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Abstract— The capability and mobility of exploration robots
is increasing rapidly, yet missions will always be constrained by
one main resource: time. Time limits the number of samples
a robot can collect, sites it can analyze, and the availability of
human oversight, so it is imperative the robot is able to make
intelligent actions when it comes to choosing when, where, and
what to sample, a process known as adaptive sampling.

This work advances the state of the art in adaptive sampling
for exploration robotics. We take advantage of the fact that
rover operations are typically not performed in a vacuum;
extensive contextual data is often present, most often in the
form of orbital imagery, rover navigation images, and prior
instrument measurements. Using this context, we apply Bayesian
and nonparametric models to decide where best to sample under
a limited budget, using real X-ray lithochemistry data.

We find that our methods improve both the diversity of
samples collected as well as select samples that are representative
of the dataset. We find that model-based approaches made
scalable with Dirichlet processes improve sampling results when
the underlying number classes and class distribution is unknown.
Unlike previous works, our approaches reduce the impact of noise
on sampling location, a common problem when selecting samples
based on noisy or incomplete contextual data.

I. INTRODUCTION

As exploration robots increase in capability and mobility,
missions are measured less by what a robot can do and more
by how, why, and where a robot can make the most progress
towards its mission objectives. Time is the constraining re-
source and so we seek to increase productivity.

Adaptive sampling can improve the utilization of time.
Adaptive sampling refers to techniques that use onboard mod-
els and statistical analysis to choose where and how to deploy
instruments and acquire measurements. Adaptive sampling
methods can be used to detect anomalous features, plan paths
with stops at diverse types of terrain, or analyze an interesting
sample and decide to take more detailed measurements. These
techniques can increase data acquisition rates and quality,
improving the overall yield of a mission.

Current Mars rover operations give an example of the
need for adaptive sampling techniques. Daily plans budget
specific operations down to the minute, and each operation
is given a fixed duration, sometimes only a few hours.
However, the capabilities of the rover far exceed the limited
plans. For example, the Mars 2020 mission is testing the
Planetary Instrument for X-Ray Lithochemistry (PIXL), a
spectrometer used to analyze rocks on a microscopic scale.
A quick scan of a postage stamp-sized surface can take an
hour but is very noisy, yet reducing this noise with a full

scan of the surface takes multiple days. Scheduling constraints
and communication delay prohibits scientists from reviewing
data in real-time and they are thus unable to follow up at
any promising sample locations. However, adaptive sampling
techniques enable the rover to quickly and autonomously
choose a subset of interesting points for detailed follow-up.

In order to make the most of robotic capabilities, it is nec-
essary to develop adaptive sampling techniques that optimize
the quality of the sampling data collected by robots while
simultaneously allowing for greater exploration. Robots have
improved at detecting objects [8, 21, 31, 12], environmen-
tal phenomena [6], or locating promising survey locations
only using low-resolution orbital imagery [32]. However,
these methods are incomplete or only execute under certain
conditions, causing the rover to miss interesting objects or
measurement locations during a traverse, like those cases
shown in Figure 1. The frustration of the science team to have
gotten so close and have just missed can hardly be overstated.

The objective of this work is to introduce adaptive sampling
methods that increase the diversity of samples collected and
collect samples that are representative of the scene as a whole.
We accomplish this goal by making use of rover measurements
that can be gathered quickly or with little effort, such as
images or spectral scans, to estimate models of the domain,
then sample from these models in order to confirm expected
measurements and spot interesting areas that deviate from
known models.

We introduce multiple methods for improving adaptive
sampling when provided with contextual scene information
or when no information is provided. Our first methods are
model-based, and we find that using Dirichlet process priors to
grow the models over time improves our sampling results. Our
final methods are based on Bayesian optimization, building ap-
proximations of the underlying reward function at unsampled
locations which are robust to noise in the contextual data.

