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Abstract—Tracking underwater autonomous platforms is often
difficult because of noisy, biased, and discretized input data.
Classic filters and smoothers based on standard assumptions of
Gaussian white noise break down when presented with any of these
challenges. Robust models (such as the Huber loss) and constraints
(e.g. maximum velocity) are used to attenuate these issues. Here,
we consider robust smoothing with singular covariance, which
covers bias and correlated noise, as well as many specific model
types, such as those used in navigation. In particular, we show how
to combine singular covariance models with robust losses and
state-space constraints in a unified framework that can handle
very low-fidelity data. A noisy, biased, and discretized naviga-
tion dataset from a submerged, low-cost inertial measurement
unit (IMU) package, with ultra short baseline (USBL) data for
ground truth, provides an opportunity to stress-test the proposed
framework with promising results. We show how robust modeling
elements improve our ability to analyze the data, and present
batch processing results for 10 minutes of data with three different
frequencies of available USBL position fixes (gaps of 30 seconds,
1 minute, and 2 minutes). The results suggest that the framework
can be extended to real-time tracking using robust windowed
estimation.

I. INTRODUCTION

State-space models are ubiquitous in signal processing, and
allow integration of disparate measurements to inform esti-
mation, decisions, and control. Classic filtering [1, 2] and
smoothing [3, 4] are core tools used to estimate these models.
Their dependence on high-fidelity data, driven by Gaussian
assumptions on errors and innovations, has demanded unequiv-
ocal attention from researchers and practitioners, and inspired
robust dynamic inference methods.

While early robust approaches [5, 6] sought to modify itera-
tions of the Kalman filter (KF) and Rauch-Tung-Striebel (RTS)
smoother, over the last 25 years researchers have used robust
formulations to weave assumptions on errors and innovations
directly into the estimation problems themselves [7, 8, 9,
10, 11, 12, 13]. Constraints, when available, are also readily
incorporated into the problem formulation [14]. Specifying
the formulation leaves one free to choose from a range of
optimization algorithms; the survey [15] describes a general
class of models as well as first- and second-order methods to
solve them.

Our focus is on models with singular variances for process
and measurement residuals. These models are excluded by

the assumptions of generalized smoothing [15] and all of the
various special cases cited in the survey. In this paper, we
build on the recently proposed framework of [16] for singular
models, and systematically develop complementary modeling
elements: robust penalties, informative constraints, and
singular models. The resulting approach exploits the structure
of singular covariances head on rather than using workarounds
such as pseudo-inverses or variance boosting that either do not
work in the general setting or introduce unnecessary changes
to the fundamental model (see discussion in [16]). A simple
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Fig. 1: We track a simple trajectory in the presence of
outliers. The red dash-dot shows a‘robust’ Huberized approach
implemented using a pseudo-inverse; green dash shows the
proposed singular `2 estimate; blue solid shows the proposed
singular Huber estimate, which clearly tracks the true state.

synthetic tracking example with a singular process model
shows how the common tack of replacing the inverse by the
pseudo-inverse fails dramatically in the presence of outliers
(Figure 1). Any robust approach requires control of the null
spaces associated to process and observations. We develop a
direct practical formulation and method, and test it on a batch
smoothing analysis of real field data, with a view towards real-
time implementation in future work.



Background. Our main goal is to infer an unobserved state
sequence x1, . . . , xN from noisy observations y1, . . . , yN using
the model:

x1 = x0 + w1

xk = Gkxk−1 + wk, k = 2, . . . , N

yk = Hkxk + vk, k = 1, . . . , N,

xk ∈ Xk, each Xk polyhedral,

(1)

where x0 is a given initial state estimate, Gk and Hk are linear
process and measurement models, y1, . . . , yN are observations,
and Xk specify additional information through constraints. The
framework of [15] assumes that wk and vk are mutually inde-
pendent random variables with known nonsingular covariances
Qk and Rk, and that they follow from log-concave distributions;
in particular they may be non-Gaussian.

Synthesizing all of this information gives the problem

min
x1∈X1,...,xn∈XN

∑
k

ρp(Q
−1/2
k (Gkxk − xk−1))

+ ρm(R
−1/2
k (Hkxk − yk)),

(2)

with ρp and ρm convex penalties. Using (2) provides estimates
that are robust to outliers and can follow sudden changes in the
state. Most of the inference- or optimization-based work in the
convex dynamic setting is a special case of (2). Many examples,
including robust penalties and constraints, are collected in [15].

