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Abstract—In order to safely operate around humans, robots
can employ predictive models of human motion. Unfortunately,
these models cannot capture the full complexity of human
behavior and necessarily introduce simplifying assumptions. As
a result, predictions may degrade whenever the observed human
behavior departs from the assumed structure, which can have
negative implications for safety. In this paper, we observe that
how “rational” human actions appear under a particular model
can be viewed as an indicator of that model’s ability to describe
the human’s current motion. By reasoning about this model
confidence in a real-time Bayesian framework, we show that
the robot can very quickly modulate its predictions to become
more uncertain when the model performs poorly. Building on
recent work in provably-safe trajectory planning, we leverage
these confidence-aware human motion predictions to generate
assured autonomous robot motion. Our new analysis combines
worst-case tracking error guarantees for the physical robot
with probabilistic time-varying human predictions, yielding a
quantitative, probabilistic safety certificate. We demonstrate our
approach with a quadcopter navigating around a human.

I. INTRODUCTION

In situations where robots are operating in close physical
proximity with humans, it is often critical for the robot to
anticipate human motion. One popular predictive approach is
to model humans as approximately rational with respect to an
objective function learned from prior data [23, 14]. When a
person is moving in accordance with the learned objective (e.g.
to a known goal location), such models often make accurate
predictions and the robot can easily find a safe path around the
person. Unfortunately, no model is ever perfect, and the robot’s
model of the human will not be able to capture all possible
movements that it might eventually observe. For example,
the human might walk toward another goal location that the
robot does not know about, or move to avoid an obstacle of
which the robot is unaware. In these cases where the human’s
motion diverges from the model’s predictions, safety might
be compromised. In Fig. 1 (left), the robot fails to reason
about the human avoiding the unobserved obstacle and gets
dangerously close to the human.

One method to mitigate the effects of model inaccuracy
is for the robot to re-compute its human model over time.
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Fig. 1: When planning around humans, predictive models can enable robots
to reason about future motions the human might take. These predictions rely
on human motion models, but such models will often be incomplete and lead
to inaccurate predictions and even collisions (left). Our method addresses this
by updating its human model confidence in real time (right).

However, restrictions in sensing and in the availability of
human data limit how much a model can be refined online
without overfitting. Alternatively, the robot can reason about
its confidence in its current model’s predictions. In this paper,
we propose a method in which the robot continually estimates
its confidence in its human model in real time and adapts
its motion plan according to this confidence (Fig. 1, right).
In particular, our approach leverages the so-called “rational-
ity” coefficient in the commonly used Boltzmann model of
approximately rational human behavior [3, 22] as a time-
varying indicator of the model’s predictive performance. This
is a single scalar parameter that can be tractably inferred at
deployment time. We couple the resulting confidence-aware
human motion predictions with a provably safe motion planner
to obtain probabilistically safe robotic motion plans that are
conservative when appropriate but efficient when possible.

This paper makes two key contributions: (1) a real-time
Bayesian framework for reasoning about the uncertainty in-
herent in a model’s prediction of human movement, and
(2) extending a state-of-the-art, provably safe, real-time robotic
motion planner to incorporate our time-varying, probabilistic
human predictions. Together, these two contributions facilitate
the real-time generation of robot trajectories through human-
occupied spaces. Further, they guarantee that when the robot
tracks these trajectories at run-time they will be collision-free
with arbitrarily high probability.
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II. PRIOR WORK

A. Human Modeling and Prediction

One common approach for predicting human actions is
supervised learning, where the current state and the history of
the human’s actions are used directly to predict future actions.
Such approaches have enabled inference and planning around
human arm motion [1, 5, 13, 15, 10], navigation [5], plans for
multi-step tasks like assembly [10], and driving [20].

Rather than predicting actions directly, an alternative is for
the robot to model the human as a rational agent seeking to
maximize an unknown objective function. The human’s actions
up to a particular time may be viewed as evidence about this
objective from which the robot may infer the parameters of
that objective. Assuming that the human seeks to maximize
this objective in the future, the robot can predict her future
movements [3, 18]. In this paper, we build on in this work
by introducing a principled online technique for estimating
confidence in such a learned model of human motion.

B. Safe Robot Motion Planning

Once armed with a predictive model of the human motion,
the robot may leverage motion planning methods that plan
around uncertain moving obstacles and generate real-time
dynamically feasible and safe trajectories.

