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Online Incremental Learning of the Terrain
Traversal Cost in Autonomous Exploration

Miloš Prágr Petr Čı́žek Jan Bayer Jan Faigl

Abstract—In this paper, we address motion efficiency in
autonomous robot exploration with multi-legged walking robots
that can traverse rough terrains at the cost of lower efficiency
and greater body vibration. We propose a robotic system for
online and incremental learning of the terrain traversal cost
that is immediately utilized to reason about next navigational
goals in building spatial model of the robot surrounding. The
traversal cost experienced by the robot is characterized by
incrementally constructed Gaussian Processes using Bayesian
Committee Machine. During the exploration, the robot builds the
spatial terrain model, marks untraversable areas, and leverages
the Gaussian Process predictive variance to decide whether to
improve the spatial model or decrease the uncertainty of the ter-
rain traversal cost. The feasibility of the proposed approach has
been experimentally verified in a fully autonomous deployment
with a hexapod walking robot.

I. INTRODUCTION

Multi-legged walking robots are capable of rough ter-
rains traversal, either by leveraging detailed foothold position
plans [2, 37], or reactively utilizing tactile information [4, 10].
On the other hand, the robots may suffer from poor energy
efficiency [13] and low stability [18]; hence, they can benefit
from traversal cost prediction of the observed terrains. In
unknown environments, the robot may encounter previously
unobserved terrain types, and therefore, it needs to explore
and actively update its terrain traversal cost model to improve
its performance as the perception is active by nature [1].

We propose to address autonomous robotic exploration as
a problem to simultaneously create a spatial model of the
unknown environment together with incremental learning of
the traversal cost model. The spatial model is employed to
reason about untraversable areas, but incrementally learned
traversal cost characterizes the robot experience with its lo-
comotion effectiveness over traversable terrains. Thus, the
learned model is employed in the extrapolation of the traversal
cost assessment to observed but not yet visited areas, to
intentionally avoid hard-to-traverse areas.

The spatial frontier-based exploration [35] can be utilized to
navigate the robot towards passable areas at the boundary of
the explored space. However, there is not an easily distinguish-
able boundary in exploring some underlying phenomena such
as the terrain traversal cost. Therefore, model confidence can

Authors are with the Czech Technical University, Faculty of
Electrical Engineering, Technicka 2, 166 27, Prague, Czech Republic
{pragrmi1|cizekpe6|bayerja1|faiglj}@fel.cvut.cz

The presented work has been supported by the Czech Science Foundation
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Fig. 1. Visualization of reasoning about possible navigational goals in
the spatial frontier-based (blue spheres) exploration combined with building
terrain traversal cost model (jet color coding). The robot selects to actively
improve its traversal cost model for areas with low model confidence (red
spheres). The model is instantly utilized in path planning, and thus the robot
avoids areas that are believed to be hard-to-traverse.

be used to reason about active navigation towards areas with
low model fidelity [29, 34]. An example of such reasoning
within the proposed approach is visualized in Fig. 1.

The confidence of the terrain traversal cost model can be
obtained using Gaussian Process (GP) regression, a nonpara-
metric generalization of the linear regression which can extrap-
olate both the predictive mean and variance. The GP regression
has been used in spatial exploration with a continuous spatial
occupancy [20, 26] or terrain elevation models [32]. However,
the GP regression suffers from cubic learning time complexity,
and the Bayesian Committee Machine (BCM) with the GP
regressors in frontier-based exploration [14] has been utilized
to create spatial occupancy representation [33].

Motivated by recent advancements on the GPs and BCM,
we propose to use the Robust BCM (RBCM) [8] for in-
cremental construction of the terrain traversal cost model in
the exploration of unknown environments. The robot thus
alters navigation towards frontiers of the spatial exploration
and areas with low confidence of the traversal cost model
that is characterized by a high predictive variance; while
simultaneously exploiting the learned model to avoid costly
terrains.

In this paper, we describe the developed robotic system that
represents an integrated framework with complete pipeline of
sensing, model building, informed planning, and execution that
has been experimentally verified in autonomous experiments.
Regarding the existing work, we consider the main contribu-
tions of the presented approach as follows.



• Robotic system with active improvements of the terrain
traversal cost model deployed in the autonomous explo-
ration of the spatial model and the traversal cost model.

• Experimental validation of the proposed system in au-
tonomous exploration with the hexapod walking robot.

• Deployment of online incremental learning of the un-
derlying traversal cost model using the RBCM with GP
regressor experts over the terrain feature descriptor space.

