computer puppetry: An importance-
based approach. ACM Transactions on Graphics (TOG),
20(2):67-94, 2001.

Bruno Siciliano. Kinematic control of redundant robot
manipulators: A tutorial. Journal of Intelligent & Robotic
Systems, 3(3):201-212, 1990.

Seyed Sina Mirrazavi Salehian, Nadia Figueroa, and
Aude Billard. Coordinated multi-arm motion planning:
Reaching for moving objects in the face of uncertainty.
In Proceedings of Robotics: Science and Systems, 2016.
Ioan A Sucan, Mark Moll, and Lydia E Kavraki. The
open motion planning library. IEEE Robotics & Automa-
tion Magazine, 19(4):72-82, 2012.

Tsuneo Yoshikawa. Manipulability of robotic mecha-
nisms. The International Journal of Robotics Research,

4(2):3-9, 1985.

	Introduction
	Related Work
	Technical Overview
	Problem Formulation
	Importance-Based Inverse Kinematics
	Optimization Overview

	Technical Details
	Objective Function Structure
	End-Effector Position Matching
	End Effector Orientation Matching
	Smooth Motion Synthesis
	Self-Collision Avoidance
	Kinematic Singularity Avoidance

	Experimental Evaluation
	Prototype Details
	Optimization Solver
	Experimental Procedure
	Experimental Tasks
	Comparisons
	Measures
	Results

	General Discussion
	Acknowledgements