To avoid moving obstacles in real time, robots typically
employ reactive and/or path-based methods. Reactive methods
directly map sensor readings into control, with no memory in-
volved [4]. Path-based methods such as rapidly-exploring ran-
dom trees and A* find simple kinematic paths through space
and, if necessary, time [9, 12]. These path-based methods of
planning are advantageous in terms of efficiency, yet, while
they have in some cases been combined with probabilistically
moving obstacles [2, 23], they do not consider the endogenous
dynamics of the robot or exogenous disturbances such as
wind. As a result, the robot may deviate from the planned
path and potentially collide with obstacles. It is common for
these plans to try to avoid obstacles by a heuristic margin of
error. FaSTrack is a recent algorithm that provides a guaran-
teed tracking error margin and corresponding error-feedback
controller for dynamic systems tracking a generic planner in
the presence of bounded external disturbance [11, 8]. Our work
builds upon FaSTrack to create an algorithm that can safely
and dynamically navigate around uncertain moving obstacles
in real time.

III. PROBLEM STATEMENT AND APPROACH

We consider a single robot moving to a preset goal location
in a space shared with a single human, and assume that the
human expects the robot to avoid her. Therefore, it is the
robot’s responsibility to maintain a safe distance from the
human at all times. We present our theory for a general single
human and single robot setting, and use the running example of
quadcopter navigating around a walking human to illustrate the
proposed approach and demonstrate the utility of our method.

A. Motion Model

Let the state of the human be xH ∈ RnH , where nH is
the dimension of the human state space. We similarly define
the robot’s state, for planning purposes, as xR ∈ RnR . These
states could represent the positions and velocities of a mobile
robot and a human in a shared environment or the kinematic
configurations of a human and a robotic manipulator in a
common workspace. The human and robot are each modeled
by their dynamics:

ẋH = fH(xH , uH) ẋR = fR(xR, uR) (1)

where uH ∈ RmH and uR ∈ RmR are the control actions of
the human and robot, respectively.

The robot ultimately needs to plan and execute a trajectory
to a goal state according to some notion of efficiency, while
avoiding collisions with the human. We define the keep-out set
K ⊂ RnH × RnR as the set of joint robot-human states to be
avoided, e.g. because they imply physical collisions. To avoid
reaching this set, the robot must reason about the human’s
future motion when constructing its own motion plan.

Running example: We introduce a running example for
illustration throughout the paper. In this example we consider
a small quadcopter that needs to fly to locations gR ∈ R3

in a room where a human is walking. For the purposes of
planning, the quadcopter’s 3D state is given by its position
in space xR = [px, py, pz], with velocity controls assumed
decoupled in each spatial direction, up to vR = 0.25 m/s.
The human can only move by walking and therefore her
state is given by planar coordinates xH = [hx, hy] evolving
as ẋH = [vH cosφH , vH sinφH ]. At any given time, the
human is assumed to either move at a leisurely walking speed
(vH ≈ 1 m/s) or remain still (vH ≈ 0).

In this example, K consists of joint robot-human states in
which the quadcopter is flying within a square of side length
l = 0.3 m centered around the human’s location, while at any
altitude, as well as any joint states in which the robot is outside
the bounds of a box with a square base of side L = 3.66 m
and height H = 2 m, regardless of the human’s state.

B. Robot Dynamics

Ideally, robots should plan their motion based on a high-
fidelity model of their dynamics, accounting for inertia, ac-
tuator limits, and environment disturbances. Unfortunately,
reasoning with such complex models is almost always compu-
tationally prohibitive.As a result, the models used for planning
typically constitute a simplified representation of the physical
dynamics of the real robot, and are therefore subject to
some error that can have critical implications for safety. In
particular, let sR ∈ RnS denote the state of the robot in the
higher-fidelity dynamical model, and let π : RnS → RnR be
a known function that projects this higher-fidelity state onto
a corresponding planning state, i.e xR = π(sR). A planner
which operates on xR may generate a trajectory which is
difficult to track or even infeasible under the more accurate
dynamical model. Thus reasoning with the planning model
alone is not sufficient to guarantee safety for the real robot.



Running example: We model our quadcopter with the
following flight dynamics (in near-hover regime):ṗxṗy

ṗz

 =

vxvy
vz

 ,

v̇xv̇y
v̇z

 =

 g tan θ
−g tanφ
τ − g

 , (2)

where [px, py, pz] is the quadcopter’s position in space and
[vx, vy, vz] is its velocity expressed in the fixed world frame,
with thrust τ and attitude angles (roll φ and pitch θ) as
controls. The quadcopter’s motion planner generates nominal
kinematic trajectories in the lower-dimensional [px, py, pz] po-
sition state space. Therefore we have a linear projection map
π(sR) = [I3, 03]sR, that is, xR retains the position variables
in sR and discards the velocities.