• Experimental evaluation of (fast) incremental learning
approaches within the addressed terrain traversal cost
modeling task.

The rest of the paper is structured as follows. Related
approaches on terrain traversal cost model and characterization
are overviewed in the following section. A brief description
of the used RBCM is presented in Section III. The main parts
of the proposed framework are described in Section IV and
results on its experimental validation are reported in Section V.
The paper is concluded in Section VI.

II. OVERVIEW OF THE EXISTING TERRAIN TRAVERSAL
COST AND TERRAIN CHARACTERIZATION APPROACHES

Robots autonomously navigating in rough terrains must
identify and avoid risks such as possible robot damage or
energy wasting due to low efficiency. The risk and efficiency of
the terrain traversal can be defined by characterizing remotely
observed terrains or by examining the robot experience of
the actual traversal. Observed geometrical and appearance
properties of the perceived environment can be used for a
remote characterization but the traversal cost defined as the
level of risk and locomotion efficiency needs to be based on
the robot traversal experience with the terrain.

Geometric properties such as height [13, 28], slope [6],
or roughness [16] are directly connected to the viability of
the terrain traversal. Multiple geometric properties can be
used to detect unpassable areas and describe safe terrains,
e.g., by a combined danger index in [28]. The appearance
descriptors leverage the frequency domain or the colors of
the observed areas. In [27], Gabor filters are used to describe
overhead imagery, while voxel color information is directly
utilized in [3], and color and reflectance vegetation indices are
reviewed in [36]. Appearance and geometric descriptors may
not only directly define the terrain traversal feasibility but can
also be used to learn alternative terrain characterizations such
as the terrain classification and robot experience.

Terrain classification is a task to assess the terrain into a
set of discrete terrain classes based on human labeled terrain
types [21] or to cluster unlabeled terrains [11]. Individual ter-
rain types can carry information about the terrain traversability,
e.g., an unpassable obstacle class [5]. Terrain classification
can be based on geometrical and appearance properties of
remotely observed terrains [16] but also on proprioceptive
sensing [11]. A combination of the appearance and vibration
terrain characterization is, for example, utilized in [19, 21].

Experience with the terrain traversal can be characterized
as the observed difficulty of the robot with walking over
the traversed terrain, and it can encode the tradeoff between

various measures of the traversal efficiency. The Static Sta-
bility Margin [18] and the Dynamic Stability Margin [17]
measure the stability of the multi-legged robot by observing
its support polygon, i.e., the polygon defined by its footholds,
and projection of the center of gravity. The concept of robot
stability is also related to the vehicle vibration, which may
decrease the perception accuracy, and eventually damage the
robot construction. Alternatively, the terrain traversal experi-
ence can be encoded in a performance measure such as the cost
of transport that is defined as the ratio between the consumed
energy and velocity of the robot [15, 31].

The proposed framework (described in Section IV) is tai-
lored to employ any continuous experience-based performance
measures, but for our herein presented particular setup with
hexapod walking robot, the terrain traversal risk is character-
ized as the experienced stability of the robot over a predefined
time window. However, such a traversal risk is a particular
instance for the system deployment, and thus its description
is dedicated to Section V.

III. GAUSSIAN PROCESS REGRESSION

A brief overview of the Robust Bayesian Committee Ma-
chine (RBCM) inference mechanism is presented here together
with a summary of the GP regression and BCM with GP
regressor experts to make the paper more self-contained.

GP regression is a non-parametric generalization of the
linear regression and for given noisily observed function f(x)

y = f(x) + ε, ε ∈ N (0, σ2), (1)

the GP is defined as a distribution over functions [25]

f(x) ∼ GP(m(x),K(x, x′)) (2)

characterized by its mean m(x) and covariance K(x, x′) as

m(x) = E [f(x)] , (3)
K(x, x′) = E [(f(x)−m(x)) (f(x′)−m(x′))] , (4)

for any pair of (x, x′) out of the input space X . Given
the training data (X, y) = {Xi, yi}ni=1 with the size n, the
predictive equations of the latent values f∗ for the test data
X∗ can be determined as

µ(X∗) = K∗
[
K + σ2I

]−1
y,

(σ(X∗))
2 = K∗∗ −KT

∗
[
K + σ2I

]−1
K∗,

(5)

where the notation for (σ(X∗))
2 is abused to improve the

readability and clarity of the equation, and K,K∗, and K∗∗
are covariance matrices defined as

K = K(X,X),K∗ = K(X,X∗),K∗∗ = K(X∗, X∗). (6)

The GP regression has cubic learning time complexity O(n3),
which limits its application in tasks such as the robotic explo-
ration, and therefore, less demanding approach is desirable.

