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Abstract—This work explores the problem of robot tool con-
struction - creating tools from parts available in the environment.
We advance the state-of-the-art in robotic tool construction by
introducing an approach that enables the robot to construct
a wider range of tools with greater computational efficiency.
Specifically, given an action that the robot wishes to accomplish
and a set of building parts available to the robot, our approach
reasons about the shape of the parts and potential ways of
attaching them, generating a ranking of part combinations that
the robot then uses to construct and test the target tool. We
validate our approach on the construction of five tools using a
physical 7-DOF robot arm.

I. INTRODUCTION

Tools are defined as objects that extend the physical influ-
ence of an agent [15]. Among biological sciences, tool creation
has been extensively studied in communities of prehistoric
humans [26, 25], mammals [7, 28], and birds [6, 15] in order
to explore the emergence of more sophisticated levels of intel-
ligence. In robotics, several recent works have explored theo-
retical frameworks for tool creation [21, 8], 3D tool modeling
representations [30, 3, 1], as well as techniques for physical
construction of tools and simple machines [10, 24, 16, 19].

In this work, we advance the state-of-the-art in robotic tool
construction by introducing an approach that enables the robot
to construct a wider range of tools with greater computational
efficiency. Specifically, given an action that the robot wishes to
accomplish (e.g., scoop) and a set of building parts available
to the robot, our approach reasons about the shape of the parts
and potential ways of attaching them, generating a ranking of
part combinations that the robot then uses to construct and test
the target tool (See Fig. 1).

Our work makes the following contributions:

1. We introduce two previously unexplored techniques for at-
taching objects for tool creation: pierce attachment (pierc-
ing one object with another, e.g., foam pierced with a
screwdriver) and grasp attachment (grasping one object
with another, e.g., a coin grasped with pliers). For both
attachment types we demonstrate fully autonomous tech-
niques for predicting the attachment. Our work on pierce
attachments is particularly novel in its use of spectrometer
data, and to our knowledge this is the first use of spectral
data for reasoning about material pierceability.

2. We experimentally evaluate three previously proposed tool
shape representations for their potential use in the context
of tool construction, and report their relative strengths.
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Fig. 1: Tool construction overview: given a reference action
and available parts, our approach ranks part combinations that
are likely to achieve the reference action. Ranked parts are
combined by the robot until a successful tool is constructed.

3. We introduce a novel tool construction reasoning approach
that leverages the attachment predictions and shape rea-
soning techniques described above, in order to effectively
rank groups of objects that are likely to result in a tool that
accomplishes the required action. The resulting ranking is
then used by a physical robot to construct tools.

We validate our approach on a 7-DOF robotic arm. In
our experiments, we demonstrate the algorithm’s ability to
reason about a wide range of objects through autonomous
construction of five versions of five different tools.

II. RELATED WORK

In this section, we summarize prior work on robotic tool-
making, 3D tool representations, and spectral sensing.

A. Robot tool making

In prior work on tool making, Sarathy and Scheutz [21] pro-
posed a theoretical formulation of tool creation in a classical
planning framework. Erdogan and Stilman [10], introduced
techniques for reasoning about construction of functional
structures for navigation. Further work explored the use of
environmental objects as simple machines, e.g., levers and
bridges [24, 16]. Wicaksono et al. [29], focused on creation
of novel tools using 3D printing. More recently, Choi et al.
[8] extended the cognitive architecture ICARUS to support the
creation and use of tools in abstract planning scenarios. Our
work differs from these approaches in that we reason about
visual, material properties of objects and present our approach
on a physical robot. Our prior work introduced a computational
framework for tool construction from environmental objects
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Fig. 2: Overview of our framework highlighting the four key steps involved: segmentation, shape scoring, attachment scoring,
and tool validation. Solid lines denote the path taken for the example shown, dashed lines represent alternate paths.

[19], reasoning about one attachment type, namely, magnetic
attachments, to output tool constructions that were optimized
to match an input example tool. However, the approach
required significant parameter tuning and did not scale with
number of building parts. In contrast, our work in this paper
takes a target action as input, and reasons about multiple
attachment types to construct a broader range of tools. We
further improve on our previous approach, making it more
computationally efficient and eliminating the need to fine tune
parameters.