C. Predictive Human Model

The robot has a predictive model of the human’s motion,
based on a set of parameters whose values may be inferred
under a Bayesian framework or otherwise estimated over
time. Extensive work in econometrics and cognitive science
has shown that human behavior can be well modeled by
utility-driven optimization [21, 16, 3]. Thus, the robot models
the human as optimizing a reward function, rH(xH , uH ; θ),
that depends on the human’s state and action, as well as a
set of parameters θ. This reward function could be a linear
combination of features as in many inverse optimal control
implementations (where the weighting θ between the features
needs to be learned), or more generally learned through
function approximators such as deep neural networks (where θ
are the trained weights) [7].

We assume that the robot has a suitable human reward
function, either learned offline from prior human demonstra-
tions or otherwise encoded by the system designers. With
this, the robot can compute the human’s policy as a proba-
bility distribution over actions conditioned on the state. Us-
ing maximum-entropy assumptions [22] and inspiration from
noisy-rationality models used in cognitive science [3], the
robot models the human as more likely to choose actions with
high expected utility, in this case the state-action value (or
Q-value):

P (utH | xtH ;β, θ) =
eβQH(xtH ,u

t
H ;θ)∑

ũ e
βQH(xtH ,ũ;θ)

. (3)

Running example: The quadcopter’s model of the human
assumes that she intends to reach some target location g ∈ R2

in the most direct way possible. The human’s reward function
is given by the distance traveled rH(xH , uH ; g) = −||uH ||2
and human trajectories are constrained to terminate at g.
The state-action value, parametrized by θ = g, captures the
optimal cost of reaching g from xH when initially applying
uH : QH(xH , uH ; g) = −||uH ||2 − ||xH + uH − g||2.

The coefficient β is traditionally called the rationality
coefficient and it determines the degree to which the robot
expects to observe human actions aligned with its model of
utility. A common interpretation of β = 0 is a human who
appears “irrational,” choosing actions uniformly at random

and completely ignoring the modeled utility, while β → ∞
corresponds a “perfectly rational” human. Instead, we believe
that β can be given a more pragmatic interpretation related
to the accuracy with which the robot’s model of the human
is able to explain her motion. Consistently, in this paper, we
refer to β as model confidence.

Note that we assume the human does not react to the robot.
This assumption can realistically capture plausible shared-
space settings in which lightweight robots (e.g. micro-drones)
may be expected to carry out services such as indoor surveil-
lance in a building while minimizing interference with human
activity. Additionally, to the extent that a more compliant
human will tend to avoid collisions with the robot, the robot
may still benefit in such scenarios—it is merely not assuming
any cooperation a priori in its planning.

D. Probabilistic Safe Motion Planning Problem

The problem that the robot needs to solve is to plan a
trajectory that, when tracked by the physical system, will reach
a goal state as efficiently as possible while avoiding collisions
with high confidence, based on an informed prediction of the
human’s future motion.

Since any theoretical guarantee is tied to the model it is
based on, safety guarantees will inherit the probabilistic nature
of human predictions. This induces a fundamental tradeoff
between safety and liveness: predictions of human motion may
assign non-zero probability to a wide range of states at a
future time, which may severely impede the robot’s ability
to operate in the shared space with “absolute safety” (only
absolute according to the model). Therefore, depending on
the context, the designers or operators of the system will need
to determine what is an acceptable probability that a robot’s
plan will conflict with the human’s future motion. Based
on this, the robot’s online planning algorithm will determine
when a motion plan is predicted to be sufficiently safe. In
our demonstrated system, we use a 1% collision probability
threshold for planning.

Our goal now is to find efficient robot motion plans that will
keep collisions with a human below an acceptable probability.
Formally, given a current state xnow

R ∈ RnR , a cumulative cost
c : RnR × RmR → R, a probability threshold Pth ∈ [0, 1] and
a final time T , we define the constrained planning problem:

min
ut:TR

T∑
τ=t

c(xτR, u
τ
R) (4a)

s.t. xtR = xnow
R (4b)

xτ+1
R = f̃R(xτR, u

τ
R), τ ∈ t, ..., T − 1 (4c)

P t:Tcoll := P
(
∃τ ∈ {t, ..., T} : coll(xτR, x

τ
H)
)
≤ Pth (4d)

with f̃R a discrete-time approximation of the dynamics fR.
The term coll(xtR, x

t
H) is a Boolean variable indicating

whether the human and the robot are in collision. The safety
analysis necessary to solve this online motion planning prob-
lem therefore has two main components, the robot’s state and
the human’s state, both of which are affected by uncertainty



in their evolution over time. We tackle these two sources of
uncertainty through a combined method that draws simulta-
neously on the two main approaches to uncertain systems:
probabilistic and worst-case analysis.

