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Abstract—We introduce BayesSim 1, a framework for robotics
simulations allowing a full Bayesian treatment for the parameters
of the simulator. As simulators become more sophisticated and
able to represent the dynamics more accurately, fundamental
problems in robotics such as motion planning and perception can
be solved in simulation and solutions transferred to the physical
robot. However, even the most complex simulator might still not
be able to represent reality in all its details either due to inac-
curate parametrization or simplistic assumptions in the dynamic
models. BayesSim provides a principled framework to reason
about the uncertainty of simulation parameters. Given a black
box simulator (or generative model) that outputs trajectories of
state and action pairs from unknown simulation parameters,
followed by trajectories obtained with a physical robot, we
develop a likelihood-free inference method that computes the
posterior distribution of simulation parameters. This posterior
can then be used in problems where Sim2Real is critical, for
example in policy search. We compare the performance of
BayesSim in obtaining accurate posteriors in a number of classi-
cal control and robotics problems. Results show that the posterior
computed from BayesSim can be used for domain randomization
outperforming alternative methods that randomize based on
uniform priors.

I. INTRODUCTION

Simulators are emerging as one of the most important tools
for efficient learning in robotics. With physically accurate
and photo-realistic simulation, perception models and control
policies can be trained more easily before being transferred
to real robots, saving both time and costs of running complex
experiments. Unfortunately, in many cases, models and poli-
cies trained in simulation are not seamlessly transferable to the
real systems. Lack of knowledge about the correct simulation
parameters, oversimplified simulation models, or insufficient
numerical precision for differential equation solvers can all
play a significant role in this problem. To ameliorate this
problem, a popular approach is to sample different simulation
parameters during training and thereby learn models that
are robust to simulation perturbations. This approach, often
referred to as domain randomization (DR), has been shown to
perform surprisingly well in areas such as learning to control
a humanoid robot [23], manipulate table top objects [38],
estimating 6D object poses from images [17], or dexterous
in-hand manipulation [2].

A crucial question regarding domain randomization is which
simulation parameters to randomize over and from which
distributions to sample their values from. Typically, these
parameters and their distributions are determined in a manual

1Code available at https://github.com/rafaelpossas/bayes_sim

process by iteratively testing whether a model learned in
randomized simulation works well on the real system. If the
model does not work on the real robot, the randomization
parameters are changed so that they better cover the conditions
observed in the real world. To overcome this manual tuning
process, [10] recently showed how policy executions on a
real robot can be used to automatically update a Gaussian
distribution over the sampling parameters such that the simu-
lator better matches reality. However, by restricting sampling
distributions to Gaussians, this approach cannot model more
complex uncertainties and dependencies among parameters.
Alternatively, one could perform system identification to better
estimate simulation parameters from the real data. Since most
of these techniques assume that the simulation equations are
known and only provide point estimates for the parameters,
they do not account for the uncertainties associated with
the measurement process, numerical precision of differential
equation solvers, or simplistic models [14].

In this paper we provide a principled Bayesian method to
compute full posteriors over simulator parameters, thereby
overcoming the limitations of previous approaches. Our
technique, called BayesSim, leverages recent advances in
likelihood-free inference for Bayesian analysis to update pos-
teriors over simulation parameters based on small sets of
observations obtained on the real system. The main difficulty
in computing such posteriors relates to the evaluation of the
likelihood function, which models the relationship between
simulation parameters and corresponding system behavior, or
observations in the real world. While a simulator implicitly
defines this relationship, the likelihood function requires the
inverse of the simulator model, i.e., how observed system
behavior can be used to derive corresponding simulation
parameters. Importantly, BayesSim does not assume access
to the internal differential equations underlying the simulator
and treats the simulator as a black box.

We make the following contributions: First, we introduce
BayesSim as a generic framework for probabilistic inference
with robotics simulators and show that it can provide a full
space of simulation parameters that best fit observed data. This
is in contrast to traditional system identification methods that
only provide the best fitting solution. Second, we propose a
novel mixture density random Fourier network to approximate
the conditional distribution p(θ|xr) directly by learning from
pairs {θi,xsi}Ni=1 generated from the proposal prior and the
simulator. Finally, we show that learning policies with domain
randomization where the simulator parameters are randomized



according to the posterior provided by BayesSim generates
policies that are significantly more robust and easier to train
than randomization directly from the prior.