B. Tool representations

Existing work in robot tool use has introduced several
descriptors for representing 3D tool models generated from
point cloud data [30, 3, 1]. Descriptors are n-dimensional
vectors of real values describing the shape of point clouds. The
most widely used of these include non-parametric descriptors,
Ensemble of Shape Function (ESF) [30] and Signature of
Histogram of Orientations at Centroid (SHOTC) [3, 22]. ESF
is a shape descriptor consisting of 10, 64-bin sized histograms
describing the shape properties of a point cloud. SHOTC is a
descriptor computed at the centroid of the point cloud for a
radius equal to its max dimension [22]. Prior work by [22] has
explored the use of ESF and SHOTC for affordance learning
of objects on a per-part basis using supervised classification.
Further, prior work has also explored the use of Superquadrics
as a parametric tool representation [1, 19]. Superquadrics
(SQs) refer to the family of geometric shapes that includes
quadrics, but allows for arbitrary powers instead of just power
of two [4].

The relative advantages of the above descriptors are un-
known in the context of reasoning about tool construction. As
a result, in this work, we compare the performances of ESF,
SHOTC and SQ in tool construction.

C. Material Recognition

While there has not been prior work exploring material
pierceability, the closest approaches are related to mate-

rial recognition. Several vision-based approaches to material
recognition have been previously explored [23, 14, 5]. These
approaches are sensitive to lighting conditions and viewing
angle. Additionally, objects can be deceptive in appearance,
resulting in misidentification, e.g., a foam block with wooden
texture would be wrongly detected as wood. However, prior
work in the use of spectral reasoning for determining ma-
terial class of objects has shown highly promising results
[11] with an overall material class recognition accuracy of
94.6%. Hence, in this work, we use spectral readings obtained
from a handheld spectrometer, to reason about materials and
determine whether an object can be pierced. To the best of
our knowledge, this is the first work to reason about material
pierceability from spectral readings with application to tool
construction.

III. OVERVIEW OF TOOL CONSTRUCTION FRAMEWORK

In this section, we introduce our computational framework
for tool construction from candidate objects. Fig. 2 presents
an overview of our framework, which supports the creation of
tools given either a 3D model of a reference tool (similar to
[19]) or a reference action. As described below, our contribu-
tion focuses on tool construction based on reference actions,
and we formulate our tool construction problem as follows:

“Given a reference action, and a set C' of n candidate parts,
how can the robot reason about the shape and attachment
capabilities of the available parts in order to construct a tool
for accomplishing the specified action?”

We define attachment points as locations at which objects can
be attached together. In this work, we focus specifically on
three different attachment capabilities, the “magnetic” attach-
ment from [19], and the “grasp” and “pierce” attachments
novel to this work.

Assuming we are given n candidate parts for tool construc-
tion, and wish to construct a tool with m parts, we are faced
with a combinatorial search space of size " P,,. In this work,
we introduce a learning-based framework for tool construction



that is computationally scalable as number of parts increases.
Our approach involves four key steps as shown in Fig 2:

1. Workspace Segmentation: Our pipeline begins with seg-
mentation and post-processing, which enables the system
to identify the candidate parts in the robot’s workspace. We
use plane subtraction and Sample Consensus Segmentation
(SAC)! to identify the candidate parts available to the
robot using RGB-D data from a camera mounted over
the table. We denote the resulting candidate parts as
C ={c1,ca, .. cn}

2. Shape Scoring: The shape scoring algorithm, evaluates the
shape appropriateness of the candidate parts. As shown in
the diagram, there are two classes of approaches for shape
scoring: parametric (Fig 2, 2a) and non-parametric (Fig
2, 2b). Parametric shape scoring takes a reference tool as
input and uses SQ parameters to find part combinations
that optimally match the input reference tool point cloud
[19]. In contrast, non-parametric shape scoring uses ESF or
SHOTC to find parts that are well suited for performing
an input target action. Our contribution focuses on non-
parametric shape scoring that takes a reference action as
input (section IV-B). Given a list of tuples T' consisting
of all possible candidate configurations generated through
the permutation " P, of candidate parts in C, both shape
scoring methods output a shape score indicating the shape
fitness of the parts in each tuple.