We now extend to singular covariances Rk (for errors vk)
and Qk (for innovations wk). These models specify key use
cases, particularly for innovations (process) modeling, briefly
summaried below (see [16] for a more detailed discussion).
Deterministic integrals. Most models in robotics, particularly
in navigation, use integration to model process relationships
between state variables (e.g. when position, velocity, and accel-
eration are part of the state). Any deterministic integral yields a
singular process model. The simplest example (with position a
direct integral of stochastic velocity) is used to create Figure 1.
Nuisance parameters. Unknown constants that need calibra-
tion (such as fixed instrument biases) require special modeling
in the nonsingular paradigm (2). With singular models, we can
augment the state in order to infer these parameters.
Auto-regressive models and correlated errors. State-space
models are broadly used in auto-regressive, moving average,
and time series models [17]. These elements also appear in
general smoothing models, particularly to deal with correlated
measurement errors [18].

All three examples are accessible in the classic linear Gaus-
sian setting. The KF need not invert Q or R, and provides the
minimum variance estimate for both singular and nonsingular
models [19]. Some algorithms rely on precise knowledge of
the error structure or explicit equality constraints [20, 21, 22].
Correlated errors are dealt with by augmenting the state and
using a singular model [18]. None of these techniques gener-
alize to singular models in the setting of (2), and some naive
generalizations fail dramatically (Figure 1).

This paper builds on the reformulation of [16] for singular
models. We develop a systematic approach and test it using a

navigation model with a real-world mooring dataset. We show
how robust statistics, singular models, and constraints can be
systematically used to overcome a range of challenges simul-
taneously present in the dataset: (1) outliers, (2) deterministic
relationships between states, (3) measurement biases, and (4)
coarsely discretized observations.

The paper proceeds as follows. Section II summarizes the
singular formulation of [16] and relevant optimization algo-
rithms. Section III develops the key modeling elements to
address common data challenges. Section IV presents the
navigation models. Section V shows how the model elements
come together to analyze the target mooring dataset, and obtain
a high fidelity track from low-fidelity observations. Section VI
concludes with discussion and future work.

II. ROBUST SINGULAR FORMULATION AND ALGORITHM

We reformulate the robust smoothing problem to seamlessly
allow both singular and nonsingular covarinace models for er-
rors and innovations. The resulting problem can be solved with
any primal-dual algorithm. We show how to apply the classic
Douglas-Rachford splitting (DRS) algorithm (see e.g. [23, 24])
to the reformulated problem.

Problem (2) can be reformulated by introducing auxiliary
variables uk and tk to represent pre-whitened innovations and
measurement residuals:

min
x,u,t

∑
k

ρp(uk) + ρm(tk) + ρs(xk)

s.t. Q
1/2
k uk = Gkxk − xk−1

R
1/2
k tk = Hkxk − yk

(3)

where ρs(xk) may be taken as the convex indicator function to
recover the constraints in (2):

ρs(xk) =

{
0 xk ∈ Xk

∞ xk 6∈ Xk.

When Qk and Rk are invertible, we can solve for uk, tk and
recover (2). Otherwise, problem (3) is well-posed while (2) is
not. We can write (3) in compact form

min
z

ρ(z) s.t. Az = ŵ,

ρ(z) =

N∑
k=1

ρp(uk) + ρm(tk) + ρs(xk).
(4)

where

zT =
(
uT1 tT1 xT1 . . . uTN tTN xTN

)
ŵT =

(
xT0 yT1 0 yT2 . . . 0 yTN

)
,

(5)

A =


D1 0 . . . 0

B1 D2 0
...

0
. . . . . . 0

0 0 BN−1 DN

 , (6)



and

Di =

(
Q

1/2
i 0 I

0 R
1/2
i Hi

)
, Bj =

(
0 0 −Gj+1

0 0 0

)
.

The variables are ordered in such a way that A is block
bi-diagonal. If all observations zi lie in the range of Hi, the
constraint Az = ŵ will be feasible [16].

The problem (4) is a convex optimization problem and can
be solved using a variety of techniques. We show that the DRS
algorithm is straightforward to implement, and preserves the
computational complexity of the classic KF/RTS algorithms
because of the way A is structured in (6).

Given a convex function f , its convex conjugate f∗ is given
by

f∗(y) = sup
x
〈x, y〉 − f(x),

and its proximal operator with step α, denoted by proxαf (see
e.g. [25]) is given by:

proxαf (ζ) = arg min
x

1

2α
‖ζ − x‖2 + f(x). (7)

For a long list of objectives, prox operators are available
in closed form or are efficiently computable. In particular this
is the case when ρp, ρm, ρs form any subset of the numerous
elements briefly surveyed in Section III. It is actually the prox
of ρ∗ that appears in the DRS iteration (Algorithm 1) rather
than the prox of ρ, but these are linked by the simple formula

proxρ(z) + proxρ∗(z) = z.