II. RELATED WORK

Simulators accelerate machine learning impact by allowing
faster, highly-scalable and low cost data collection. Many
other scientific domains such as economics [15], evolutionary
biology [4] and cosmology [29] also rely on simulator-based
modelling to provide further advancements in research. In
robotics, "reality gap" is not only seen in control, robotics
vision is also affected by this problem [38]. Algorithms trained
on images from a simulation can frequently fail on different
environments as the appearance of the world can differ greatly
from one system to the other.

Randomizing the dynamics of a simulator while training a
control policy has proven to mitigate the reality gap prob-
lem [25]. Simulation parameters could vary from physical
settings like damping, friction and object masses [25] to
visual parameters like objects textures, shapes and etc [38].
Another similar approach is that of adding noise to the system
parameters [37] instead of sampling new parameters from a
uniform prior distribution. Perturbation can also be seen on
robot locomotion [22] where planning is done through an
ensemble of perturbed models. Lastly, interleaving policy roll
outs between simulation and reality has also proven to work
well on swing-peg-in-hole and opening a cabinet drawer tasks
[11].

Learning models from simulations of data can leverage
one’s understanding of the physical world potentially helping
to solve the aformentioned problem. Until recently, Approx-
imate Bayesian Computation [4] has been one of the main
methods used to tackle this type of problem. Rejection ABC
[26] is the most basic method where parameter settings are ac-
cepted/rejected if they are within a certain specified range. The
set of accepted parameters approximates the posterior for the
real parameters. Markov Chain Monte Carlo ABC (MCMC-
ABC) [20] improves over its precedent by perturbing accepted
parameters instead of independently proposing new parame-
ters. Lastly, Sequential Monte Carlo ABC (SMC-ABC) [6]
leverages sequential importance sampling to simulate slowly-
change distributions where the last one is an approximation
of the true parameter posterior. In this work, we use a ε-free
approach [24] for likelihood-free inference, where a Mixture
of Density Random Fourier Network estimates the parameters
of the true posterior through a Gaussian mixture.

A wide range of complex robotics control problems have
been recently solved using Deep Reinforcement Learning
(Deep RL) techniques [2, 25, 37]. Classic control problems
like Pendulum, Mountain Car, Acrobot and Cartpole have been
successfully tackled using policy search with algorithms like
Trust Region Policy Optimization (TRPO) [32] and Proxi-
mal Policy Optimization (PPO) [33]. More complex tasks in
robotics such as the ones in manipulation are still difficult to
solve using traditional policy search. Both Push and Slide tasks
(Figure 1) on the fetch robot [8] were only solved recently

using the combination of Deep Deterministic Policy Gradients
(DDPG) [18] and Hindsight Experience Replay (HER) [1].

III. PRELIMINARIES

In this section we provide background on likelihood free
inference and reinforcement learning. As we shall see, policy
search via domain randomization is one of the applications in
which BayesSim proved to be valuable.

A. Likelihood-free inference

BayesSim takes a prior p(θ) over simulation parameters θ,
a black box generative model or simulator xs = g(θ) that
generates simulated observations xs from these parameters,
and observations from the physical world xr to compute the
posterior p(θ|xs,xr). The main difficulty in computing this
posterior relates to the evaluation of the likelihood function
p(x|θ) which is defined implicitly from the simulator [12].
Here we assume that the simulator is a set of dynamical
differential equations associated with a numerical or analyt-
ical solver which are typically intractable and expensive to
evaluate. Furthermore, we do not assume these equations are
known and treat the simulator as a black box. This allows
our method to be utilized with many robotics simulators (even
closed source ones) but requires a method where the likelihood
cannot be evaluated directly but instead only sampled from, by
performing forward simulations. This is referred to in statistics
as likelihood-free inference of which the most popular family
of algorithms to address it are known as approximate Bayesian
computation (ABC) [4, 20, 34].