Running example: The quadcopter’s cost can be a
weighted combination of distance traversed and time elapsed
on its way to a specified goal: c(xR, uR) = ||uR||2 + c0.

The proposed approach in this paper follows two cen-
tral steps to provide a quantifiable, high-confidence collision
avoidance guarantee for the robot’s motion around the human.
In Section IV we present our proposed Bayesian framework
for reasoning about the uncertainty inherent in a model’s
prediction of human behavior. Based on this inference, we
demonstrate how to generate a real-time probabilistic predic-
tion of the human’s motion over time. Next, in Section V we
introduce a theoretical extension to a state-of-the-art, provably
safe, real-time robotic motion planner to incorporate our time-
varying probabilistic human predictions yielding a quantitative
probabilistic safety certificate.

IV. CONFIDENCE-AWARE HUMAN MOTION PREDICTION

Predictions of human motion, even when based on well-
informed models, may eventually perform poorly when the
human’s behavior outstrips the model’s predictive power. Such
situations can have a negative impact on safety if the robot
fails to appropriately, and quickly, notice the degradation of
its predictions.

It will often be the case in practice that the same model will
perform variably well over time in different situations and for
different people. In some cases this model might be perfectly
representative, in others the robot might not have access to
some important feature that explains the human’s behavior, and
therefore the robot’s conservativeness should vary accordingly.

Given a utility-based human model in the form of (3),
the β term can be leveraged as an indicator of the model’s
predictive capabilities, rather than the human’s actual level of
rationality. Thus, by maintaining an estimate of β, the robot
can dynamically adapt its predictions (and therefore its motion
plan) to the current reliability of its human model. For this
reason, in this paper, we refer to β as model confidence, and
aim to make the robot reason about its value in real time in
order to generate confidence-aware “introspective” predictions
of the human’s motion.

A. Real-time Inference of Model Confidence

At every time step t, the robot obtains a new measurement1

of the human’s action, utH . This measurement can be used as
evidence to update the robot’s belief bt(·) about β over time
via a Bayesian update:

bt+1(β) =
P (utH | xtH ;β, θ)bt(β)∑
β̂ P (utH | xtH ; β̂, θ)bt(β̂)

, (5)

with bt(β) = P (β|x0:tH ) for t ∈ {0, 1, ...}, and P (utH |xtH ;β, θ)
given by (3). It is critical to be able to perform this update

1In practice, the robot measures the evolution of the human state and
computes the associated action by inverting the motion model.

Fig. 2: Snapshots of human trajectory and probabilistic model predictions.
Top row: Human moves from the bottom right to a goal marked as a red
circle. Bottom row: Human changes course to avoid a spill on the floor. The
first two columns show the predictions for low and high model confidence;
the third column shows the predictions using our Bayesian model confidence.

extremely fast, which would be difficult to do in the original
continuous hypothesis space β ∈ [0,∞) or even a large dis-
crete set. Fortunately, as we will see in Section VI, maintaining
a Bayesian belief over a relatively small set of β values
(Nβ ≈ 10 on a log-scale) achieves significant improvement
relative to maintaining a fixed precomputed value.2

B. Human motion prediction

We can now use the belief over β to recursively propagate
the human’s motion over time and obtain a probabilistic
prediction of her state at any number of time steps into the
future. In particular, at every future time step, we can estimate
the likelihood of the human taking action uH from any state
xH by directly applying (3). Combining this with the dynamics
model, we can generate a distribution of human occupancies
over time, with the recursive update:

P (xτ+1
H | xτH ;β, θ) =∑
uτH

P (xτ+1
H | xτH , uτH ;β, θ)P (uτH | xτH ;β, θ) , (6)

for τ ∈ {t, ..., T}; for the deterministic dynamics in our case,
P (xτ+1

H | xτH , uτH ;β, θ) = 1{xτ+1
H = f̃H(xτH , u

τ
H)}.

Running example: The simplest scenario in our running
example involves a human moving towards a known goal. In
Fig 2(a-c), the human acts predictably, moving directly to the
goal. Each subfigure shows the robot’s human prediction under
different confidence conditions. Predictions for the second
scenario, where the human deviates from her path to avoid
a coffee spill on the ground, are shown in Fig 2(d-f).