The BCM [30] is a product of experts approach that allows
combining GP regressors learned on multiple datasets. Since
each of the GP regressors can be constructed independently,
the learning time complexity of the BCM with GP regressors
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Fig. 2. Overview of the proposed system for online incremental learning of the terrain traversal cost in autonomous spatial exploration.

is O((n/k)3k), where k is the number of equally sized
components of the size m, i.e., n = km. In practice, the size of
a single component m is significantly smaller than n, and thus
its processing time can be considered constant. Thus for a fixed
m and m� k we can consider O(m3k) ∼ O(k) and since k
is proportional to n, the total complexity of k regressors can
be approximately bounded by O(n), a notable improvement
over the original O(n3). The predictive equations of the BCM
with k Gaussian regression experts can be defined as

µBCM(X∗) = (σBCM(X∗))
2

k∑
i=1

(σi(X∗))
−2µi(X∗),

(σBCM(X∗))
−2 = (1− k)(K∗∗)

−1 +

k∑
i=1

(σi(X∗))
−2
,

(7)
where µi(X∗) and (σi(X∗))

2 are the means and covariances
of the individual experts. The BCM has been further improved
as the Robust BCM (RBCM) in [8]. The RBCM weights the
individual experts based on the predictive power of each expert
at X∗ and the RBCM predictive equations are

µRBCM(X∗) = (σRBCM(X∗))
2

k∑
i=1

βi(X∗)(σi(X∗))
−2µi(X∗),

(σRBCM(X∗))
−2 =

=

(
1−

k∑
i=1

βi(X∗)

)
(K∗∗)

−1 +

k∑
i=1

βi(X∗)(σi(X∗))
−2,

(8)
where the weight βi of the expert i at X∗ is defined as

βi(X∗) = 0.5
(
log(K∗∗)− log((σi(X∗))

2)
)
. (9)

Thus, βi(X∗) is the difference in the differential entropy
between the prior p(f∗|x∗) and posterior pi(f∗|x∗, Xi), where
Xi is the training dataset of the i-th expert.

IV. AUTONOMOUS EXPLORATION WITH ONLINE
INCREMENTAL TERRAIN TRAVERSAL COST LEARNING

In the addressed problem, we are motivated to build a fully
autonomous system capable of operating in a priory unknown

environment and without prior knowledge about the traversal
cost. We consider the proposed system within an autonomous
exploration setup to simultaneously build a spatial model of
the operational environment together with the traversal cost
model that is learned incrementally to increase confidence in
the cost estimation. Thus, during the exploration, the robot
reasons how to improve the spatial and traversal cost models
while it leverages on the experience accumulated in the incre-
mentally learned traversal cost model in navigating towards
spatial frontiers and avoiding costly terrains. The whole system
consists of individual modules to build the spatial environment
model, mark unpassable terrains, learn the terrain traversal cost
model characterizing traversable terrains (continuously utilized
in the determination of the next exploration goal), navigation
to the selected goal, and locomotion control.

The overall system architecture can be divided into four
main parts that are depicted in Fig. 2. Exteroceptive signals
are processed in the environment representation to localize the
robot and build a map of the robot surroundings together with
extracting terrain shape and appearance feature descriptors
that are further utilized in traversal cost model inference.
The traversal cost modeling includes the incremental learning
of the traversal cost model using the robot proprioceptive
experience coupled with the terrain descriptors. Besides, non-
traversable parts of the environment are labeled as areas with
infinite traversal cost based on the geometric features of the
created terrain elevation map to avoid unnecessary model-
based traversability assessment of unpassable areas.

The traversal cost model is employed in model inference
to build a cost map of reachable areas of the environment
together with the confidence of the estimated cost that is
utilized in the selection of the next exploration goal towards
which the robot is navigated. The system continuously gathers
new measurements and updates the current navigational goal
until no exploration goal is determined. A detailed description
of the individual parts of the system follows.