To specify the algorithm, we let g(z) be the indicator of the
affine feasible region Az = ŵ:

g(z) =

{
0 Az = ŵ

∞ Az 6= ŵ

Problem (4) can now be written simply as

min
z
ρ(z) + g(z)

which is a natural template for DRS, detailed in Algorithm 1.

Algorithm 1 Douglas-Rachford Splitting (DRS)

Input: Initialize at any z0, ζ0.
1: loop
2: zk = proxτg(z

k−1 − τζk−1)
3: ζk = proxσρ∗(ζk−1 + σ(2zk − zk−1))

return zk

To implement Algorithm 1 we need proximal operators
of ρp, ρm, and ρs. Eight common piecewise linear-quadratic
(PLQ) penalties are shown in Figure 2, and their proximal
operators are summarized in Table I.

The proximal operator for g is given by

proxg(η) = argmin
Az=ŵ

1

2
||η − z||2

(a) quadratic (b) 1-norm

(c) quantile, τ = 0.3 (d) huber, κ = 1

(e) quantile huber (f) vapnik, ε = 0.5

(g) hubnick (h) elastic net

Fig. 2: Common piecewise linear-quadratic (PLQ) losses.

which is a least squares problem with affine constraints. Solving
it efficiently leverages the structure of (6). In particular we need
to solve a single structured linear system[

I AT

0 AAT

] [
z
ν

]
=

[
η

Aη − ŵ

]
(8)

where AAT is block tridiagonal and does not change between
iterations. In our implementation, we need only compute a
single block bidiagonal factorization once, which can then be
used to solve (8) in O(n2N) operations in each iteration, no
more expensive than a single matrix-vector multiply.

For piecewise-linear quadratic ρ [26, 15], DRS converges to
an optimal solution at a local linear rate [16], which does not
depend on the condition number of A. A good initialization
makes DRS competitive with the fastest available solvers, even
second order methods with quadratic local rates [15].

III. MODELING ELEMENTS

The proposed framework has three complementary mod-
eling elements: singular covariance matrices Q and R; pro-
cess/measurement penalties ρp, ρm; and constraints ρs on the
state. In this section, we show a range of choices for each
element, and compute the operators required for Algorithm 1.
Singular covariances can be used to capture affine constraints,
auto-regressive structure, integrated errors, and bias.



• Affine constraints using singular R. the ith element of the
state at time k is known exactly, add row[

0 . . . 0 1︸︷︷︸
i

0 . . . 0
]

to the measurement model Hk, a row and column of zeros
to Rk, and the known value as the last element of zk.

• Bias with singular Q. A common model for bias is to
include it as a non-varying component across the state:

x̃k =

[
xk
b

]
, Q̃k =

[
Q 0
0 0

]
.

• Correlated noise using singular Q. Correlated noise wk is
typically modeled by [27]

wk = Mwk−1 + βk, βk ∼ N(0, Q).

Here too we can augment the state and use a singular
process variance:

x̃k =

[
xk
wk

]
, G̃k =

[
Gk I
0 M

]
, Q̃k =

[
0 0
0 Qk

]
.

Piecewise linear-quadratic (PLQ) Penalties. The proposed
framework allows process innovations, measurement residu-
als, and state regularization to come from any convex prox-
friendly penalty. To keep the exposition simple, we collect eight
commonly used convex piecewise linear-quadratic penalties in
Figure 2, and compute their prox operators in Table I. The
penalties can be thought of in terms of three features:
• Behavior at origin: nonsmooth features encourage exact

fitting of the quantity being measured, while deadzones
are appropriate for discretized observations.

• Tail growth: asymptotically linear penalties are more tol-
erant of large inputs. Applied to measurements, this gives
robustness to outliers; applied to innovations, it gives an
ability to quickly track evolving trends.

• Asymmetry: allows handling of special cases where under-
estimating is qualitatively different from over-estimating.

Constraints. It is very convenient to enforce simple constraints
on the state estimates xk. If we take ρs(x) = δX(x) then
the prox operator proxρs is simply the projection onto the set
X . Box constraints are a very common type of constraints
that enforce known bounds on the state, and have a trivial
projection. The proposed framework allows us to use any
convex region that has a computationally efficient projection.