2 Since the predictive performance of the model might change over time as
the human’s behavior evolves, we do not in fact treat β as a static parameter,
but as a hidden state in a hidden Markov model (HMM). Concretely, between
successive “measurement updates” (5), we apply a uniform smoothing “time
update”, allowing our belief over β to slowly equalize over time, which has
the effect of downweighting older observations.



C. Integrating Model Confidence into Online Model Updates

When a robot is faced with human behavior that is not
well explained by its current model, it can attempt to update
some of its elements to better fit the observed human actions.
These elements can include parameters, hyperparameters, or
potentially even the structure of the model itself. Assuming
that the parameters can be tractably adjusted online, this
update may result in better prediction performance.

Even under online model updates, it continues to be neces-
sary for the robot to reason about model confidence. In this
section we demonstrate how reasoning about model confidence
can be done compatibly (and in some cases jointly) with model
parameter updates.

Recall that θ denotes the set of parameters in the human’s
utility model. The ideal approach is to perform inference over
both the model confidence, β, and the model parameters, θ
by maintaining a joint Bayesian belief, bt(β, θ). The joint
Bayesian belief update rule takes the form

bt+1(β, θ) =
P (utH | xtH ;β, θ)bt(β, θ)∑
β̂,θ̂ P (utH | xtH ; β̂, θ̂)bt(β̂, θ̂)

, (7)

with bt(β, θ) = P (β, θ | x0:tH , u0:tH ).3 This approach can be
practical for parameters taking finitely many values from a
discrete set, for example, possible distinct modes for a human
driver (distracted, cautious, aggressive).

Running example: The quadcopter’s model of the human
considers a number of known frequently-visited locations θ ∈
{g1, ..., gN} that she might intend to walk to next. However,
there may be additional unmodeled destinations, or more
complex objectives driving the human’s motion in the room
(for example, she could be searching for a misplaced object, or
pacing while on the phone). Fig. 3 shows how reasoning about
model confidence as well as the human’s destination enables
the robot to navigate confidently while the human’s motion is
well explained by the model, and automatically become more
cautious when it departs from its predictions. More detailed
results are presented in Section VI.

For certain scenarios or approaches it may not be practical to
maintain a full Bayesian belief on the parameters, and these are
instead estimated over time (for example, through a maximum
likelihood estimator (MLE), or by shallow re-training of a pre-
trained neural network). In these cases, a practical approach
can be to maintain a “bootstrapped” belief on β by running
the Bayesian update on the running parameter estimate θ̄:

b̄t+1(β) =
P (utH | xtH ;β, θ̄)b̄t(β)∑
β̂ P (utH | xtH ; β̂, θ̄)b̄t(β̂)

. (8)

Running example: The quadcopter’s predictions of human
motion are parameterized by her walking speed vH ; the
quadcopter maintains a simple running average based on
recent motion-capture measurements, and incorporates the
current estimate into inference and prediction.

3 Analogously to the case with β-only inference, the parameters θ can be
allowed to evolve as a hidden state.

Fig. 3: In this example the human is moving in a counter-clockwise motion
to two goals (marked in red), and then to a third unknown goal (located at the
same position as the start). Subfigures (a) and (b) show the predictions for a
low and high β, respectively. Subfigure (c) shows the predictions using our
inferred model confidence, where the robot is confident when the human is
moving “rationally”, and uncertain when the human behavior does not match
the robot’s model.

When it is not desirable or computationally feasible to
update the parameter estimate θ̄ continually, we can leverage
our model confidence as an indicator of when re-estimating
these parameters may be most useful—namely as confidence
in the model under the current parameter estimates degrades.

V. SAFE PROBABILISTIC PLANNING AND TRACKING

Once it can generate real-time probabilistic predictions of
the human’s motion, the robot needs to plan a trajectory
that will, with high probability, avoid collisions with her.
On the one hand, any rigorous safety analysis for a robotic
system needs to account for deviations of the actual dynamic
trajectory from the ideal motion plan. On the other hand, since
human motion predictions are by nature uncertain, the safety
analysis will necessarily be quantified in probabilistic terms.
To this end, we build on the recent FaSTrack framework [11],
which provides control-theoretic robust safety certificates in
the presence of deterministic obstacles, and extend the the-
oretical analysis to provide probabilistic certificates allowing
uncertain dynamic obstacles (here, humans).