In ABC, the simulator is used to generate synthetic obser-
vations from samples following the parameters prior. These
samples are accepted when features or sufficient statistics
computed from the synthetic data are similar to those from
real observations obtained from physical experiments. As a
sampling-based technique, ABC can be notoriously slow to
converge, particularly when the dimensionality of the param-
eter space is large. Formally, ABC approximates the posterior
p(θ|x = xr) ∝ p(x = xr|θ)p(θ) using the Bayes’ rule.
However as the likelihood function p(x = xr|θ) is not
available, conventional methods for Bayesian inference cannot
be applied. ABC sidesteps this problem by approximating
p(x = xr|θ) by p(‖ x − xr ‖< ε|θ), where ε is a
small value defining a sphere around real observations xr,
and using Monte Carlo to estimate its value. The quality
of the approximation increases as ε decreases however, the
computational cost can become prohibitive as most simulations
will not fall within the acceptable region.

B. Reinforcement learning and policy search in robotics

We consider the default RL scenario where an agent in-
teracts in discrete timesteps with an environment E. At each
step t the agent receives an observation ot, takes an action at
and receives a real number reward rt. In general, actions in
robotics are real valued at ∈ RD and environments are usually
partially observed so that the entire history of observation,
action pairs η = {st,at,ot}T−1t=0 . The goal is to maximize



the expected sum of discounted future rewards by following a
policy π(at|st;β), parametrized by β,

J(β) = Eη

[
T−1∑
t=0

γ(t)r(st,at)|β

]
. (1)

Many approaches in reinforcement learning make use of the
recursive relationship known as the Bellman equation where
Qπ is the action-value function describing the expected return
after taking an action at, in state st and thereafter following
policy π.

Qπ(st,at) = Ert,st+1 [r(st,at) + γEat+1 [Q
π(st+1,at+1)]] (2)

In recent years, the advancements in traditional RL methods
have allowed their application to control tasks with continuous
action spaces. Inheriting ideas from DQN [21], Deep Deter-
ministic Policy Gradients have been relatively successful in a
wide range of control problems. The main caveat of DDPG
algorithms is that they rely on efficient experience sampling to
perform well. Improving the way how experience is collected
is one of most important topics in today’s RL community.
Experience Replay [19] and Prioritized Experience replay
[31] still performs poorly in a repertoire of robotics tasks
where the reward signal is sparse. Hindsight Experience replay
(HER) [1], on the other hand, performs well in this scenario
as it breaks down single trajectories/goals into smaller ones
and, thus, provides the policy optimization algorithm with
better reward signals. HER has been mostly based in a recent
RL concept: Multi-Goal learning with Universal Function
Approximators [30].

Another set of successful policy search algorithms is based
on optimization through trust regions. They are less sensitive
to the experience sampling problem mentioned above. The
maximum step size for exploration is determined by its trust
region and the optimal point is then evaluated progressively
until convergence has been reached. The main idea is that
updates are always limited by their own trust region, and,
therefore, learning speed is better controlled. Proximal Policy
Optimization [33] and Trust Region Policy optimization [32]
have applied these ideas providing state of the art performance
in a wide range of control problems.

Both techniques differ on the way they sample experiences.
While the first is an off-policy algorithm - experiences are
generated by a behaviour policy, the second is an on-policy
algorithm where the policy used to generated experience is the
same used to perform the control task. These algorithms will
have comparable performance on different robotics control
scenarios therefore should be considered the current state of
the art on such problems.

IV. BAYESSIM

A. Problem setup

Following [24], BayesSim approximates the intractable pos-
terior p(θ|x = xr) by directly learning a conditional density
qφ(θ|x) parameterised by parameters φ. As we shall see,
qφ(θ|x) takes the form of a mixture density random feature
network. To learn the parameters φ we first generate a dataset

Fig. 1: Fetch Push and Sliding tasks: the robot has full access
to the entire table and multiple iterations with the object
(pushing) or one shot at pushing the object to its target
(sliding).