3. Attachment Scoring: Given the tuple ranking from the
previous step, our attachment scoring algorithm (section
V), evaluates whether the candidate parts can be attached
via pierce, grasp or magnetic attachments. Specifically, the
algorithm outputs an attachment score, which, combined
with the shape score, is used to generate a final ranking of
part combinations indicating the best part configurations
for the tool construction.

4. Tool Validation: Given the final ranking of parts, the
robot constructs the tools by joining the parts specified by
the best-rated configuration using the output attachment
points and attachment type. The robot then evaluates the
constructed tool for its task suitability by applying the
reference action on the tool. In this work, we assume
that the robot can observe whether the tool succeeded and
that the action trajectory is pre-specified. Alternatively, the
action trajectory could be learned from demonstration [20],
including, if necessary, adapting the original action to fit
the dimensions of the new tool [12, 13]. If tool construction
fails or the tool fails at performing the reference action, the
robot continues to iterate through the ranked list of tuples
until a successful tool is found.

In the following sections, we discuss the shape scoring and
attachment scoring modules, highlighting our contributions
with respect to non-parametric shape scoring and attachment
scoring in detail. The notations used in the following sections
are shown in Table I.

The implementation was provided by the PCL library

TERM  DESCRIPTION FUNCTION DESCRIPTION
¢ | candidate parts AttachmentFit() -Computes attachment |
Cy-..Cp score (Sec V)
n | Num of Shapefrit() Computes shape
candidate parts score (Sec IV-B)
m | Num of partsin Align() Aligns parts for

constructed tool
T | "PyofpartsinC

computing P (Sec V)

Computelntersection() Computes P (Sec V)

Intersection ClosestAttachment() Returns closest
point of parts attachments to P
A Attachment GraspSample() Samples tool grasps
points (Sec vV-B)

TABLE I: Notation for terms and functions used in the paper

IV. SHAPE SCORING FOR TOOL CONSTRUCTION

There are two classes of approaches for shape scoring of
parts: parametric (e.g., SQ) and non-parametric (e.g., ESF,
SHOTC). Our core contribution in this paper concerns non-
parametric shape scoring using ESF and SHOTC. In this
section, we first discuss our prior work that used parametric
shape scoring using SQs [19], and then further detail our
current approach for non-parametric shape scoring.

A. Parametric shape scoring using SQ

Our prior work [19] takes as input a “reference tool” point
cloud that the algorithm seeks to construct using the candidate
parts. Thus, the output tool tries to match the shape of a
specific input reference tool as closely as possible. SQs are
used to represent the reference tool and candidate parts. SQs
are represented by 13 parameters: 3 for scale in each dimen-
sion, 2 for shape variance, 3 for Euler angles, 2 for tapering
parameters and 3 for the central point/mean. To find the best-
fit SQ parameters, the authors perform non-linear optimization
individually for each candidate object and reference tool part.
The shape score is computed as the L1 norm between the SQ
parameters of the candidate objects and the SQ parameters of
the reference tool parts. The non-linear optimization required
by this approach does not computationally scale as number of
parts increases. Further, weights indicating relative importance
of the different SQ parameters, need to be manually tuned to
achieve desirable performance.

B. Non-parametric shape scoring using ESF and SHOTC

This section highlights one of the core contributions of
this paper. Our current approach, takes as input a “reference
action” as opposed to a reference tool point cloud, allowing a
broader range of tools to be constructed without conforming
to the shape specifications of a particular reference tool. Our
algorithm seeks to accomplish a target action as opposed to
match a reference tool. Additionally, in the evaluation, we
compare shape scoring performances of ESF and SHOTC
to SQs, and highlight the scalability and parameter tuning
challenges associated with the parametric approach.