A. Environment Representation

The environment is represented as the colored 2.5D eleva-
tion grid map denoted M2.5D (see Fig. 3a), which utilizes an
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Fig. 3. Colored elevation grid map M2.5D (a); traversability grid map Mtrv (b); traversal cost grid map Mcost (c); and the respective confidence of the
traversal cost model (d). Note, Mcost characterizes only the traversable areas.

underlying quadtree data structure. Each cell ν ∈M2.5D stores
elevation and RGB color information, and it is further char-
acterized with the five-dimensional geometric and appearance
terrain feature descriptor desc(ν) that is a modification of the
terrain descriptor used in [23]. The used geometric part of the
descriptor, which is designed to distinguish the unstructured,
linear, and planar shape [16] of the terrain, is defined as

s1 =
λ1
λ3
, s2 =

λ2 − λ1
λ3

, s3 =
λ3 − λ2
λ3

, (10)

where λ1 < λ2 < λ3 are the eigenvalues of the covariance
matrix of the elevation and spatial values in the spatial δdesc-
neighborhood of the cell ν. The residual sum of the squares
feature utilized in [16, 23] is relaxed, and the two-dimensional
appearance part of the descriptor is the δdesc-neighborhood
channel means of the ab channels of the Lab color space. For
further information on the performance of individual descriptor
parts and their combinations, we kindly refer the reader to [23].

B. Traversal Cost Modeling

The main role of the traversal cost modeling is to incre-
mentally learn the traversal cost model based on the terrain
feature descriptors. The particular cost value captures the
real robot experience with the particular terrain type and it
is measured by proprioceptive sensing. The model consists
of the RBCM with GP regressor experts learned to allow
inferring the traversal cost observed by the robot from the
geometric and appearance description of the terrain. Thus, the
RBCM is augmented with the terrain descriptors paired with
the traversal cost experienced over the said terrain. Since the
RBCM with a single expert would behave similarly to the
GP; therefore, the maximal size of expert mmax is specified
as a tradeoff between the computational requirements and
achieved precision of the model. The RBCM experts are
constructed incrementally, and a new expert is allocated every
mmax observations. In particular, mmax = 50 is selected so
that a new expert is allocated approx. once per minute because
of the robot locomotion speed. Each expert thus consists of
spatially neighboring terrains. In addition, we further specify
the minimal number of observations mmin to consider the
particular expert in the inference, because small experts may
negatively spoil it with their high confidence.

In addition to the model learning, unpassable terrain areas
are marked at this stage, and the M2.5D grid map is trans-
formed into the traversability grid mapMtrv. Inspired by [37],

we determine untraversable cells using step height defined as
the maximum elevation difference of the neighboring cells.
Thus, based on the motion capabilities of the particular robot,
we specify the maximum hmax for traversable cells, and thus
cells with the step height above hmax are considered un-
traversable. Besides, considering the embodiment of the robot,
we further mark cells in the δimpassable-radius neighborhood of
such an untraversable cell also as untraversable, see Fig. 3b.

C. Model Inference

In the model inference part of the framework, the traversal
cost grid map Mcost is created combining M2.5D, Mtrv, and
the current learned terrain traversal cost model. Each cell ν′ ∈
Mcost characterizes the inferred traversal cost accompanied
with the traversal cost model confidence over the traversable
regions represented byMtrv, see Figs. 3c and 3d, respectively.
In general, the resolution of Mcost can differ from M2.5D as
the resolution affects the level of details achieved in spatial
exploration, model exploration, but also path planning, and
the most suitable resolution of the individual maps depends
on the sensor resolution and the size and step length of the
robotic platform. It might be necessary to resample maps
using terrain descriptors of M2.5D and model inference for
each grid cell that is traversable according to Mtrv. Thus, for
each traversable grid cell ν′ ∈ Mcost, the closest grid cell
ν ∈ M2.5D is determined and its terrain descriptor denoted
desc(ν) is inferred. The model inference is employed for each
traversable cell ν′ ∈ Mcost to estimate the cost using the
traversal cost model prediction mean for the descriptor desc(ν)

µ(ν′) = µRBCM(desc(ν)), (11)

and the model confidence is determined as the square root of
the traversal cost prediction variance for desc(ν)

σ(ν′) = σRBCM(desc(ν)), (12)

where high σ(ν′) signifies low model confidence.