with N pairs (θn,xn) where θn is drawn independently from
a distribution p̃(θ) referred to as the proposal prior. xn is
obtained by running the simulator with parameter θn such
that xn = g(θn). In [24] the authors show that qφ(θ|x) is
proportional to p̃(θ)

p(θ)p(θ|x) when the likelihood
∏
n qφ(θn|xn)

is maximised w.r.t. φ. We follow a similar procedure and
maximise the log likelihood,

L(φ) =
1

N

∑
n

log qφ(θn|xn) (3)

to determine φ. After this is done, an estimate of the posterior
is obtained by

p̂(θ|x = xr) ∝ p(θ)

p̃(θ)
qφ(θ|x = xr), (4)

where p(θ) is the desirable prior that might be different than
the proposal prior. In the case when p̃(θ) = p(θ), it follows
that p̂(θ|x = xr)qφ(θ|x = xr). When p̃(θ) 6= p(θ) we need
to adjust the posterior as detailed in Section IV-E.

B. Mixture density random feature networks

We model the conditional density qφ(θ|x) as a mixture of
K Gaussians,

qφ(θ|x) =
∑
k

αkN (θ|µk,Σk), (5)

where α = (α1, . . . , αK) are mixing coefficients, {µk} are
means and {Σk} are covariance matrices. This is analogous
to mixture density networks [5] except that we replace the
feedforward neural network with Quasi Monte Carlo (QMC)
random Fourier features when computing α, µ and Σ. We
justify and describe these features in the next section.

Denoting Φ(x) as the feature vector, the mixing coeficients
are calculated as

α = softmax(WαΦ(x) + bα). (6)



Note that the operator softmax(zi) = exp(zi)∑K
k=1 exp zk

for i =

1, . . . ,K enforces that the sum of coeficients equals to 1 and
each coefficient is between 0 and 1.

The means are defined as linear combinations of feature
vectors. For each component of the mixture,

µk = Wµk
Φ(x) + bµk

. (7)

Finally we parametrize the covariance matrices as diagonals
matrices with

diag(Σk) = mELU(WΣk
Φ(x) + bΣk

) (8)

where mELU is a modified exponential linear unit defined as

mELU(z) =

{
α(ez − 1) + 1 for z ≤ 0

z + 1 for z > 0
(9)

to enforce positive values. Experimentally this parametrization
provided slightly better results than with the exponential
function. The diagonal parametrization assumes independence
between the dimensions of the simulator parameters θ. This
turns out to be not too restrictive if the number of components
in the mixture is large enough.

The full set of parameters for the mixture density network
is then,

φ = (Wα,bα, {Wµk
,bµk

,WΣk
,bΣk

}Kk=1). (10)

C. Neural Network features

BayesSim can use neural network features creating a model
similar to the mixture density network in [5]. For a feed-
forward neural network with two fully connected layers, the
features take the form

Φ(x) = σ(W2(σ(W1x + b1)) + b2), (11)

where σ(·) is a sigmoid function; we use σ(·) = tanh(·)
in our experiments. This network structure was used in the
experiments and compared to the Quasi Monte Carlo random
features described below.

D. Quasi Monte Carlo random features

BayesSim can use random Fourier features [27] instead of
neural nets to parameterise the mixture density. There are sev-
eral reasons why this can be good choice. Notably, 1) random
Fourier features – of which QMC features are a particular type
– approximate possibly infinite Hilbert spaces with properties
defined by the choice of the associated kernel. In this way
prior information about properties of the function space can
be readily incorporated by selecting a suitable positive semi-
definite kernel; 2) the approximation converges to the original
Hilbert space with order O(1/

√
s), where s is the number of

features, therefore independent of the input dimensionality; 3)
experimentally, we verified that mixture densities with random
Fourier features are more stable to different initialisations and
converge to the same local maximum in most cases.

Random Fourier features approximate a shift invariant
kernel k(τ ), where τ = ‖x − x′‖, by a dot product
k(τ ) ≈ Φ(x)TΦ(x) of finite dimensional features Φ(x).