This work maximizes two objectives in an efficient manner:
sample diversity and collecting representative samples. Here
efficiency is defined as the amount of information gained per
unit of time. This is maximized by focusing observation on
areas expected to improve our knowledge and not oversam-
pling understood areas. We define diversity as a measure of the
different types of samples collected, aiming to collect the most
widespread set of samples possible. Representative samples
are those that are characteristic of the sample space. These
samples provide the most information about the composition



Fig. 1. Two instances of where better target selection could have improved robotic sample selection. In both situations the robot navigates to a location and
collects a grid of spectra immediately in front of it. In the left image it has correctly identified a region of interest and navigated there, but is pointing in an
incorrect direction and samples from a mixture of the materials. In the right image it has again navigated to the correct location but aims its spectrometer
beyond the optimal targets, including patches of white salts that are of interest to the science team.

sample space.

II. RELATED WORK

Adaptive sampling is a broad topic that shares common
themes with information theory, active learning, and Bayesian
optimization. Information-theoretic approaches have been used
in robotic sampling tasks, and their methods aim to learn infor-
mation about parameters in environmental models by choosing
sample points that reduce the posterior model uncertainty.

Information gain was used by Pedersen et al. [21] to
decide whether to deploy instruments to analyze a prospective
meteorite. Shewry and Wynn introduce the idea of Maximum
Entropy Sampling (MES) [28, 5, 25] to find the best set of
sampling points within the collection of all points that have
the maximum joint entropy. Krause et al. [14] propose an
alternative using a mutual information criterion in their work
on finding optimal sensor placements within a map. Mutual
information shares similarities with MES but removes any
reward from the observations themselves, causing the metric
to avoid high-entropy locations on the edge of the map.

Active learning is closely related to adaptive sampling. In
active learning, data is presented to an agent, then the agent is
allowed to query for more information on a single data point.

There are two main methods used in active learning. The
first is pool-based sampling [15], in which all of the data is
visible to the agent, and the agent must select a sample point
to query within that full set. This is the case most commonly
considered in active learning research, and is similar to the
sampling with context experiments in Section V-A in which
the full data is observable and we must select the point within
this data to sample.

The second is stream-based sampling [1, 4], in which a
single observation is available at a time, and the agent must
decide whether to query that point or discard it. This is the
case in the limited context experiments in Section V-B, in
which we model a microscopic raster of a surface in which
the instrument must decide immediately whether or not to fully
scan a location.

Various active learning approaches quantify the informative-
ness of unlabeled data using metrics such as model uncertainty
[15], expected model change [27], error reduction [23], or
reduction in model variance [4]. A good overview of active
learning is provided in [26].

Gaussian processes and Bayesian optimization techniques
have also been used extensively for adaptive sampling in the
spatial modeling domain. Thompson uses a Gaussian process
with orbital maps as a latent input to model the expected
sample readings at future sites, demonstrating improvements in
autonomous rover sample collection [31]. Foil et al. use Gaus-
sian processes to model subsurface hydrogen, as measured by a
rover-mounted neutron spectrometer, providing scientists more
accurate maps to guide rover navigation [9].

We note the difference between spatial design and sequen-
tial design [34, 3]. In spatial design, the experiment is designed
before samples are collected. In our work we instead focus
on sequential design, in which the process is iterative, and
collected samples alter future rewards.

We note that this problem shares similarities with next-best
view optimization in computer graphics and robotics literature.
In that situation, a model of some object or environment is
desired, and a robot or agent must choose the camera or sensor
views that provide the greatest increase in information about
the object. This estimate of information content is typically
done using information gain, entropy, or other statistical mea-
sures similar to our own. A survey of approaches is provided
in [24].

Haines and Tao Xiang [11] considers a pool-based active
learning case which aims to jointly discover rare classes from
within a dataset and refine the parameters of a classifier over
the unsampled data, by the use of Dirichlet processes as
a nonparametric estimator on the probability of any sample
coming from an unknown and, as yet, unobserved class. The
goal then is to balance finding new classes with refining
existing ones. Many approaches, like Pedersen et al. [21], find
points that have high uncertainty with regards to the existing
models, but most metrics, such as entropy, do not account for



(a) Image of the surface (b) Elemental abundances shown in false color (c) Classifications

Fig. 2. Example data from the Planetary Instrument for X-Ray Lithochemistry instrument. Left: A microscopic image of the surface of the “Troughite”
sample. Center: A false-color image showing the responses of the elements Al (red), Ca (green), and Ti (blue). Right: A classification of the surface by
clustering the spectra at each point. From [33].

unknown classes. Other methods, such as sampling points with
high probability of misclassification with regards to known
class models, have done well at refining models, but do not
account for unknown models without explicit consideration.