IV. NAVIGATION MODEL

We use a constant-velocity kinematic model that is ap-
propriate for many underwater vehicle applications, where
accelerations are heavily damped and trajectories are often long
straight lines (e.g. for transit or survey work). When the attitude
is known or changing slowly, the model can be linearized
effectively. For a vehicle that is well-instrumented in attitude,
the uncertainty in position (and the x-y states in particular)
is typically orders of magnitude larger than the uncertainty in
attitude. Thus, in practice, we often simplify the full nonlinear

TABLE I: Prox operators of common PLQ penalties.
Penalty f proxαf (z) Ref.

1
2
‖x‖2, Fig. 2a 1

1+α
z [28, 29]

‖x‖1, Fig. 2b sign(z)� (|z| − α)+ [30, 31]

qτ , Fig. 2c

{
zi − α(1− τ) zi > α(1− τ)
zi + ατ zi < −ατ
0 else

[32, 33]

hκ, Fig. 2d α
α+κ

z + κ
α+κ

prox(α+κ)‖·‖1 (z) [34]
qτ,κ, Fig. 2e α

α+κ
z + κ

α+κ
prox(α+κ)qτ (z) [35]

vε, Fig. 2f


zi − α zi > ε+ α

ε ε < zi ≤ α+ ε

zi −ε ≤ zi ≤ ε
−ε −ε− α < zi ≤ −ε
zi + ατ zi < −α− ε.

[36]

hubnik-κ, Fig. 2g α
α+κ

z + κ
α+κ

prox(α+κ)vε (z) [37, 38]

e-net, Fig. 2h prox α
1+2α

‖·‖1

(
1

1+2α
z
)

[39]

vehicle process model to track only position states (x, y, z),
while assuming that the attitude states (r, p, h) are directly
available from the most recent sensor measurements. To make
the model linear, the position and its derivatives are referenced
to the local-level frame.

An effective model must counteract biases, outliers, and data
discretization in the IMU data. We develop this model using
the elements of the proposed framework.
Process model. To incorporate linear acceleration measure-
ments from an IMU, we track linear velocities and linear
acceleration in the state vector:

xs = [x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈]>. (9)

The linear kinematic process model is given by

ẋs =

 0 I 0
0 0 I
0 0 0


︸ ︷︷ ︸

Fs

xs +

 0
I
0


︸ ︷︷ ︸
Gs

ws, (10)

where ws ∼ N (0, Qs) is zero-mean Gaussian noise. The linear
process model (10) is discretized using a Taylor series:

xsk+1
= Fskxsk + wsk (11)

Fsk = eFsT ≈≈

 I IT 1
2IT

2

0 I IT
0 0 I

 ,
where I in (11) denotes the 3 × 3 identity matrix, and the
higher order terms are identically zero because of the structure
of Fs. We model the process covariance as if the error were
the next term in the Taylor series approximation, a technique
suggested by [40]. More precisely we set covariance to be the
outer product, ΓTΓ where

Γ =
[
1
3!IT

3 1
2!IT

2 IT
]

This leads to a rank 3 covariance for a 9×9 matrix for a model
that comprises position, velocity, and acceleration.

Given this covariance structure, the process model will
penalize changes in acceleration. As the vehicle travels in a



relatively straight line with small corrections, we expect to see
acceleration mostly constant with a few small jumps. We use
the `1 norm for innovations, as it encourages exact fits while
simultaneously allowing occasional sudden changes.
Measurement model. The inertial measurement unit (IMU)
measures linear and angular accelerations relative to the phys-
ical frame of the vehicle on which it is mounted, while the
state tracks linear acceleration relative to the navigation frame.
We obtain the coordinate transformation between these frames
using heading, pitch, and roll of the vehicle:

R(ϕ) = R>hR
>
p R
>
r , (12)

where Rh, Rp, and Rr are given by ch sh 0
−sh ch 0

0 0 1

 ,
 cp 0 −sp

0 1 0
sp 0 cp

 ,
 1 0 0

0 cr sr
0 −sr cr


(13)

with c· and s· shorthand for cos(·) and sin(·).
Position data from the USBL is sampled at a lower update

rate than the IMU. For any sk where such position data is
available, we have the measurement model

Hsk =

[
I3×3 03×6
03×6 R(ϕ)

]
, zsk =

[
usbl> ẍmeas ÿmeas z̈meas

]>
If there is no position data measured at time s then we use the
model

Hsk =

[
03×3 03×6
03×6 R(ϕ)

]
, zsk =

[
0 ẍmeas ÿmeas z̈meas

]>
.