Given a reference action as input, the shape scoring module
seeks to predict the shape fitness of the parts and output
a score. We consider tools to have action parts and grasp



parts> and begin by training independent neural networks
corresponding to specific reference actions. In this work, we
utilize five different reference actions: “Hit”, “Contain/Scoop”,
“Screw”, “Flip” and “Squeegee”. Additionally, we consider
a supporting function: “Handle”, which refers to the tools’
grasp part. Thus, the first five correspond to the action parts
of the tool which is combined with “handle” or grasp part
for constructing the final tool. Each neural network takes as
input the shape descriptor for a part (ESF or SHOTC) and
outputs a binary label indicating whether the part is suitable for
the function. The NN architectures used for ESF and SHOTC
both consist of a single hidden layer, with 426 and 235 units
respectively. We use ReLU activation, sigmoid in the final
layer, and Stochastic Gradient Descent for training. Note that,
ESF is a 640-D vector and SHOTC is a 352-D vector.

For training each action network, we generated a dataset
consisting of 3D point clouds from the ToolWeb dataset [1]
and other online sources®. The models were segmented* into
their action and grasp parts — e.g., a hammer from the dataset is
segmented to its hammer head (action part) and handle (grasp
part) — and each part was added to the dataset of its respective
type. This process resulted in six datasets corresponding to
the five action types and the ‘handle’ set, with roughly 32
models per class, for a total of 196 point clouds. For each point
cloud, we extract ESF and SHOTC features and train each
neural network. The point clouds belonging to the particular
class/function are treated as positive examples and point clouds
from other classes are used as negative examples during
training (corresponding 10-fold cross validation accuracies
shown in Table II). For new actions, additional networks can
be trained independently without affecting other networks.

To calculate a shape fit score, the scoring function
ShapeFit() is provided with the reference action and a tuple
of candidate parts 7;. Ordering of parts within the tuple
indicates correspondence to action or grasp parts. Let K denote
the set of parts in 7; that are candidates for the action parts
of the final tool, and let 7; — KC be the set of candidate grasp
parts. Then the shape score e”’ is computed by ShapeF'it()

. . ” shape
(Line 4) using the trained networks as:

el apelaction) = [ plaction|Ti;) [ p(handlel|T;)
jeK jETng:

where, p is the prediction confidence of the corresponding
network. Thus, we combine prediction confidences for all
action parts and grasp parts. For example, if the specified
action is ‘hit’ and T; consists of two objects (¢1,t2), then
eST;'mpe = p(hit|t1) * p(handle|tz). In the following section,
we describe the computation of attachment score.

V. ATTACHMENTS SCORING FOR TOOL CONSTRUCTION

The shape score discussed above indicates visual appropri-
ateness of parts, but does not indicate whether the parts can
be attached. To evaluate whether the parts can be attached

2This covers the vast majority of tools [18, 2]
3We used 3dWarehouse and tf3dm
4 Approach used https://github.com/pauloabelha/batch_segmentation

ACTION ESF SHOTC
Hit 95% 80.5%
Screw 95% 53.3%
Flip 97.5% 69.1%
Squeegee 70.% 95%
Contain 92.4% 93%
Handle 90.6% 83.3%

TABLE II: Cross-validation accuracies for ESF and SHOTC

Algorithm 1: Attachment Fit (Sec V)

input : candidate tool parts 7;, attachment type t,q
T;
output: e_;,, Aclosest

1 egzt =0, Aclosest = H

2 T! = Align(T;)

P = Computelntersections(T})

// Compute A based on attachment type
4 if ty = ‘pierce’ then

5 if isPierceable(T;) then
6 | A=P
7
8
9

w

else
| A=o

end
10 else if t,;; = ‘grasp’ then
u | A= GraspSample(T;)
12 else if t,;; = ‘magnetic’ then
13 | A=userInput(T;) // Predefined locs
14 else
15 | A=o
16 end
17 if A # @ then

18 foreach ¢, € T],s; € t; do

19 a = Closest Attachments(P, sj, A)

20 el L||P,al| // Euclidean dist to P
21 Aclosest-append(a)