The overall goals of Haines et al.’s work mirror our own,
however, while they consider a classification approach, in
which each point of the data has a pre-assigned class label,
our work has no such labels, and must instead estimate class
distributions only from prior observations.

III. MOTIVATIONS AND DATASET

We evaluate our methods with real data collected by the
Planetary Instrument for X-Ray Lithochemistry (PIXL). PIXL
is an X-ray fluorescence spectrometer that collects a raster of a
microscopic surface, an example of which is shown in Figure
2. It can collect a noisy spectrum in seconds, or integrate
measurements for minutes to collect a longer, more accurate
spectrum. Due to mechanical constraints, PIXL is unable to
return to a specific point with a high enough accuracy to
guarantee the location is in the instrument’s best field of view,
so it must collect a quick spectrum and immediately decide
whether or not the content of that measurement warrants
further integration to improve the signal-to-noise ratio.

If each follow-up action was vetted by scientists on Earth, a
single raster would take days or months to complete. Instead,
PIXL requires adaptive sampling methods, allowing the rover
to analyze measurements as they are collected and determine
the appropriate follow-up operation. This greatly reduces the
need for scientist oversight, as well as builds environmental
models over time that can be used at future sample sites to
reduce the number of redundant samples collected.

The data used in this work was collected using the PIXL
instrument at the Jet Propulsion Laboratory. The sample used
here is from the Dressermats dataset, a sample specimen
analyzed as a raster of 180 by 170 points, in which each point
is a 4096-element spectrum. Each spectrum was collected
using a full-duration scan, meaning the instrument integrated
data over a longer period of time in order to increase the

signal-to-noise ratio. The data is integrated over specific sets
of wavelength ranges corresponding to certain elements, such
as Al, Si, and Ti. The end result is a 9-element vector at
each measurement location that approximates the abundance
of core elements at that location. For more information on the
data and pre-processing routine, see [10].

Collecting a dataset at this resolution and quality is a time-
consuming process; individual measurements by the device
take anywhere from 15 to 60 seconds, so a quick raster of a
surface takes an hour or two, while the more accurate raster
of long-dwell spectra takes many tens of hours. It is thus
infeasible to do full-duration scans at all locations, as there
are severe time constraints on sampling on planetary missions.
Instead, adaptive sampling methods can be used to analyze
noisy samples, which can be taken quickly, then choose a
subset of the most promising points at which to collect long-
dwell spectrum.

IV. APPROACH

Our adaptive sampling scenario requires methods that have
three main qualities: they take advantage of underlying trends
in the data, they can distinguish noise from meaningful
changes in physical variables, and they are flexible in sampling
from an unknown number of underlying classes.

Two methods satisfy these characteristics. First, we intro-
duce a mixture model-based approach and its extension to
use a Dirichlet process prior to generate new classes and
predict misclassifications. These mixtures allow the model to
characterize different mineralogical classes, estimate the noise
present in each class, and flexibly expand to create room for
new classes as evidenced by the data.

Second, we introduce a method that estimates the reward
of future samples using Gaussian processes (GPs), allowing
us to use established Bayesian optimization techniques to
select points that have a high expected reward. This approach
is less susceptible to noise in the model, due to smoothing
reward estimation over points with similar features, while also
providing an actionable measure of model uncertainty.



A. Adaptive Gaussian Mixture Models

Our first method is based on the work of Sillito et al. [29]
and their incremental kernel density estimation. We consider
the creation of a mixture model, similar to a Gaussian mixture
model (GMM) [19].

Sillito et al. consider the specific case in which a GMM
is incrementally generated and cannot be learned a priori
using training data. They propose to have a limited number
of mixtures, initialized with very loose parameters. As data is
collected, the mixtures are gradually adjusted to include new
data and similar mixtures are merged, such that the final result
resembles a GMM.

Due to our problem formulation, in which points are se-
lected incrementally and contextual data is only a proxy for the
real information at a point and not necessarily representative
of the data at that point, an approach such as this is flexible
enough to allow a model-based formulation, while also being
lightweight enough to work with a very limited number of
points. Because the covariances of each mixture are initialized
to be very loose and are not based on the values of the
points themselves, the model can grown in a stable manner,
unaffected by mixtures with very constrained covariances.