The covariance used for measurement data similarly depends
on whether there is position data available:

Rsk =

[
Us 03×3

03×3 rsI3×3

]
, Rsk =

[
03×3 03×3
03×3 rsI3×3

]
where U is a diagonal matrix reflecting position uncertainty,
while rs captures uncertainty in IMU measurements.
Bias model. To compensate for the bias in acceleration data
we augment the state vector to include bias variables:

x̄s = [xTs , b1, b2, b3]>

where b1, b2, b3 are bias terms for acceleration in the x, y, z
directions in the local frame. To pass the bias estimates forward
in time the process matrix is augmented with an identity block.

x̄sk+1
= F̄skxsk + w̄sk (14)

F̄sk =

[
Fsk 0
0 I

]
(15)

At the first time point (sk = 1) we augment the covariance
matrix with an identity block, and at all other time points we
augment with a zero block. This adds equality constraints for
the bias terms over all time points. The approach generalized
easily to model piecewise-constant biases over longer periods.

Q̄1 =

[
ΓTΓ 0

0 I

]
, Q̄sk =

[
ΓTΓ 0

0 0

]
sk > 1.

The measurement matrices are augmented with an identity
block that shifts the acceleration measurements using the bias.
Discretization model. The measurement loss function is cho-
sen to account for the level of discretization present in the
data. The Vapnik loss (Figure 2f) has a ‘deadzone’ around the
origin where small discrepancies are not penalized. This region
is set using the level of discretization in the data, in this case
0.05. The sharp corners of the Vapnik loss encourage errors to
lie exactly in them, an unnecessary artifact. Thus we use the
‘Huberized’ version dubbed ‘hubnik’ (Figure 2 g). The prox
operators for both losses are computed in Table I.

V. ANALYSIS OF MOORING DATA

We are interested in the ability to maintain an accurate
position estimate on-board an autonomous underwater vehicle
in real-time using acceleration measurements from a low-cost
IMU, given periodic position fixes.

To test this, we use the singular robust Kalman framework
to analyze data collected from a surface mooring equipped
with an IMU on the subsea node. The mooring node, which
is drifting with the current, is used as a proxy for a slowly
moving underwater vehicle subject to unknown disturbances.
We look at the position uncertainty and error accrued over time
between the periodic, world-referenced position fixes provided
by the USBL system.
Data description. Position fixes are available from a ship-
based Sonardyne Ranger 2 USBL every 2 seconds, which
we subsample to varying degrees for the analysis. Linear
acceleration data from an LSM303D 3-axis accelerometer was
collected at ∼ 0.075 m/s2 precision using a Raspberry Pi Zero.
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Fig. 3: A snippet of the depth acceleration data, rotated into
the world frame, shows the discretization and bias of the
acceleration data.

A small snippet of vertical acceleration data, Figure 3, shows
the relatively coarse discretization of the measurements along
with a mean that is shifted away from zero indicating bias. Out-
liers also appear likely. Because the IMU was generally upright
with small perturbations in pitch and roll, the discretizations in
the z-axis of the instrument frame are still clearly visible when
the data are rotated into the vertical world frame. The small
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Fig. 4: Comparison of classic Kalman smoothing applied to
depth data with and without USBL position fixes.

perturbations in pitch and roll cause the slight variations visible
within each discretization level.

To illustrate our model’s usefulness on a data set such as
in Figure 3, we isolate a 25-second window of the data and
add modeling elements one at a time, noting the improvements
they provide. We finish by running the full model with varying
amounts of infrequent position data on a 10-minute section of
data as a more practical experiment.
Model elements applied to data. We consider 25 seconds of
IMU data and apply a classic Kalman filter (using least squares
measurement and process loss) with the singular navigation
model detailed in section IV. In practice, one would expect
an underwater vehicle to be well instrumented in depth, but
for illustration purposes we focus on depth and the vertical
acceleration measurements. These measurements are the most
biased and therefore improvements made by adding modeling
elements are most clearly shown.

The 25 seconds of IMU data starts at a USBL measurement.
Position is initialized to this starting USBL measurement, but
for ease of comparison that position is treated as (0,0,0) and all
subsequent USBL measurements are treated as relative offsets.
DRS works better when its reasonably initialized. The initial
state vector over the smoothing window is populated by setting
acceleration to 0, and then propagating forward the most recent
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Fig. 5: Acceleration estimates of classic Kalman smoother
without USBL data (top) and with USBL data (bottom).

position fix with a significantly damped measurement of the
most recent velocity to prevent divergence of the initial vector.