22 end

23 else

24 el = o

25 return efg’t, P

26 end

27 v = —max(eqt(T;)) // normalizer

T;
28 return e, /7, Aciosest

appropriately to accomplish the specified reference action,
we compute an attachment score. The attachment scoring
algorithm is shown in Algorithm 1 (AttachmentF'it()). At-
tachment scoring begins by aligning the components of the
candidate tool 7; in a configuration consistent with prototyp-
ical tools used for the specified action (Align(), line 2). In
order to retrieve this configuration, we sample one random
tool from the dataset used in Sec IV-A, corresponding to
the specified action. Further, we use Principal Component
Analysis (PCA) to orient the part point clouds in 7; with



respect to the example tool, resulting in a set of alignments
T!. We approximate the intersections of the point clouds in
each alignment by calculating the centroid of closest points
between the point clouds (ComputelIntersection(), line 3).
The resultant set of centroids, P, is the candidate list of
attachments we want to make. Depending on the attachment
type tqi, the set of attachment locations A is computed
(line 4-16). The attachment score eg{it is computed based on
the Euclidean distance between points in P and the closest
attachment points in A, on each part s;, in each alignment
t; € T! (ClosestAttachment(), lines 18-22). The resulting
score, eq4t, is normalized (by «) (Line 27, Alg 1). The negative
normalizer ranks lower e, as better. If a part in t; € T; is
known to have no attachment points, efg’t = o0.

The set of attachment points A is required to compute e,¢+.
Hence, we first identify the attachment points by considering
three different types of attachments in order of reducing
complexity: ‘pierce’, ‘grasp’ and ‘magnetic’ attachments. In
the case of pierce and grasp attachments, we assume that
the capabilities of the acting tool is known (¢, is known).
That is, objects with pierce capability (screwdrivers and sharp
pointed objects) and objects with grasp capability (pliers and
tongs) are known a-priori, although these can be identified
using existing affordance learning approaches [9]. In the
following subsections, we describe how A is computed for
each attachment type (lines 4-16, Alg 1).

A. Pierce Attachment

For determining pierceability, we use the SCiO which is a
hand-held spectrometer (shown in Fig 4). The SCiO senses ob-
ject material properties, returning a 331-D real-valued vector;
in prior work the SCiO was shown to achieve 94.6% accuracy
on material recognition tasks[11]. To predict pierceability,
given a dataset of SCiO measurements from an assortment of
objects, we train a model to output a binary label indicating
material pierceability. We assume homogeneity of materials
for pierceability prediction.

For our model, we use a neural network with a single
hidden layer of 256 units and binary output layer. We used the
Adam optimizer with ReLU activation layer, and a sigmoid
in the final layer. To train our model, we used an existing
dataset’, SMM50, with spectrometer readings for 4 classes
of materials: plastic, wood, metal and foam. For each material
class, 12 different objects were used with 50 samples collected
per object from different locations of the object. This results
in a total of 600 spectrometer readings per class. For each,
we provide the pierceability labels. In our case, only 150/600
spectral readings correspond to pierceable objects. Our model
yields an accuracy of 98% with leave-one-out cross validation
on the SMMS50 dataset.

To determine the attachment score during tool construction
for the input 77, the SCiO sensor is used to scan the objects and
the corresponding spectral reading is passed to the classifier.
If the output label is zero (line 5, isPierceable(T;) = 0),

SDataset available at https:/github.com/Healthcare-Robotics/smm350

A = o since pierce attachment is not possible. If pierceable,
A = P, assuming homogeneity of material properties allowing
the objects to be configured at the desired location. A is then
used to compute e, based on Euclidean proximity to P.

B. Grasp Attachment

Grasp attachment is defined as using one object to
grasp/hold another object to extend the robot’s reach (e.g.,
grasping a bowl with pliers). We model the grasping tool
(pliers or tongs) as an extended robot gripper, allowing the
use of existing robot grasp sampling approaches [27, 17, 31]
for computing locations where the tool can grasp objects. In
particular, we use the approach discussed in [27] that outputs
a set of grasp locations, given the input parameters reflecting
the attributes of the pliers/tongs used for grasping. We cluster
the grasp locations (using Euclidean metric) to identify unique
grasps. As described in [27], without any additional training,
the geometry-based grasp sampling approach achieves an ac-
curacy of 73%. To further improve the accuracy, it is possible
to train an object-specific model to identify valid grasps. A
key challenge with using a pre-trained model is the need to re-
train it for every newly encountered pliers/tongs with differing
parameters. This can be inefficient in terms of computational
time and resources. Hence, we use the geometry-based grasp
sampling without any object-specific refinement.