D. Exploration

The exploration module selects the next navigational goal
location towards which the robot navigates. Different strategies
to tradeoff the spatial exploration with the model improvement
can be designed, but the proposed approach combines spatial
frontiers and traversal cost model exploration. The employed
strategy greedily improves the traversal cost by navigating to



Algorithm 1: Autonomous exploration with online incremental terrain traversal cost learning
Input: δdesc, hmax, δimpassable,mmin, rspatial, δscore, λscore – Parameters of the terrain characterizing descriptors, traversability

map, terrain traversal cost map and navigational goals.
repeat1

M2.5D ← getSpatialModel(δdesc) // Using exteroception, e.g., RGB-D data2

Mtrv ← getTraversabilityMap(M2.5D, hmax, δimpassable) // Mark untraversable areas using [37]3

RBCM← getTravelCostModel(mmin) // Get experts, each with at least mmin observationss4

Mcost ← inferModel(RBCM,M2.5D,Mtrv)5

νspatial ← getBestSpatialGoal(M2.5D,Mcost,Mtrv, rspatial) // Using cost (11) and (14)6

(νcost, score(νcost))← getBestCostGoal(Mcost,Mtrv, δscore) // Using (12) and (15)7

ν∗ ← selectNextGoal(νspatial, νcost, score(νcost), scoreThreshold) // Select the next goal using (16)8

path(νr, ν
∗)← findPath(Mcost, νr, ν

∗) // Path from the current robot position νr to the goal ν∗9

setNavigationWaypoints(path(νr, ν
∗)) // Set the path as the next navigational waypoints10

until ν∗ is ∅11

getBestSpatialGoal(M2.5D,Mcost,Mtrv,rspatial):
Fspatial ← clusterFrontiers(M2.5D) // Cluster frontiers using (13)1

Nspatial ← assignReachableCells(Fspatial,Mcost,Mtrv, rspatial) // Place reachable frontiers on Mcost2

return Dijkstra(Nspatial,Mcost) // Select the cheapest goal to reach using (14)3

getBestCostGoal(Mcost,Mtrv,δscore):
forall reachable ν ∈Mcost do1

Σ← {} // Compute score for all reachable cells2

forall ν′ ∈Mcost where ‖(ν, ν′)‖ < δscore do3

Σ← Σ ∪ σ(ν′) // Collect uncertainties for all cells in neighborhood using (12)4

score(ν)← median(Σ) // Compute the score using (15)5

return (argmax(score),max(score)) // Select the reachable cell with the highest score6

terrains that are considered unknown. If the observed terrains
are sufficiently known, the robot explores the spatial frontiers.

Spatial goal locations are determined as means of clustered
frontiers (representatives), where each cluster is a single con-
nected component of the selected frontier cells. The number
representative nr of a single component is determined as [9]

nr = 1 +

⌊
f

D
+ 0.5

⌋
, (13)

where f is the current number of frontier cells and D is
the sensor range (in the number of grid cells). The set of
frontier cells Nspatial ⊂ Mcost is created by assigning a
reachable, and thus traversable cell ν ∈Mcost that is incident
with an unexplored cell. Moreover, frontier cells closer than
rspatial = 0.4 m to the current robot position νr are also
ignored to avoid navigating to goals that the robot cannot
observe en-route. The best spatial goal νspatial is selected as
the representative with the lowest cost to be reached from
the current robot position νr. The cheapest to reach spatial
exploration goal is determined using Dijkstra’s algorithm with
the traversing cost c(νi, νj) between two neighborhood cells
νi, νj ∈Mcost based on the cost prediction (11) and Euclidean
distance ‖(νi, νj)‖ between the centers of the corresponding
grid cells νi and νj as

c(νi, νj) = ‖(νi, νi)‖ (µ(νi) + µ(νj)) /2. (14)

Dijkstra’s algorithm is preferred since we need to determine
the cost to reach all representatives, but the closest is selected.

The goal locations for the traversal cost model are grid cells
ν ∈Mcost with a high model uncertainty that is considered as
the score(ν) over δscore spatial neighborhood to characterize
the level of details in the model exploration. The value of
score(ν) for a cell ν ∈ Mcost is defined as the median of
the traversal cost predictive standard deviation (12) of the
neighboring cells

score(νi) = median{σ(νj) | ‖(νi, νj)‖ < δscore}. (15)

The cell with the highest score is selected as the next naviga-
tional goal locations for exploring the traversal cost model.

Then, a particular exploration strategy is employed, which
in our case is a preference of the model learning. Thus, the
robot prefers to explore unknown terrains (if any has been
observed) and the next navigational goal is the center of the
grid cell ν∗ selected using the decision rule

ν∗ =


νcost if score(νcost) > λscore,

νspatial if a reachable spatial goal location exists,
∅ otherwise,

(16)
where λscore is the threshold model confidence to do not
consider further improvement of the traversal cost model. The
particular value λscore needs to be set to fit the traversal costs
range and variance observed by the utilized robotic platform.