We start by adding bias estimation (for the acceleration
measurements). This requires a second USBL position fix, 19
seconds into the 25-second data series. Figure 4 shows position
and velocity estimates from a classic Kalman smoother applied
to depth acceleration data with and without additional USBL
position data. As expected due to the quality of the data we
see poor performance in both cases although the small amount
of additional position data offers slight improvement.

Figure 5 shows acceleration estimates of the classic Kalman
smoother with and without additional USBL data. The two
USBL measurements affect acceleration estimates locally but
are generally overpowered by the vastly more complete set of
(biased) acceleration data.

The picture improves significantly when we add in bias
estimation (via singular process models), using the same two
observations (compare Figures 4 and 6). With the bias re-
moved, we can now focus removing the noticeable outliers
form the acceleration data. For this purpose, we use the robust
hubnik (Figure 2g) as our measurement loss. The ‘deadzone’
is designed to work with the coarse discretization of the
acceleration data.

Figure 6 compares the results of (debiased) fitting between
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Fig. 6: Comparison (position and velocity estimates) of debi-
asing least squares Kalman smoother vs. a robust debiasing
smoother equipped with the hubnik loss (Figure 2g).

the least squares Kalman smoother and the robust version using
the hubnik loss. Figure 7 shows the acceleration estimates with
bias removed in both the classic and robust setting. There are
noticeable differences in the acceleration estimates at around
11 and 22 seconds. When using the robust smoother, the effect
of the outliers on the model’s estimate is greatly reduced (see
the velocity estimates at 11 and 22 seconds). In the context of
real-time tracking or forecasting, these sudden jumps will yield
inaccurate predictions.
10 minutes of data. We apply the robust smoother with
with bias, outliers, and discretization modeling elements to 10
minutes of IMU data. USBL data is available approximately
every 2 seconds, but we test performance of the smoothing
algorithm at larger gaps, with USBL data supplied at 30, 60,
and 120 seconds.

Figure 8 has the fitted position plots for all three frequencies.
We see that without any USBL fix data, the estimate suffers;
but even infrequent fixes give significant improvements when
using the full capability of the smoother. In fact there are
diminishing returns in increasing the USBL frequency; this
is a promising result towards the future goal of a practical
online implementation, particularly in settings where high-
quality USBL observations are unavailable (e.g. during dives).
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Fig. 7: Acceleration estimates for least squares debiasing
Kalman smoother (top) vs. robust debiasing smoother equipped
with the smoothed Vapnik loss (Figure 2g) (bottom).

Figure 9 shows the fitted velocity. Here the effect of addi-
tional USBL data are more apparent, as velocity is completely
inferred from position and acceleration. However, the smooth-
ing estimates of velocity at infrequent USBL fixes are still very
good compared to those informed by frequent USBL fixes.

VI. DISCUSSION AND FUTURE WORK

We have proposed a singular Kalman smoothing framework
that can use singular covariance models for process and mea-
surements, convex robust losses, and state-space constraints.
The modeler can use any convex loss that has an implementable
prox, a class that includes the most common choices used for
inference in tracking and navigation. The framework offers a
wide range of flexibility that can be used to either counteract
undesirable characteristics present in data or be used to increase
model performance based off of relevant field knowledge.
Future work will consider real-time implementation, as well
as extension to nonlinear models.

Numerical experiments show that these modeling elements
yield significant improvement on a noisy, challenging dataset.
We also see that having a robust model makes the smoother
less reliant on frequent high-quality position updates, which is
a very promising development for underwater navigation.
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Fig. 8: Position estimates obtained with robust debiasing
smoother for three frequencies of USBL fixes. Robust smooth-
ing allows reasonable tracking from infrequent USBL observa-
tions.

This paper develops several tools required to move to robust
singular tracking in real-time. A promising aspect of singular
noise models is that they make it possible to do simple robust
windowed smoothing, where estimates are constrained between
windows as the tracking proceeds. Constraints on the state
may play a bigger role in real-time estimation, since they can
help detect outliers faster. Finally, robust penalties that provide
better estimates may further improve performance of the DRS
algorithm, by providing an effective initialization for each new
window. We will focus on these developments in future work.
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Fig. 9: Velocity estimates obtained with robust debiasing
smoother for different frequencies of position data. Errors from
acceleration measurements build up without USBL fixes, but
infrequent USBL measurements still allow velocity estimation.
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