This approach is referenced as AGMM in our tests. Its
formulation is computationally cheap, it is flexible enough
to work well at finding and sampling diverse points in the
data, and it works well with a very limited amount of training
data. However, like conventional GMMs, it still assumes prior
knowledge of the appropriate number of mixtures in the model.
Too few mixtures leads to an over-generalization of the data,
while too many mixtures can lead to over-fitting.

B. Adaptively Adding Classes Using Dirichlet Process Priors

We propose a method for adaptively increasing the number
of mixtures in our model by using a Dirichlet process prior
[7]. Instead of estimating the number of classes in the AGMM
model, we use a Dirichlet process prior to estimate whether
or not a newly-collected sample point should be added to an
existing class or added to an entirely new class.

Our formulation assumes a similar structure to that of the
Chinese Restaurant Process (CRP). In that scenario, patrons
enter a Chinese restaurant one by one. Inside the restaurant are
infinitely many tables, T = {t1, ...}, and a customer chooses
a table with probability:

xn|x1, ..., xn−1 =

{
tk with probability numtk

n−1+α
tnew with probability α

n−1+α
(1)

with classes k ∈ K+, Dirichlet concentration parameter α,
and numtk is the number of patrons sitting at table tk.

In this case, all tables and all patrons have equal probability,
and thus the probability of being at a new table or an old table
are only dependent on the number of patrons already at the
restaurant and sitting at the table, respectively.

However, we can leverage the mixture model probabilities
in order to obtain a more accurate distribution of our data.
To demonstrate this, we introduce the Food Court Process.

Imagine that instead of a restaurant with up to an infinite
number of tables, there instead is a food court with up to
an infinite number of restaurants. Patrons enter the food court,
then choose a restaurant at which to eat.

In the CRP example, patrons are equally probable and their
choice of table is based entirely on the Dirichlet concentration
parameter, α, and the number of patrons at each table. In the
food court case, imagine instead the more realistic scenario
where each patron, y, has a preference of food, and individual
groups of people are more or less likely to appear. In this case,
the model can be updated to look like this:

xn|x1, ..., xn−1 =

{
rk w/ prob. numrk

n−1+αPrk(y|rk)

rnew w/ prob. α
n−1+αP (y)

(2)

in which the probability of a patron choosing an existing
restaurant is proportional to the popularity of the restaurant,
weighted by their preference to that type of food. If the patron
does not like any of the restaurants that already have patrons,
then it is more likely they will choose to eat at a new one.

This is the basis for our AGMM-AddClasses approach. As
we sample points, our mixture model builds up a number of
distributions based on the data in the sample points belonging
to those mixtures. When a new sample point arrives, the
algorithm must decide if it should add a point to an exist-
ing mixture or create a new one, using the aforementioned
equation:

P (c ∈ {C, new}|x) ∝

{
mc

n−1+αPc(x|c) if c ∈ C
α

n−1+αP (x) if c = new
(3)

for sample x, the set of mixtures C, and mc being the number
of points in mixture c. P (x) is the prior probability of the
sample and Pc(x|c) is the probability of our sample belonging
to mixture c, given by our mixture model.

Intuitively, one might imagine that, because we are sampling
the most diverse set of points we can find, we will always be
likely to create new mixtures, as sampled points are selected
based on their “distance” from existing mixtures. In reality,
however, due to the noise in the system this is not always
the case. Samples that look promising given the contextual
data may only appear promising because of a large amount of
noise in that samples’s measurement. After fully observing the
point it may be the case that that sample is not novel enough
to warrant the creation of a new mixture.

C. Probability of Misclassification
Finally, we augment the AGMM formulation with an ap-

proach similar to that of Haines et al. [11]. In this work they
are interested in calculating the probability of any point being
incorrectly classified given an existing model. This has been
considered in prior work, such as Lewis and Gale’s work on
text classification [15], in which they propose selecting sample
points with class probabilities closest to 0.5. However, their
work doesn’t consider the probability of a point belonging to
an unobserved case.