To determine the attachment score during tool construction
for the input T;, grasps are sampled for the objects (Line
11, GraspSample(T;)) using the existing grasp sampling
algorithm®. Once sampled, the resultant grasps are returned as
potential attachment locations A. A is then used to compute
eqt+ based on Euclidean proximity to P.

C. Magnetic Attachment

We assume the locations of magnets to be provided or
predefined, and simply compute the e, score based on the
Euclidean proximity of user input attachment locations (Line
13, userInput(T;)) to P. However, as described in [19], it is
also possible to perform magnetic attachments via exploration
if they are not predefined.

VI. PARTS RANKING COMPUTATION

Given the shape score from Section IV, and the attachment
score from Section V, we compute the aggregate final score as
a sum of eST;'wpe and the normalized e_},. The list of candidate
part configurations are then sorted by their associated com-
bined scores, from highest to lowest. The resultant ranking is

then used by the robot to construct the final tool.

VII. EXPERIMENTAL VALIDATION AND RESULTS

In this section, we describe our experimental setup and
present our results alongside each evaluation. We validate
our approach on the construction of tools for the five differ-
ent actions, encoded as textual inputs: ‘hit’, ‘scoop/contain’,
‘flip’, ‘screw’ and ‘squeegee’. Each tool consists of two
components (m = 2) corresponding to the action part (‘hit’,

SImplementation at https:/github.com/atenpas/gpg based on [27]



Fig. 3: The 30 objects used for experimental validation.

‘scoop/contain’, ‘flip’, ‘screw’, ‘squeegee’) and grasp part
(‘handle’). The performance of the algorithm is evaluated for
each tool in terms of the final ranking output by our algorithm.
The tool models used to compute the desired attachment
location P, is acquired from the ToolWeb dataset [2]. Our
experiments seek to validate three key aspects of our approach:

1) Attachment scoring evaluation: Performance of the dif-
ferent attachment predictors, namely, pierce and grasp
predictors;

2) Comparison of parametric and non-parametric shape
scoring: Performance of ESF, SHOTC and SQ repre-
sentation of tools for shape scoring;

3) Final tool ranking evaluation: Performance of the over-
all pipeline in terms of final tool ranking for the five
actions described above. We evaluate this for three
cases: Considering only shape scoring, only attachment
scoring, combined shape and attachment scoring.

For all our following experiments, we use a test set consist-
ing of 30 previously unseen candidate parts for tool construc-
tion (shown in Fig 3). These objects consist of metal (8/30),
wood (8/30), plastic (9/30) and foam (5/30) objects. Only 4
of the 5 foam objects are pierceable, while the remaining 26
objects are non-pierceable. Fig 4 shows a sample experimental
setup and steps involved in the robot tool construction. During
tool construction, the robot begins by sensing the material
properties of the objects and combines the attachment score
and shape score for a final ranking of parts’. To overcome
manipulation and perception challenges that are beyond the
scope of this work, the available parts were spaced apart and
oriented to facilitate grasping.

A. Attachment Scoring

In this section, we evaluate the performance of the pierce-
ability and grasp sampling prediction. For this evaluation, each
attachment predictor is tested on the full set of 30 objects and
we report the accuracy indicating the number of objects for
which the pierceability or graspability is correctly identified.

The results for the 30 test objects are shown in Fig 5a.
Non-pierceable objects are classified correctly in 88% of the
cases, and a 100% of all the pierce-able objects are correctly
categorized as pierceable, resulting in an overall accuracy of
90% on the test set for pierceability prediction.

7See attached supplementary video for demonstrations of our approach on
the robot

For grasp attachment, the results are shown in Fig 5b,
with an overall accuracy of 67% on the test of 30 objects.
There are several false positives which potentially affects
the ranking of the correct combinations. However, during
the tool construction phase, the false positives are eliminated
when the robot attempts the actual construction (see video
for example), albeit resulting in a greater number of tool
construction attempts on the robot. In future, grasp prediction
could be improved if needed by using a model pre-trained on
the candidate objects [27].