A. Background: Fast Planning, Safe Tracking

Recall that xR and uR are the robot’s state and control input,
for the purposes of motion planning. The recently proposed
FaSTrack framework [11] uses Hamilton-Jacobi reachability
analysis [6, 17] to provide a simple real-time motion planner
with a worst-case tracking error bound and error feedback con-
troller for the dynamic robot. Formally, FaSTrack precomputes
an optimal tracking control policy, as well as a corresponding
compact set E in the robot’s planning state space, such that(
π(stR)− xtR,ref

)
∈ E for any reference trajectory proposed

by the lower-fidelity planner. This bound E is a trajectory
tracking certificate that can be passed to the online planning
algorithm for real-time safety verification: the dynamical robot
is guaranteed to always be somewhere within the bound
relative to the plan. Therefore the planner can generate safe
plans by ensuring that the entire bound around the nominal
state remains collision-free throughout the trajectory. Note that
the planner only needs to know E and otherwise requires no
explicit understanding of the high-fidelity model.

Running example: Since dynamics (2) are decoupled in
the three spatial directions, the bound E computed by FaSTrack
is an axis-aligned box of dimensions Ex × Ey × Ez .



B. Robust Tracking, Probabilistic Safety

Unfortunately, planning algorithms for collision checking
against deterministic obstacles cannot be readily applied to our
problem. Instead, a trajectory’s collision check should return
the probability that it might lead to a collision. Based on this
probability, the planning algorithm can discriminate between
trajectories that are sufficiently safe and those that are not.

As discussed in Section III-D, a safe online motion planner
should continually check the probability that, at any future
time τ , (π(sτR), xτH) ∈ K. The tracking error bound guaran-
tee from FaSTrack allows us to conduct worst-case analysis
on collisions given a human state xH : if no point in the
Minkowski sum {xR + E} is in the collision set with xH ,
we can guarantee that the robot is not in collision with the
human.

The probability of a collision event for any point xτR in a
candidate trajectory plan, assuming worst-case tracking error,
can be computed as the total probability that xτH will be in
collision with any of the possible robot states x̃R ∈ {xτR+E}.
For each robot planning state xR ∈ RnR we can define the set
of human states in potential collision with the robot:

HE(xR) := {x̃H ∈ RnH : ∃x̃R ∈ {xR+E}, (x̃R, x̃H) ∈ K} .
(9)

The following result is then true by construction.
Proposition 1: The probability of a robot with worst-case

tracking error E being in collision with the human at any
trajectory point xτR is bounded above by the probability mass
of xτH contained within HE(xτR).

Therefore, the left-hand side of the inequality in our prob-
lem’s safety constraint (4d) can be rewritten as

P t:Tcoll = 1−
T∏
τ=t

P
(
xτH 6∈ HE(xτR) | xτH 6∈ HE(xsR), t ≤ s < τ

)
.

(10)
Evaluating the above probability exactly would require

reasoning jointly about the distribution of human states over
all time steps, or equivalently over all time trajectories x0:TH
that the human might follow. Due to the need to plan in real
time, we must in practice approximate this distribution.

Since assuming independence of collision probabilities over
time is both unrealistic and overly conservative, we instead
seek to find a tight lower bound on a trajectory’s overall
collision probability based on the marginal probabilities at
each moment in time. In particular, based on the positive
correlation over time resulting from human motion continu-
ity, we first consider replacing each conditional probability
P
(
xτH 6∈ HE(xτR) | xsH 6∈ HE(xsR), t ≤ s < τ

)
by 1 for all

t > 0. This would then give the lower bound

P t:Tcoll ≥ 1− P
(
xtH 6∈ HE(xtR)

)
= P

(
xtH ∈ HE(xtR)

)
, (11)

which would seem like an unreasonably optimistic approxi-
mation. However, note that probabilities can be conditioned
in any particular order (not necessarily chronological) and we
can therefore generate T − t + 1 lower bounds of the form
P t:Tcoll ≥ P

(
xτH ∈ HE(xτR)

)
for τ ∈ {t, . . . , T}, again by

replacing all successive conditional non-collision probabilities
by 1. Taking the tightest of all of these bounds, we can obtain
an informative, yet quickly computable, approximator for the
sought probability:

P t:Tcoll ≈ max
τ∈{t:T}

P
(
xτH ∈ HE(xτR)

)
. (12)

In other words, we are replacing the probability of collision of
an entire trajectory with the highest marginal collision proba-
bility at each point in the trajectory. While this approximation
will err on the side of optimism, we note that the robot’s ability
to continually replan as updated human predictions become
available mitigates any potentially underestimated risks, since
in reality the robot does not need to commit to a plan that was
initially deemed safe, and will readily rectify as the estimated
collision risk increases prior to an actual collision.

Running example: Given K and E , HE(xτR) is the
set of human positions within the rectangle of dimensions
(l + Ex)× (l + Ey) centered on [pτx, p

τ
y ]. A human anywhere

in this rectangle could be in collision with the quadcopter.