Haines et al. instead considers what they describe as
P (Wrong), or the probability of being incorrectly classified



given all existing classes, as well as the underlying probability
that it belongs to a new class:

P (Wrong|x) = 1− Pn(c′|x) (4)
c′ = arg max

c∈C
Pc(x|c) (5)

where Pn is the Dirichlet-weighted probability of belonging
to an existing class or a new, unobserved class:

Pn(c ∈ {C ∪ new}|x) ∝

{
mc

n−1+αPc(x|c) if c ∈ C
α

n−1+αP (x) if c = new
(6)

We apply a modification of this technique to our sample
selection process, referring to it as AGMM-P(Wrong). We
consider the case where the mixture model is defined as the
AGMM model discussed above. When points are considered
for sampling, existing mixtures are used to calculate the
probability of misclassification, weighted by the Dirichlet
probability of the point belonging to a new class. Similar to
Haines, we select the point that maximizes P (Wrong) and
add it to our AGMM model.

We hypothesize that this approach will provide high overall
coverage and sample diversity. By selecting points which are
poorly represented by the existing model, the set of selected
samples is more likely to contain dissimilar samples that span
the search space. This selection method also leverages the
Dirichlet process by choosing points that are likely to belong
to a new, undiscovered class.

D. One-Step Bayesian Optimization

In addition to our mixture model work, we introduce an
alternative sample selection process that draws from Bayesian
optimization approaches to find new sample selection points.

Bayesian optimization is a field of research focused on
using Bayesian methods to model reward functions, then sam-
pling methodically within those models to maximize reward.
Bayesian optimization is applicable when the direct function
to optimize is difficult to model or unknown, or evaluations are
expensive, but when samples can be collected at given values
in order to estimate the structure of the underlying function.
The underlying function is modeled by a known surrogate
function or response surface that is computationally easy to
evaluate and analyze, typically represented by a Gaussian
process model [22]. As data is collected the Gaussian process
is recalculated and the mean and covariance functions adjust
to fit to the new data, providing greater accuracy in regions of
the search space that have been sampled.

Sampling within Bayesian optimization is a trade-off be-
tween exploration, in this case sampling from the unknown
regions of the response surface, and exploitation, sampling
regions of the response surface known to be promising. The
choice of where to sample is typically handled by an acqui-
sition function which provides an estimate of the “reward”
of a given sample. Optimizing this function typically is done
using the principles of maximum expected utility, or minimum
expected risk [2].

Our method uses Bayesian optimization to estimate the
differential entropy reward of sampling at any point in our
contextual data. We hypothesize that the Gaussian process will
act as a smoothing operation over similar points, providing
a more accurate estimate of reward that is more resistant to
noise in the data. Additionally, the variance estimates provide
a measure of uncertainty that allow us to consider explicitly
the trade off between true exploration or exploitation.

It is important to note that Bayesian optimization typically
operates on a single, static objective function. This function
does not change over time or with observations, and, thus,
repeated queries into the function build upon prior knowledge
and can be used to improve the accuracy of the response
surface. This is often not the case in our test scenario, as our
objective function is the potential reward from collecting a
given sample. The information gained in sampling affects that
reward, necessitating a re-estimation of the response surface.
Thus, our acquisition functions and the parameters chosen for
our response surface focus on reliably maximizing the reward
of a single sample.

We call this One-Step Bayesian Optimization. We consider
the problem of selecting the next sample with the highest
expected entropy, xn+1, given our sample set X:

xn+1 = arg max
xi

H(X ∪ xi), ∀xi /∈ X (7)

However, the calculation of entropy is intrinsically dependent
on the set of samples, This means that our target objective
function is changing at each sampling step. Thus, our objective
is to find acquisition functions that provide the greatest return
over a single step.

This approach is myopic in nature, only considering the
expected reward of the next sample. Alternatively, a number of
non-myopic approaches to Bayesian Optimization have been
proposed [18, 16] which model the expected reward over
multiple samples up to some horizon or cut-off point. In our
extended work, which looks at selecting an optimal sampling
path for a rover traversal, we consider non-myopic applications
of these algorithms to calculate an expected reward with
regards to a sampling and time budget [10].

Given an accurate response surface, the Bayesian optimiza-
tion problem then becomes a selection of an acquisition func-
tion. We consider two main acquisition functions, although our
work in [10] evaluates others.