B. Parametric and non-parametric shape scoring

In this section, we compare the performance of the para-
metric and non-parametric shape scoring approaches. We use
five different sets of four objects (chosen from the 30) for
each of the five tools, and report the average results (total
5 X 5 cases with four candidate objects per case). In each
set, we include at least one “correct” combination of objects
and the remainder of the objects are chosen randomly. The
correct combination is determined based on human assessment
of the parts. We rank the parts using only the non-parametric
(ESF/SHOTC using reference action) or parametric (SQ using
reference tool) shape scoring, without attachment scoring.

The metrics used in this evaluation are i) the final ranking
of the correct combinations, and ii) the computation time. We
would like the correct combination to be ranked as high as
possible, ideally ranked at 1, indicating that it would be the
first part combination the robot will attempt to construct. We
report the average rank of the correct combination for each
tool (average of 5 builds), the number of builds for which
the correct combination was ranked within the top 5 ranks
(hits@5), the average number of possible configurations of
parts, and the average total computation time. The number
of part configurations highlight the complexity of the state
space and is also used to compute the percentage of total part
combinations explored.

The results are shown in Table III. As can be seen by
the average rank and hits@5 metrics, SQ and ESF perform
somewhat better than SHOTC, although no method dominates
all others. However, ESF has significantly better run time
performance compared to SQ (average 0.178 seconds for
ESF compared to 12.96 seconds for SQ). Hence, the learning
framework is more scalable as the number of parts increase,
mitigating the impact of a combinatorial search space. Overall,
since ESF outranks SQ and SHOTC on three out of five tools,
and is computationally significantly faster, we use only ESF
in our final evaluation in the following section.

C. Final Tool Ranking

In this section, we evaluate our overall tool construction
pipeline, combining both shape and attachment reasoning. We
use the same sets of objects and evaluation metrics as used
in the previous section, again with five builds per reference
action. We compare the performance of four part ranking
approaches: using only shape scoring with ESF (Shape), using
only attachment scoring (Att), using combined attachment and
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Sense and/or
grasp sampling

Fig. 4: Image showing robot setup and steps involved in a typical tool construction cycle. In the case of pierce attachment,
the robot uses the SCiO sensor to sense material properties and in case of grasp attachment, the robot samples valid grasps
for the object. The robot then builds the tool and tests it by performing the reference action with the tool.

B / /. / / >
REFERENCE ACTION HIT SCOOP/CONTAIN FLIP SCREW SQUEEGEE
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TIME (seconds)

TABLE III: Performance of SQ, ESF and SHOTC (only shape scoring is used) averaged across the five builds for each of the
five tools. The shown reference tools are used for SQ computations and reference actions for ESF and SHOTC; purple denotes
the action part and green denotes handle. Shown in bold are the best performing representations for each action.
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Fig. 5: Confusion matrixes for (a) pierceability prediction
(90% accuracy), and (b) grasp prediction (67% accuracy), over
the set of 30 objects.

shape scoring (Shape + Att), and using random ranking as a
baseline (Rnd) to highlight the problem complexity.

The results of the evaluation are shown in Table IV and the
corresponding tool constructions are shown in Table V. The
random baseline achieves an average rank of 12, resulting in
trials of 56% of candidate part pairs, on average, before finding
a working tool solution. Only 24% of builds are completed in
fewer than five tries (hits@5 metric).

In the ESF-only (Shape) condition, the algorithm achieves
an average ranking of 4, and in 80% of trials the correct
combination is ranked in the top five (hits@5). On average,

only 19% of all the part combinations are explored. These
results demonstrate that shape information, even if used alone,
is a useful metric for pruning the search space of potential part
combinations.

In the attachment-only (Att) condition, the algorithm also
receives an average ranking of 4, and in 92% of trials the
correct tool combination is ranked in the top five (hits@5).
On average, 18% of the total part combinations are explored.
These results show that predicting which parts could be con-
nected together, even without reasoning about the suitability of
their shape, again leads to improved performance in the search
for the correct part combination, especially in the number
of cases the correct parts are ranked in the top five. In the
combined shape and attachment (Shape + Att) condition, the
algorithm achieves an average ranking of 2. In 100% of cases,
the correct part combination is ranked in the top five (hits@5).
On average, only 10.4% of the total space of part combinations
is explored. These results highlight the complimentary nature
of the shape and attachment metrics, and their effectiveness in
consistently predicting the correct part combination.