This is possible by first applying the Bochner’s theorem [36]
stated below:

Theorem 1 (Bochner’s Theorem) A shift invariant kernel k(τ ),
τ ∈ RD, associated with a positive finite measure dµ (ω) can
be represented in terms of its Fourier transform as,

k(τ ) =

∫
RD

e−iω·τdµ (ω) . (12)

The proof can be found in [13]. When µ has density K(ω)
then K represents the spectral distribution for a positive semi-
definite k. In this case k(τ ) and K(ω) are Fourier duals:

k(τ ) =

∫
K(ω)e−iω·τdω. (13)

Approximating Equation 13 with a Monte Carlo estimate
with N samples, yields

k(τ ) ≈ 1

N

N∑
n=1

(e−iωnx)(e−iωnx′
), (14)

where ω is sampled from the density K(ω).
Finally, using Euler’s formula (e−ix = cos(x) − i sin(x))

we recover the features:

Φ(x) =
1√
N

[cos (ω1x + b1) , . . . , cos (ωnx + bn) ,

−i · sin (ω1x + b1) , . . . ,−i · sin (ωnx + bn)].

(15)

where bias terms bi are introduced with the goal of rotating
the projection and allowing for more flexibility in capturing
the correct frequencies.

This approximation can be used with all shift invariant
kernels proving flexibility in introducing prior knowledge by
selecting a suitable kernel for the problem. For example, the
RBF kernel can be approximated using the features above with
ω ∼ N (0, 2σ−2I) and b ∼ U [−π, π]. σ is a hyperparameter
that corresponds to the kernel length scale and is usually set
up with cross validation.

We further adopt a quasi Monte Carlo strategy for sampling
the frequencies. In particular we use Halton sequences [7]
which has been shown in [3] to have better convergence rate
and lower approximation error than standard Monte Carlo.

E. Posterior recovery

From Equation 4 we note that when the proposal prior
is different than the desirable prior, we need to adjust the
posterior by weighting it with the ratio p(θ)/p̃(θ).

In this paper we assume the prior to be uniform, either with
finite support – defined within a range and zero elsewhere –
or improper, constant value everywhere. Therefore,

p̂(θ|x = xr) ∝ qφ(θ|xr)
p̃(θ)

. (16)

When the proposal prior is Gaussian, we can compute the
division between a mixture and a single Gaussian analytically.



In this case, since qφ(θ|x) is a mixture of Gaussians and
p̃(θ) ∼ N (θ|µ0,Σ0), the solution is given by

p̂(θ|x = xr) =
∑
k

α′kN (θ|µ′k,Σ′k) (17)

where,

Σ′k =
(
Σ−1k −Σ−10

)−1
(18)

µ′k = Σ−1k
(
Σ−1k µk −Σ−10 µ0

)
(19)

α′k =
αk exp(− 1

2λk)∑
k′ αk′ exp(− 1

2λk′)
, (20)

and the coefficients λk are given by

λk = log det Σk − log det Σ0 − log det Σ′k + µTkΣ−1k µk

− µT0 Σ−10 µ0 − µ′Tk Σ′−1k µ′k. (21)

F. Sufficient statistics for state-action trajectories

Trajectories of state and action pairs in typical problems
can be long sequences making the input dimensionality to
the model prohibitive large and computationally expensive.
We adopt a strategy commonly used in ABC; instead of
inputting raw state and action sequences to the model, we
first compute some sufficient statistics. Formally, x = ψ(S,A)
where S = {st}Tt=1 and A = {at}Tt=1 are sequences of states
and actions from t = 1 to T . There are many options in the
literature for sufficient statistics for time series or trajectory
data. For example, the mean, log variance and autocorrelation
for each time series as well as cross-correlation between two
time series. Another possibility is to learn these from data,
for example with an unsupervised encoder-decoder recurrent
neural network [35]. However, such a representation would
need to be trained with simulated trajectories and might not
be able to capture complexities in the real trajectories. This
will be investigated in future work. Here we adopt a simpler
strategy and use statistics commonly applied to stochastic
dynamic systems such as the Lotka-Volterra model [40].

Defining τ = {st − st−1}Tt=1 as the difference between
immediate future states and current states, the statistics

ψ(S,A) = ({〈τi,Aj〉}Ds,Da

i=1,j=1,E[τ ],Var[τ ]), (22)

where Ds is the dimensionality of the state space, Da is
the dimensionality of the action space, 〈·, ·〉 denotes the dot
product, E[·] is the expectation, and Var[·] the variance.