Finally, once the navigational goal ν∗ is determined, the
cheapest path is computed by Dijkstra’s algorithm using (14)



and such a path is used to navigate the robot towards the goal.
Since the robot collects new information during its navigation
in the environment, and thus it improves its spatial and
traversal cost model continuously, it is desirable to perform
the decision-making at a high rate to quickly exploit new
knowledge about the environment. Both the spatial model and
traversal cost model are independently updated in separate
execution loops defined by the maximal processing speed
of the localization and model learning. The exploration loop
needs to build (update) the traversability mapMtrv and infer a
new traversal cost mapMcost based on the spatial mapM2.5D.
Besides, the updated RBCM-based traversal cost model is
employed to determine new goals and plan the paths.

A summary of the exploration loop with the individual
parts of the model usage is depicted in Algorithm 1 together
with the list of parameters that are specified for the particular
experimental deployment in the following section.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed system for autonomous exploration with
online and incremental learning of the terrain traversal cost has
been experimentally validated in two scenarios. First, we com-
pare the performance of the RBCM with GP regressor experts
to pure GP regression on a dataset captured by the utilized
robot. Second, we deploy the system in a fully autonomous
exploration to demonstrate the online model learning and its
benefit for avoiding costly terrains experienced by the robot.

Fig. 4. The utilized hexapod walking robot and the laboratory test track.

The system is deployed on a small hexapod walking robot
operating on a laboratory test track with rough terrains (see
Fig. 4). The developed system consists of several modules and
implementations overviewed in Table I. The substantial part
of the proposed approach is the traversability cost determined
from the proprioceptive measurements. Based on the review
of existing work (see Section II), we chose stability based
traversal cost computed as the variance of the roll angle of
the sliding window spanning the robot gait cycle duration of
10 s. We found out that a high roll variance indicates the robot
cannot find firm footholds, which decreases its speed, risks
damage to its body, and also hampers the perception accuracy.

The robot has been deployed in the laboratory test track
with six selected terrains denoted flat, grass, carpet, cubes,
ramp, and stairs that display specific interaction properties
when traversed by the hexapod walking robot as follows.
• PVC flooring (flat) represents an easy to traverse terrain.
• Turf-like carpet (grass) and red carpet (carpet) are soft

terrains with faint response to the foot contact.

• Wooden blocks (cubes) with different height and slope
with the base of 10×10 cm represent a harder to traverse
rough terrain mock-up with the overall size of 2.3×1.2 m.

• Hard to traverse ramp (ramp) and wooden stairs (stairs)
with 4 cm steps inducing vibrations due to slippage.

TABLE I
INDIVIDUAL PARTS OF THE DEVELOP ROBOTIC SYSTEM

Part / Module Used Setup / Utilized Implementation

Robot Hexapod walking robot with six legs each with
three actuated joints. The robot dimensions are about
45×40 cm when standing in a default configuration,
and we set hmax = 0.2m and δimpassable = 0.25m.

Locomotion
control

We employ the available approach [10] with the mean
walking velocity of the robot around 0.05ms-1. The
robot employs the follow the carrot algorithm with
20 cm distance threshold for the path following.

Exteroception,
Proprioception

Intel RealSense D435 (RGB-D imagery, 640×480 at
15Hz), Intel RealSense T265 (localization 200Hz).

Computational
resources

Intel Core i7-8650u CPU with 16GB RAM, Ubuntu
18.04, and implementation in ROS Melodic [24].

Environment
map

Mcost grid map with the grid cell size 10 cm, which
roughly corresponds to the robot step length for a
single gait cycle, and thus we chose δdesc = 0.2m
and δscore = 0.5m to prefer larger patches of terrains.

Traversability
cost

The variance of the roll angle θroll over the sliding
window 10 s long.

A. Comparison of the RBCM and Pure GP-based Regression

In this experiment, we compare the performance of the
herein utilized RBCM with GP regressor experts with the pure
GP-based regression using real dataset collected by the used
robot in the laboratory test track. We are specifically focused
on the evaluation of the prediction abilities and computational
requirements in the online incremental learning setup, and
therefore, we consider six learning setups: the RBCM with
Exponential, Matérn 3/2, Matérn 5/2, and RBF kernels; In-
cremental Gaussian Mixture Network (IGMN) [22], which is a
representative of a broader set of fast incremental approaches;
and pure GP learned using all the available observations, which
serves as the baseline approach that is however expected to
be computationally demanding. The individual GP experts
and the pure GP model are learned using the GPy frame-
work [12], and each of the individual experts is optimized
using the limited memory Broyden-Fletcher-Goldfarb-Shanno
with boundaries (L-BFGS-B) [7] limited to 200 steps.