D. Key findings

In this section, we highlight several important findings.
First, the final approach was efficient in that, the robot
explored only a small percentage of possible part combinations



REF. ACTION HIT SCOOP/CONTAlN FLIP SCREW SQUEEGEE
SCORING VShaper Att VShaper Rnd | Shape | Att VShaper Rnd Shaper Att VShaper Rnd Shaper Att VSha,oer Rnd Shaper Att Shaper Rnd
STRATEGY (ESF) + At (ESF) + At (ESF) + Atr (FSF) + At (ESE) + Atr

AVERAGERANK 3 3 2 11| 4 3 | 2 9|2 4 1 19|66 6 4 105 3 2 12
HITS@S  5/5 5/5 5/5 1/5|4/5 4/5 S/5 2/5|5/5 5/5 5/5 0/5|3/5 45 5/5 3/5|3/5 5/5 5/5 0f5
PROPORTION OF | 0.17 017 0.12 065| 02 |0.15| 0.1 045|007 013 0.03 063|024 024 016 04|027 02011 067

SPACE EXPLORED

" AVG. NUMBER OF |
POSSIBLE CONFIGS

20

17

EXAMPLE TOOL
CONSTRUCTED
WITH PARTS AND
ATTACHMENT

TYPE USED
Grasp attachment:

Red bowl and tongs

Magnetic attachment: two
wooden pieces

Grasp attachment: Flat
piece and tongs

18

25

/

Grasp attachment: Coin and
tongs

30

Pierce attachment: Foam
block and screwdriver

TABLE IV: Performance of the Shape, Att, Shape+Att, and Rnd conditions for each of the five target actions, averaged over
five builds. Shown in bold is the best performing strategy. One example built tool is shown for each action.

(average 10.4%), on average requiring only fwo construc-
tion attempts per tool. The computational time of the shape
modeling component was only 0.178 seconds, indicating that
this technique will scale well to larger domains. Second,
we found that spectrometer readings were very effective
in predicting the pierceability of objects, yielding an overall
accuracy of 90%. In future work, we hope to explore other
uses of spectrometer data in the tool building context. Third,
we found that shape reasoning with ESF outperformed SQ
and SHOTC in terms of average ranking and computation
time. Fourth, either shape or attachment reasoning alone al-
ready provided significant guidance in tool creation. However,
combined shape and attachment reasoning led to the most
efficient performance. To the best of our knowledge, this is the
first work to demonstrate physical tool construction utilizing
multiple attachment types.

VIII. CONCLUSION AND FUTURE WORK

In this work, we have contributed a novel reasoning frame-
work for tool construction based on shape and attachment
reasoning, which we have demonstrated on the construction
of tools for five reference actions. Additionally, we compared
the performance of ESF, SHOTC and SQ shape scoring, and
presented an approach to determine material pierceability from
spectroscopy. In contrast to our prior work on tool construction
[19], our improved approach uses a target action and richer
attachment modalities to reason about and construct a broad
range of tools. In all cases, the approach efficiently discovered
working combinations, exploring only a small percentage of
all possible part combinations.

In future work, a number of changes can be made to further
improve the performance of the system. For example, we
observed cases in which shape scoring produced incorrect
ranking because the RGBD sensor captured only a partial point
cloud of an object. In the video, this can be seen during the
construction of a scoop, when the robot incorrectly chooses
a green foam cylinder (which is not a concave object), as

SQUEEGEE

TABLE V: Table showing each of the tools constructed for the
five reference actions. Note that a small number of experiments
led to the creation of similar tools due to the availability of
parts that could be connected.

opposed to a red bowl since the RGBD sensor only receives a
partial view of the green foam. Future work can address such
problems through active perception. Additionally, our future
work will address a key limitation of our current approach
that the number of parts utilized for constructing a tool equals
number of tool parts i.e, there is a one-to-one correspondence
between candidate parts and tool parts. Finally, additional ma-
terial properties, such as mass and density, can be incorporated
into the reasoning framework to further improve performance.
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