First, we consider Expectation of Improvement (EI), in
which we calculate the likelihood that we improve over some
incumbent value, f(x+), the highest value observed in our
objective function thus far [20, 13]. Typically, when multi-
ple samples are collected from the same objective function,
this is considered x+ = arg maxxi∈X f(xi). In our case,
where the objective function changes at each iteration, we
instead consider x+ to be the unsampled point that has the
highest value of our current model’s mean function: x+ =
arg maxxi∈Xunsampled

µ(xi).
EI offers a balanced approach between exploration and

exploitation. If the variance of a candidate point is large, it
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Fig. 3. An example of the sampling process with context. If context is
available, the reward is estimated across all points in the scene.

explores and takes a risk with the hope of finding something
rewarding, but if the mean of a candidate point is large, it
exploits that information. If we instead want to encode a
trade-off between these behaviors, we can include a trade-off
parameter, ξ, suggested by Lizotte [17]:

EI(x) =

{
(µ(x)− f(x+)− ξ)Φ(Z) + σ(x)φ(Z) if σ > 0

0 if σ = 0
(8)

Z =

{
µ(x)−f(x+)−ξ

σ(x) if σ > 0

0 if σ = 0
(9)

where Φ(·) and φ(·) indicate the CDF and PDF of the
standard normal distribution, respectively. Lizotte finds good
performance with a value of ξ = 0.01 and finds that a decaying
schedule, as suggested in the PI literature, actually under-
performs when compared against using a static value for ξ.
We refer to this approach as GP-EI.

Note that because f(x+) comes from our unsampled data,
it is possible that is is the point selected by the aquisition
function. This is acceptible, as it is intended only to provide a
baseline against which to compare the other unsampled points.
It is still likely that other sampling locations are selected that
have both a high expected value and high variance.

Finally, we evaluate a simple model, GP-MaxMean, which
ignores sample variance and instead chooses the sample with
the maximum expected value in our Gaussian process:

xn+1 = arg max
xi∈Xunsampled

µ(xi) (10)

This is largely a measure of the ability of the Gaussian process
to estimate the reward. Additionally, it acts as a smoothing
function to reduce the impact of noise in sample-dense regions
of our feature space.

V. RESULTS

We conduct two experiments that mimic common adaptive
sampling scenarios seen in robotic exploration. The first is
Adaptive Sampling with Context, in which the robot has
contextual information at all possible measurement locations.
This is similar in concept to a rover collecting a panoramic
image or a quick raster with a spectrometer, then choosing
targets of interest for follow-up measurements. Because the
full contextual data is available, this experiment is designed

Observe Next Point Estimate Reward Decide to Sample 

High estimated reward Collect detailed sample 

Fig. 4. An example of the sampling process without context. If context is
limited, there is no information about upcoming points and the reward is only
estimated on prior observed data.

to demonstrate and compare the effectiveness of approaches
under a minimal number of sampling constraints.

The second experiment is Adaptive Sampling with Limited
Context. This experiment considers how to handle sampling in
a scenario like that seen by the PIXL instrument, in which a
raster of data is collected and evaluated and the robot must
decide immediately whether to collect a detailed spectrum
[30]. The contextual data is limited to what the rover has
seen thus far, mostly consisting of noisy spectra and any more
accurate readings from detailed measurements.

Results are scored using two main, complementary met-
rics: entropy and reconstruction error. Entropy quantifies the
amount of diversity in the samples, while reconstruction error
quantifies the “coverage” of the sample set.

The entropy score is calculated using differential entropy:

H(x) =
1

2

∑
b∈B

log(2πσb) (11)

where b ∈ B are each of the channels in the data. This
score rewards samples that increase the overall information
of the sample set. While the channels in the raw spectral data
cannot be considered independent, the pre-processing of the
data reduces it to nine channels, each measuring elemental
abundance, which we can effectively consider independent
here.

In contrast, reconstruction error favors sampling points that
are representative of the entire dataset. It is calculated as
the average non-negative least-squares error when using the
collected samples to reconstruct all unobserved samples. Given
a set of collected samples X = {x1, ..., xn} and unsampled
points Y = {y1, ..., ym}, the error is calculated using the set
of weights W = {w1, ..., wn} that minimizes:

W ∗ = arg min
W

||WTX − Y ||2 (12)

wi > 0, ∀ wi ∈W (13)

All results are averaged over a set of 100 datasets randomly-
generated from the original PIXL data. Noisy contextual data
is generated using Poisson statistics from the original dataset.
Each method has a total sampling budget of 20 full-duration
samples.