All the methods are evaluated on the dataset containing 292
data points of terrain descriptors paired with the corresponding
stability based traversal cost which ranges in [0.005, 0.050],
with a considerable variance over the wooden stairs. The
dataset comprises two human operated runs over the laboratory
test track. Each model is incrementally learned on the dataset;
i.e., a single observed data point is added to the model at
each learning step. Besides, at each step, the models are used
to predict the traversal cost for the whole dataset, and the pre-
diction is compared to the set of the collected measurements.
Since the selected traversal cost encodes the robot experience
with traversal of terrains, it cannot be obtained without the
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(a) The learning time observed in the RBCM experimental verification.
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(b) The inference time observed in the RBCM experimental verification.
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(c) RMSE on the full dataset observed in the RBCM experimental verification.
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(d) The model confidence represented as the model prediction standard
deviation. Note, GP uses the alternative scale.

Fig. 5. Results of the comparison of the RBCM and Pure GP-based regression.

measurement noise caused by the robot motion, and thus the
set is considered to represent the traversal cost ground truth.
We also report the time to learn and predict the traversability
costs of the whole dataset. We have processed the dataset in
100 learning-and-prediction trials, and report the mean value
to profile the proposed system and mitigate the effects of OS
scheduling, garbage collection, etc. The computational times
to learn the individual models, the inference times, and to
predict means and standard deviations are reported in Fig. 5.

The results indicate that the fastest learning method is the
IGMN, which fuses a new observation with O(1), although

the theoretical time complexity of the RBCM is the same
for the constant mmax, as only one expert of the limited size
needs to be retrained. The GP has the fusing complexity
O(n3) since it retrains the whole model at each time step.
The inference times reported in Fig. 5b slowly increase for
the RBCM as the number of experts gradually increases.
The evolution of the Root Mean Squared Error (RMSE) is
shown in Fig. 5c. The peaks in the RBCM correspond to
the influence of the newly inserted small experts with a low
number of observations, which are overly confident due to
a few observations. Thus, it is desirable to set the expert
minimum size mmin in the inference. At the end of the testing
trail, the IGMN provided similar results to most of the RBCM
variants, but the GP learned the best representation of the
terrain costs; however, the RBCM models outperform the GP
before the second traverse of the experimental mock-up when
the robot revisits already visited areas. Even though the IGMN
performs similarly to the RBCM, its main drawback is that it
does not predict model confidence. The results in Fig. 5d show
that the predictive standard deviation of the RBCM models
is considerably lower than that of the GP. Both the RBCM
and GP exhibit similar behavior when the predictive standard
deviation is lowered by adding observations, and the predictive
standard deviation for unobserved terrains is higher than the
predictive standard deviation for rough terrains with varied
traversal cost measurement.

In conclusion, the RBCM with GP regressor experts pro-
vides similar performance to the GP regressor regarding both
performance indicators, the RMSE, and the model confidence
observed on the verification dataset. Moreover, the RBCM
learning is less computationally demanding and can satisfy
the real-time requirements of the online deployment with the
real walking robot. On the other hand, the RBCM inference
time is higher, resulting in a tradeoff between the complexity
of learning and inference, with a preference on the learning
speed in the herein presented deployment. The best performing
RBCM with the size mmax = 50, mmin = 25 and the
exponential kernel is utilized in the autonomous exploration
deployment reported in the following section.

B. Autonomous Exploration

In the experimental deployment of the proposed system in
fully autonomous exploration, the laboratory test track has
been surrounded by boards and boxes to guarantee the ex-
ploration is finished within a reasonable time. The considered
terrains for this experiment are the flat ground, the wooden
cubes, the artificial grass, and red carpet. During the exper-
iment, the robot has been placed in the arena and requested
to explore the whole area and build the terrain traversal cost
model. The verification of the system performance is made by
observing the robot behavior and profiling the implementation.

During the operation, the proposed system fully exploits the
computational resources. The update rate and CPU usage for
each individual part of the system are reported in Table II.
The majority of the resources has been consumed by the
implemented exploration node that is responsible for the
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(a) Situation after partial creation of the first model component. The robot
chooses to explore the traversal cost over the wooden cubes.