G. Example: CartPole posterior

We provide a simple example to demonstrate the algorithm
in estimating unknown simulation parameters for the famous
CartPole problem. In this problem a pole installed on a cart
needs to be balanced by applying forces to the left or to the
right of the cart. For this example we assume that both the
mass and the length of the pole are not available and we use
BayesSim to obtain the posterior for these parameters. We
assume uniform priors for both parameters and collect 1000
simulations following a rl-zoo policy 2 to train BayesSim.

2https://github.com/araffin/rl-baselines-zoo

With the model trained, we collected 10 trajectories with the
correct parameters to simulate the real observations. Figure
2 shows the posteriors for both problems. As with many
problems involving two related variables, masspole and
pole length exhibit statistical dependencies that generate
multiple explanations for their values. For example, the pole
might have lower mass and longer length, or vice versa.
BayesSim is able to recover the multi-modality nature of the
posterior providing densities that represent the uncertainty of
the problem accurately.

H. Domain randomization with BayesSim

Here we describe the domain randomization strategy to
take full advantage of the posterior obtained by the inference
method. Given the posterior obtained from the simulation
parameters p̂(θ|x = xr) we maximize the objective,

J(β) = Eθ

[
Eη

[
T−1∑
t−0

γ(t)r(st,at)|β

]]
, (23)

where θ ∼ p̂(θ|x = xr) with respect to the policy param-
eters β. Since the posterior is a mixture of Gaussians, the
first expectation can be approximated by sampling a mixture
component following the distribution over α to obtain a com-
ponent k, followed by sampling the corresponding Gaussian
N (θ|µk,Σk).

V. EXPERIMENTS

Experiments are presented in two different cases to demon-
strate and assess the performance of BayesSim. In Section
V-A we verify and compare the accuracy of the posterior
recovered. In Section V-B we compare the robustness of
policies trained by randomizing following the prior versus
posterior distribution over simulation parameters.

A. Posterior recovery

The first analysis we carry out is the quality of the posteriors
obtained for different problems and methods. We use the
log probability of the target under the mixture model as
the measure, defined as log p(θ∗|x = xr), where θ∗ is
the actual value for the parameter. We compare Rejection-
ABC [26] as the baseline, the recent ε-Free [24] which also
provides a mixture model as the posterior, and BayesSim
using either a two layer neural network with 24 units in
each layer, and BayesSim with quasi random Fourier Features.
For the later we use the Matern 5/2 kernel [28] and set
up the the sampling precision σ by cross validation. Three
different simulators were used for different problems; OpenAI
Gym [9], PyBullet 3, and MuJoCo [39]. Finally, the following
problems were considered; CartPole (Gym), Pendulum (Gym),
Mountain Car (Gym), Acrobot (Gym), Hopper (PyBullet),
Fetch Push (MuJoCo) and Fetch Slide (MuJoCo). For all
configurations of methods and parameters, training and testing
were performed 5 times with the log probabilities averaged and
standard deviation computed. To extract the real observations,

3https://pypi.org/project/pybullet/



Fig. 2: Example of joint posteriors obtained for the CartPole problem with different parametrizations for length and
masspole. The true value is indicated by a star. Note that the joint posteriors capture the multimodality of the problem
when two or more explanations seem likely, for example, a longer pole length with a lighter masspole or vice versa.

we simulate the environments with the actual parameters 10
times and average the sufficient statistics to obtain xr. In all
cases we collect sufficient statistics by performing rollouts for
either a maximum of 200 time steps or until the end of the
episode.

Table I shows the results (means and standard deviations)
for the log probabilities. BayesSim with either RFF or Neural
Network features provides generally higher log-probabilities
and lower standard deviation than Rejection ABC. This in-
dicates that the posteriors provided by BayesSim are more
peaked and centered around the correct values for the param-
eters. Compared to ε-Free, the results are equivalent in terms
of the means but BayesSim generally provides lower standard
deviation across multiple runs of the method, indicating it is
more stable than ε-Free. Comparing BayesSim with RFF and
NN, the RFF features lead to higher log probabilities in most
cases but BayesSim with neural networks have lower standard
deviation.