0 5 10 15 20
Number of Samples

3000

3100

3200

3300

3400

3500

3600

3700

3800

En
tro

py

AGMM
AGMM - Add Classes
GP - EI
GP - MaxMean

Max Entropy
Grid
Random

AGMM

AGMM - A
dd

 Clas
ses

GP -
 EI

GP -
 Max

Mea
n

Max
 En

tro
py Grid

Ran
do

m

3300

3400

3500

3600

3700

3800

En
tro

py

Maximum Entropy

AGMM

AGMM - A
dd

 Clas
ses

GP -
 EI

GP -
 Max

Mea
n

Max
 En

tro
py Grid

Ran
do

m
3200

3300

3400

3500

3600

En
tro

py

Final Entropy(a) Entropy (Higher is better)

0 5 10 15 20
Number of Samples

100

150

200

250

300

350

400

450

500

Er
ro

r

AGMM
AGMM - Add Classes
GP - EI
GP - MaxMean
Max Entropy
Grid
Random

AGMM

AGMM - A
dd

 Clas
ses

GP -
 EI

GP -
 Max

Mea
n

Max
 En

tro
py Grid

Ran
do

m

140

160

180

200

220

240

260

Er
ro

r

Final Recon. Error

(b) Reconstruction Error (lower is better)

Fig. 5. Results for Adaptive Sampling with Full Context. GP-EI achieves the highest scores under the entropy metric, while the AGMM methods do best
with regards to reconstruction error.

A. Adaptive Sampling with Context

The first experiment considers the case when the robot has
access to contextual information at all possible measurement
locations. This contextual data may be noisy but can be used
to approximate a model of the data or model parameters. For
example, this data can be used to estimate the Dirichlet con-
centration parameter, α, in the AGMM-AddClasses approach,
or the response surface in the Gaussian process-based methods.

Our methods are compared to three established techniques:
random sampling, grid-based sampling, and a greedy entropy
maximization method, shown in tests as Max Entropy. This
entropy-based method calculates the expected differential en-
tropy for each point, given the existing sample set. This
method does well if there is low noise in the scene, but can
greedily sample from noisy locations in the contextual data
that only appear rewarding because of noise.

The results for this experiment are shown in Figure 5
and Table I. The AGMM methods all perform competitively
compared against the baseline methods. Both AGMM and
AGMM-AddClasses outperform all baseline approaches in
both entropy and reconstruction error. AGMM-AddClasses
demonstrates that there is a strict improvement over the
AGMM method when classes are added dynamically using a
Dirichlet process prior. Keeping the number of classes flexible
results in both an increase in entropy and a reduction in
reconstruction error.

All Bayesian optimization methods outperform the baseline
methods with regards to the entropy scoring metric, indicating
that they are well-equipped to find diverse points within the
sample data. GP-EI achieves the highest overall entropy score
out of all tested methods. However, GP-EI does poorly when
considered under the reconstruction error metric.

In contrast, the GP-MaxMean method does well on all
metrics. When scored using the entropy metric it outperforms
the baseline on both the full- and reduced-channel data,

indicating that using a Gaussian process for nothing other
than a smoothing operation has some benefit. When scored
using reconstruction error it outperforms all other methods.
This is potentially because the smoothing operation leads it to
sample fewer outlier points and instead sample points more
representative of the overall data.

Method Name Max Entropy Final Entropy Recon Error
Grid 3402.2 3274.9 152.9
Random 3367.5 ± 82.9 3267.9 ± 54.7 174 ± 35.8
Maximum Entropy 3590.9 ± 76.9 3476 ± 63.4 171.5 ± 22.9
GP-EI 3728.6 ± 48.1 3636.4 ± 37.9 236.6 ± 19.8
GP-MaxMean 3667.8 ± 41.9 3532.1 ± 46.1 152.7 ± 7.0
AGMM 3620.7 ± 61.7 3506.9 ± 49.3 159.4 ± 14.2
AGMM-AddClass 3667.7 ± 72.4 3545 ± 45.3 152.7 ± 7.1

TABLE I
ADAPTIVE SAMPLING WITH CONTEXT. OUR CONTRIBUTIONS AND THE

BEST RESULTS ARE LISTED IN BOLD.