C. Safe Online Planning under Uncertain Human Predictions

We can now use this real-time evaluation of collision prob-
abilities to discriminate between valid and invalid trajectory
candidates in the robot’s online motion planning. Using the
formulation in Section IV, we can quickly generate, at every
time t, the marginal probabilities in (12) at each future time
τ ∈ {t, . . . , T}, based on past observations at times 0, . . . , t.
Specifically, for any candidate trajectory point xτR, we first
calculate the set HE(xτR); this set can often be obtained ana-
lytically from (9), and can otherwise be numerically approxi-
mated from a discretization of E . The planner then computes
the instantaneous probability of collision P

(
xτH ∈ HE(xτR)

)
by integrating P

(
xτH | x0:tH

)
over HE(xτR), and rejects the

candidate point xτR if this probability exceeds Pth.
Note that for search-based planners that consider candidate

trajectories by generating a tree of timestamped states, reject-
ing a candidate node from this tree is equivalent to rejecting
all further trajectories that would contain the node. This early
rejection rule is consistent with the proposed approximation
(12) of P t:Tcoll while preventing unnecessary exploration of
candidate trajecories that would ultimately be deemed unsafe.

As the robot is continuously regenerating its motion plan
online as the human’s predicted motion is updated, we simul-
taneously track the planned trajectory using our error feedback
controller, which ensures that we deviate by no more than the
tracking error bound E . This planning and tracking procedure
continues until the robot’s goal has been achieved.

Running example: Our quadcopter is now required
to navigate to a target position shown in Fig. 2 without
colliding with the human. Our proposed algorithm successfully
avoids collisions at all times, replanning to leave greater
separation from the human whenever her motion departs
from the model. In contrast, robot planning with fixed model
confidence is either overly conservative at the expense of time
and performance or overly aggressive at the expense of safety.



Fig. 4: Scenario from Fig. 2 visualized with robot’s trajectory based on its
current β. When β is low and the robot is not confident, it makes large
deviations from its path to accommodate the human. When β is high, the
robot refuses to change course and comes dangerously close to the human.
With inferred model confidence, the robot balances safety and efficiency with
a slight deviation around the human.

VI. DEMONSTRATION WITH REAL HUMAN TRAJECTORIES

We implemented real-time human motion prediction with β
inference and safe probabilistic motion planning via FaSTrack
within the Robot Operating System (ROS) framework [19].
To demonstrate the characteristic behavior of our approach,
we created three different environment setups and collected a
total of 48 human walking trajectories (walked by 16 different
people). The trajectories are measured as (x, y) positions on
the ground plane at roughly 235 Hz by an OptiTrack infrared
motion capture system.4 We also demonstrated our system
in hardware on a Crazyflie 2.0 platform navigating around
a person in a physical space.5

Environments. In the first environment there are no obsta-
cles and the robot is aware of the human’s goal. The second
environment is identical to the first, except that the human
must avoid a coffee spill that the robot is unaware of. In the
third environment, the human walks in a triangular pattern
from her start position to two known goals and back.

Evaluated Methods. For each human trajectory, we com-
pare the performance of our adaptive β inference method with
two baselines using fixed β ∈ {0.05, 10}. When β = 0.05,
the robot is unsure of its model of the human’s motion. This
low-confidence method cannot trust its own predictions about
the human’s future trajectory. On the other hand, the β = 10
high-confidence method remains confident in its predictions
even when the human deviates from them. These two baselines
exist at opposite ends of a spectrum. Comparing our adaptive
inference method to these baselines provides useful intuition
for the relative performance of all three methods in common
failure modes (see Fig. 4).

Metrics. We measure the performance of our adaptive β
inference approach in both of these cases by simulating a quad-
copter moving through the environment to a pre-specified goal
position while replaying the recorded human trajectory. We
simulate near-hover quadcopter dynamics with the FaSTrack
optimal controller applied at 100 Hz. For each simulation, we
record the minimum distance in the ground plane between the
human and the quadcopter as a proxy for the overall safety of

4We note that in a more realistic setting, we would need to utilize alternative
methods for state estimation such as lidar measurements.

5https://youtu.be/2ZRGxWknENg

the system. The quadcopter’s travel time serves to measure its
overall efficiency.