These results suggest that BayesSim with either RFF or
NN is comparable to the state-of-art, and in many cases
superior when estimating the posterior distribution over the
simulation parameters. For the robotics problems analyzed
in the next section, however, BayesSim with RFF provide
significant superior results than the other methods and slightly
better than BayesSim with NN. This can be better observed
when we plot the posteriors in Figure 3. BayesSim RFF is
significantly more peaked and centered around the true friction
value.

B. Robustness of policies

We evaluate robustness of policies by comparing their
performance on the uniform prior and the learned posterior
provided by BayesSim. Evaluation is done over a pre-defined
range of simulator settings and the average reward is shown
for each parameter value.

In the first set of experiments we use the CartPole problem
as a simple example to illustrate the benefits of posterior

Fig. 3: Posteriors recovered by different methods for the
Fetch slide problem. Note that BayesSim with random features
provides a posterior that is more peaked around the true value.

randomization. We trained two policies, the first randomizing
with a uniform prior for length and masspole as indicated
in Table I. The second, randomized based on the posterior
provided by BayesSim with RFF. In both cases we use PPO
to train the policies with 100 samples from the prior and
posterior, for 2M timesteps. The results are presented in
Figure 4, averaged over several runs with the corresponding
standard deviations. It can be observed that randomization
over the posterior yields a significantly more robust policy,
in particular at the actual parameter value. Also noticeable
is the reduction in performance for lower length values and
higher masspole values. This is expected as it is more difficult
to control the pole position when the length is short due to the
increased dynamics of the system. Similarly, when the mass
increases too much, beyond the value it was actually trained
on, the controller struggles to maintain the pole balanced.
Importantly, the policy learned with the posterior seems much



Problem Parameter Uniform prior Rejection ABC ε-Free BayesSim RFF BayesSim NN
CartPole pole length [0.1, 2.0] -0.342±0.15 -0.211±0.07 -0.609±0.39 -0.657±0.25

pole mass [0.1, 2.0] 0.032±0.21 0.056±0.14 0.973 ± 0.26 0.633± 0.52
Pendulum dt [0.01, 0.3] 2.101±1.04 2.307±0.84 3.192±0.30 3.199±0.17
Mountain Car power [0.0005, 0.1] 3.69±1.21 3.800±1.06 3.863±0.52 3.901±0.2
Acrobot link mass 1 [0.5, 2.0] 1.704±0.82 1.883±0.79 2.046±0.37 1.331±0.22

link mass 2 [0.5, 2.0] 1.832±0.93 2.237±0.76 0.321±1.85 1.513±0.39
link length 1 [0.1, 1.5] 2.421±0.75 2.135±0.50 2.072±0.76 1.856±0.18
link length 2 [0.5, 1.5] -0.521±0.36 -0.703±0.16 -0.148±0.19 -0.672±0.09

Hopper lateral friction [0.3, 0.5] 3.032±0.43 3.154±0.81 2.622±0.64 3.391±0.08
Fetch Push friction [0.1, 1.0] 1.332±0.54 2.013±0.09 2.423±0.07 2.404±0.05
Fetch Slide friction [0.1, 1.0] 1.014±0.38 1.614±0.12 2.391±0.06 2.111±0.03

TABLE I: Mean and standard deviation of log predicted probabilities for several likelihood-free methods, applied to seven
different problems and parameters.

Fig. 4: Accumulated rewards for CartPole policies trained with PPO by randomizing over prior and posterior joint densities.
Top left: Performance of the policy trained with the prior, over parameter length. masspole is set to actual. Top right:
Similar to top left, but over multiple masspole values. Bottom left: Performance of policy trained with the posterior, over
parameter length. Bottom right: Similar to bottom left, but over multiple masspole values.

more stable across multiple runs as indicated by the lower
variance in the plots.