(b) The robot revisits the wooden cubes to improve its model.

(c) The robot has explored the traversal cost model over all terrains it has
observed so far, and thus the system switched to the spatial exploration.

Fig. 6. Evaluation of the traversable terrain at partial time instants of the
autonomous exploration. From left: the robot position on the test track,
predicted traversal cost, and confidence of the traversal cost model.

construction of Mcost and exploration. At the beginning of
the experimental trail, the exploration node took 1.1 s to plan
a new path for a map of 219 traversable cells, in the middle
of the experiment it took 10.0 s for 793 traversable cells, and
at the end 23.2 s for a map with 910 cells. The speed of the
M2.5D update fluctuated based on the number of concurrently
updated nodes. However, the performance of the exteroception,
proprioception, model learning, and locomotion control have
been stable.

TABLE II
PERFORMANCE OF THE AUTONOMOUS EXPLORATION

Process CPU usage∗ Update rate

Exteroception 36% 15Hz

Proprioception - Traversal cost calcu-
lation

54% 200Hz

M2.5D andMtrv construction and ter-
rain descriptors calculation

98% 1–30Hz+

Model learning 61% 1Hz

Mcost inference and exploration 450% 0.05–1Hz

Locomotion control 19% –

∗ Maximal CPU usage 800% (4 cores with Hyper-threading)
+ Depending on the size of the map update

The exploration deployment has been performed several
times with similar behavior. The hexapod walking robot has
been deployed using either the adaptive motion gait [10],
which is designed to traverse rough terrains, or with the
regular gait, which is faster but less capable on rough terrains.
The value of λscore has been set to 0.001 and 0.0005 for the
adaptive and regular gait, respectively.

The behavior of the robot in the selected showcase situations
is documented in Fig. 6, and the complete evolution of the spa-
tial and traversal cost models over one trial is presented in the
accompanying video. Altogether 11 experts with mmax = 50
have been created in the total during this trial. At the beginning
of each experiment, the robot is located on the flat ground and
it is allowed to freely explore the environment. As the robot
did not yet traverse any terrain, the terrain traversal cost and
the model confidence are both uniform, and the robot chooses
to go towards the nearby spatial goal. After the first model
component is created, the robot typically explores some area
with a low model confidence (represented by a high predictive
standard deviation), e.g., the wooden cubes or the centrally
located artificial grass, see Fig. 6a. Occasionally, the robot
briefly samples traversal cost over a terrain type, and continues
on to explore another terrain that is unknown. In such a case,
the robot may return to the first terrain to further improve its
model, see Fig. 6b. If the robot has observed all the readily
available terrains, it continues with spatial exploration, see
Fig. 6c. Although it is not possible to provide ground truth
for the learned model, because it depends on the particular
trial, the robot has always identified the flat ground, artificial
grass, and red carpet as an easy to traverse, and the rough
wooden cubes as hard to traverse.

Based on the experimental deployment, we can conclude
that the robotic system presented in this paper is capable of
exploiting both the spatial and traversal cost model explo-
ration, and selects the one that suits its currently accumulated
knowledge with the preference towards traversal cost model
exploration. The system is also capable of making informed
decisions and intentionally avoid hard-to-traverse areas.

VI. CONCLUSION

In this paper, we present a robotic system for spatial
exploration that is combined with the exploration of underlying
traversal cost model over traversable terrains that is enabled by
employing the Robust Bayesian Committee Machine (RBCM)
with GP regressor experts, which learning part is less compu-
tationally demanding than the pure GP regressor, and thus it
is more suitable for online decision-making. The additional
advantage of using the RBCM (e.g., in comparison to the
IGMN) to create the terrain traversal cost model incrementally
is that it provides both the predictive mean and variance for
the observed terrains, and thus allows the robot to explore
areas of low model fidelity. The proposed approach has been
deployed in the developed robotic system and verified in
a fully autonomous exploration with the hexapod walking
robot. The reported experimental results support the robot
is capable of exploiting the spatial knowledge and make
informed decisions and intentionally avoid hard-to-traverse
terrains during the exploration. We aim to extend the approach
by incorporating a combined probabilistic representation of
the terrain traversal feasibility and terrain traversal cost, and
also consider intended robot maneuvers, because the terrain
traversability differs based on the particularly performed robot
maneuver.
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