In each environment, we compute the safety metric for all
16 human trajectories when applying each of the three human
motion prediction methods and display the corresponding box
and whisker plots side by side. To compare the efficiency
of our approach to the baselines we compute the difference
between the trajectory completion time of our approach, Tinfer,
and that of the low and high confidence baselines, {Tlo, Thi}. If
the resulting boxplots are below zero, then β inference results
in faster robot trajectories than the baselines on a per-human
trajectory basis.6

Complete Model. First, we designed an example environ-
ment where the robot’s model is complete and the human
motion appears to be rational. In this scenario, humans would
walk in a straight line from their start location to their goal
which was known by the robot a priori.

When the robot has high confidence in its model, the
human’s direct motion towards the goal appears highly rational
and results in both safe (Fig. 5, top left) and efficient plans
(Fig. 5, bottom left). We see a similar behavior for the
robot that adapts its confidence: although initially the robot
is uncertain about how well the human’s motion matches
its model, the direct behavior of the human leads to the
robot to believe that it has high model confidence. Thus, the
β inference robot produces overall safe and efficient plans.
Although we expect that the low-confidence model would lead
to less efficient plans but comparably safe plans, we see that
the low-confidence robot performs comparably in terms of
both safety and efficiency.

Ultimately, this example demonstrates that when the robot’s
model is rich enough to capture the environment and behavior
of the human, inferring model confidence does not hinder the
robot from producing safe and efficient plans.

Unmodeled Obstacle. Often, robots do not have fully
specified models of the environment. In this scenario, the
human has the same start and goal as in the complete model
case except that there is a coffee spill in her path. This coffee
spill on the ground is unmodeled by the robot, making the
human’s motion appear less rational.

When the human is navigating around the unmodeled coffee
spill, the robot that continuously updates its model confi-
dence and replans with the updated predictions almost always
maintains a safe distance (Fig. 5, top right). In comparison,
the fixed-β models that have either high-confidence or low-
confidence approach the human more closely. This increase
in the minimum distance between the human and the robot
during execution time indicates that continuous β inference
can lead to safer robot plans.

For the efficiency metric, a robot that uses β inference is
able to get to the goal faster than a robot that assumes a high
or a low confidence in its human model (Fig. 5, bottom right).
This is particularly interesting as overall we see that enabling

6The upper and lower bounds of the box in each boxplot are the 75th and
25th percentiles. The horizontal red line is the median, and the notches show
the bootstrapped 95% confidence interval for the population mean.

https://youtu.be/2ZRGxWknENg


Fig. 5: Safety and efficiency metrics in a complete environment and one with an unmodeled obstacle.

the robot to reason about its model confidence can lead to
safer and more efficient plans.

Unmodeled Goal. In most realistic human-robot encoun-
ters, even if the robot does have an accurate environment
map and observes all obstacles, it is unlikely for it to be
aware of all human goals. We test our approach’s resilience to
unknown human goals by constructing a scenario in which the
human moves between both known and unknown goals. The
human first moves to two known goal positions, then back to
the start. The first two legs of this trajectory are consistent
with the robot’s model of goal-oriented motion. However,
when the human returns to the start, she appears irrational
to the robot. Fig. 6 and 7 summarize the performance of

Fig. 6: Safety results for the unmodeled goal scenario.

the inferred-β, high-confidence, and low-confidence methods
in this scenario. All three methods perform similarly with
respect to the minimum distance safety metric in Fig. 6.
However, Fig. 7 suggests that the inferred-β method is several
seconds faster than both fixed-β approaches. This indicates
that, without sacrificing safety, our inferred-β approach allows
the safe motion planner to find more efficient robot trajectories.

VII. DISCUSSION & CONCLUSION

In this paper, we interpret the “rationality” coefficient in
the human decision modeling literature as an indicator of

Fig. 7: Efficiency results for the unmodeled goal scenario.

the robot’s confidence in its ability to predict human motion.
We formulate this confidence β as a hidden state that the
robot can infer by contrasting observed human motion with
its predictive model. Marginalizing over this hidden state, the
robot can quickly adapt its forecasts to effectively reflect the
predictability of the human’s motion in real time. We build
on the theoretical analysis of the provably safe FaSTrack
motion planning scheme to construct a novel probabilistic
safety certificate that combines worst-case and probabilistic
analysis, and show that the resulting trajectories are collision-
free at run-time with high probability.

We compare our β inference technique to two fixed-β ap-
proaches, all using our proposed probabilistically safe motion
planning scheme. Our results indicate that, even though the
three methods perform similarly when the human’s motion
is well-explained by the robot’s model, inferring β yields
safer and more efficient robot trajectories in environments with
unmodeled obstacles or unmodeled human goals. Future work
should investigate more complex human motion, closed-loop
interaction models, and navigati around multiple humans.
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