In the second set of experiments we use a Fetch robot
available in OpenAI Gym [8] to perform both push and slide
tasks. The first is a closed loop scenario, where the arm
is always in range of the entire table and, hence, it can
correct its trajectories according to the input it receives from
the environment. The second is a more difficult open loop
scenario, where the robot has usually only one shot at pushing
the puck to its desired target. For both tasks, the friction

coefficient of the object and the surface plays a major role
in the final result as they are strictly related to how far the
object goes after each force is applied. A very low friction
coefficient means that the object is harder to control as it slides
more easily and a very high one means that more force needs
to be applied in order to make the object to move.

Our goal is to recover a good approximation of the posterior
over friction coefficients using BayesSim. Initially, we need
to learn a policy with a fixed friction coefficient that will be
used for data generation purposes. We train this policy using



DDPG with experiences being sampled using HER for 200
epochs with 100 episodes/rollouts per epoch. Gradient updates
are done using Adam with step size of 0.001. We then run
this policy multiple times with different friction coefficients in
order to approximate the likelihood function and recover the
full posterior over simulation parameters. With the dynamics
model in hand, we can finally recover the desired posterior
using some data sampled from the environment we want to
learn the dynamics from. Training is carried out using the
same aforementioned settings but instead of using a fixed
friction coefficient, we sample a new one from its respective
distribution every time a new episode starts.

The results from both tasks are presented on Figure 5. As it
has been shown in previously work [25], the uniform prior
works remarkably well on the push task. This happens as
the robot has the opportunity to correct its trajectory whether
something goes wrong. As it has been exposed to a wide range
of scenarios involving different dynamics, it can then use the
input of the environment to perform corrective actions and still
be able to achieve its goal. However, the results for slide task
differ significantly since using a wide uniform prior has led
the robot to achieve a very poor performance. This happens
as not only the actions for different coefficients in most times
are completely different but also because the robot has no
option of correcting its trajectory. This is where methods like
BayesSim are useful as it recovers a distribution with very
high density around the true parameter and, hence, leads to
a better overall control policy. Our results shows that higher
rewards are achieved around the true friction value while the
uniform prior results are mostly flat throughout all values.

VI. CONCLUSIONS

This paper represents the first step towards a Bayesian
treatment of robotics simulation parameters, combined with
domain randomization for policy search. Our approach is
connected to system identification in that both attempt to
estimate dynamic models, but ours uses a black-box generative
model, or simulator, totally integrated into the framework.
Prior distributions can also be provided and incorporated into
the model to compute a full, potentially multi-modal posterior
over the parameters. The method proposed here, BayesSim,
performs comparably to other state-of-the-art likelihood-free
approaches for Bayesian inference but appears more stable
to different initializations, and across multiple runs when
recovering the true posterior. Finally, we show that domain
randomization with the posterior leads to more robust policies
over multiple parameter values compared to policies trained
on uniform prior randomization.

The two applications described in the paper for likelihood-
free inference are two instances of a large range of problems
where simulators can make use of a full set of parametrizations
to best represent reality. In this manner, our framework can be
integrated in many other problems involving simulators. An
interesting line of research for future work is to use BayesSim
to help simulators synthesize images by randomizing over
background properties. This can potentially help in making

Fig. 5: Comparison between policies trained on randomizing
the prior vs BayesSim posterior for different values of the
simulation parameter. Top: Fetch slide problem. Bottom: Fetch
push problem.

many computer vision problems more robust to environment
variability in many tasks including object recognition, 3D pose
estimation, or motion tracking.

As typical in the likelihood-free inference literature,
BayesSim relies on the definition of meaningful sufficient
statistics for the trajectories of states and actions. Alternatively,
a lower dimensional representation for the trajectories could
be created using recent encoder-decoder methods and recur-
rent neural networks known to perform well for time series
prediction such as LSTMs [16]. Hence, the entire framework
can be learnt end to end. This is an interesting area for future
development but careful consideration should be given to
potential overfitting to simulation data. LSTMs usually require
a lot of data for training therefore most of the training trajec-
tories will be generated from simulated trajectories. This can
introduce undesirable specific characteristics of the simulator
in the low dimensional representation that are not observed
in real trajectories, making the representation less sensitive to
variations in the simulator parameters to be estimated. Despite
this, automating the process of generating robust statistics from
trajectories remains a valuable direction for future research.
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