B. Adaptive Sampling with Limited Context

Our second experiment considers the case where the only
contextual information available are the points which have
already been sampled. Unfortunately, this greatly limits the
effectiveness of the model-based approaches used in the full-
context experiments.

Instead, we consider the AGMM - P(Wrong) formulation.
In this model, there are still a fixed number of K mixtures.
However, we are a little more restrictive with the points
that we sample, and instead favor only sampling points that
are dissimilar from the data we have already collected. At
every candidate sample point, we calculate the value of
P (wrong|x), as described above, then decide whether or not
to sample at that point. For all tests the sampling criterion is

trigger when P (wrong|x) > τ (14)
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Fig. 6. Results for Adaptive Sampling with Limited Context. Our AGMM-P(Wrong) achieves very strong results in both entropy maximization and minimizing
reconstruction error. The 3 Sigma and 4 Sigma approaches both have a slower ramp-up time, but do well with regards to both metrics.

In this experiment τ = 0.997, chosen to be similar to the
interval-based approach with an interval of [−3σ, 3σ].

We compare to the interval-based approaches proposed by
Thompson et al. [33], in which samples are selected if they
fall either three or four standard deviations away from the
mean sample observed thus far, in any elemental channel. We
refer to these methods as Sigma3 and Sigma4, respectively.
Additionally, we compare against random- and grid-based
selection methods.

Results are shown in Figure 6 and Table II. The overall best
performer is the AGMM-P(Wrong) method. It achieves the
best scores in all but one metric, and even then is close to the
optimal score.

Random and Grid do very well in this experiment, espe-
cially in their initial few samples. This is because both the
random and periodic methods sample a larger space of the
data, while other methods typically exhaust their sampling
budget early in the raster.

The other methods have somewhat of a slower start, as they
must build up initial models over the section of the raster
where the initialization point is located, so their long-term
results are higher, but their initial scores are lower. This is
especially true for the interval-based approaches, 3Sigma and
4Sigma, as they have to gradually build up a model.

Method Name Max Entropy Final Entropy Recon Error
Grid 3347.4 ± 0.0 3278.4 ± 0.0 204.5 ± 0.0
Random 3357.0 ± 43.5 3286.8 ± 34.6 202.9 ± 23.5
3 Sigma 3253.2 ± 47.1 3253.2 ± 47.1 174.6 ± 4.0
4 Sigma 3252.4 ± 34.4 3252.4 ± 34.4 180.6 ± 14.4
AGMM - P(Wrong) 3352.3 ± 64.0 3332.8 ± 50.7 162.7 ± 3.9

TABLE II
ADAPTIVE SAMPLING WITH LIMITED CONTEXT. OUR CONTRIBUTIONS

AND THE BEST RESULTS ARE LISTED IN BOLD.

VI. CONCLUSION

This work has demonstrated a number of adaptive sampling
methods that improve a robot’s ability to collect both diverse
and representative samples. We have shown that these methods
work well in situations where robots have some prior infor-
mation about a sampling location, as well as in cases where
little information is known.

We have introduced three main methods. First, we showed
a method for adaptively adding classes to model-based ap-
proaches using Dirichlet processes. This approach improved
over static models, especially when looking for diverse points
in the data.

Second, we demonstrate a method for selecting sample
points based on their probability of being misclassified under
the current model. This method excels at adaptive sampling
with no context, where it is much more difficult to build up a
representative model over time.

Finally, we demonstrate the effectiveness of one-step
Bayesian optimization, in which a Gaussian process is used
to estimate the reward of unsampled points. The Gaussian
process helps smooth the reward function over similar points,
reducing the impact of noise on the reward estimate, as well
as providing an estimate of variance in the reward that can be
used to search for diverse points in the data. These methods
excelled at finding diverse points.

Our work will continue by applying these methods onboard
a planetary rover prototype and conducting field experiments
to evaluate the efficiency and effectiveness of adaptive sam-
pling for science exploration.
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