
Robotics: Science and Systems 2019
Freiburg im Breisgau, June 22-26, 2019

1

A Modular Optimization Framework for
Localization and Mapping

José Luis Blanco-Claraco
Engineering Department

University of Almerı́a, Spain
Email: jlblanco@ual.es

Abstract—This work approaches the challenge of how to
divide the problem of Simultaneous Localization and Mapping
(SLAM) into its smallest possible constituents, in such a way
that the reusability and interchangeability of each such module
is maximized. In particular, most components in the proposed
system should be not aware of details such that whether the map
comprises a single global map or a set of local submaps, whether
the state vector is defined in SE(2) or SE(3), with or without
velocity, etc. Any number of heterogeneous sensors should be
used together and their information fused seamlessly into a
consistent localization solution. The resulting system would be
useful for researchers, easing the development of reproducible
research and enabling the quick adoption of state-of-the-art
algorithms into product prototypes. Our implementation has
been tested with different sensors against the KITTI, EuRoC,
and KAIST datasets. In this paper we focus on an introduction
to the framework and on experimental results for 3D LiDAR
odometry and mapping. LiDAR SLAM for the KITTI datasets
achieves typical translation errors of 1%–2% for most urban
sequences, while processing the data at 1.5x the real-time rate
with a reduced memory requirement thanks to our framework’s
capability to dynamically swap out from memory the parts of
the map that are not immediately required, transparently loading
them again when required. The framework will be released as
open-source at https://github.com/MOLAorg/mola

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM), structure
from motion (SfM), and visual-inertial odometry have been
the focus of an intense research work for the last decades [7].
Current state-of-the-art SLAM systems for a variety of sensors
achieve excellent performance under challenging conditions.
However, integrating an arbitrary number of sensors of dif-
ferent kinds into a unified SLAM solution remains an elusive
goal, in part, due to theoretical-level obstacles such as different
implicit assumptions of each SLAM solution regarding the
robot sensory system, the underlying geometric representation
of the map, or the model for the vehicle state vector.

At present, the closest to a general SLAM framework that
we can find are the graphical inference libraries, well-known
in the robotics community: g2o, introduced by Kümmerle
et al. [27], GTSAM, by Dellaert [12], and Google Ceres
[1]. Although they are often referred to as SLAM back-ends,
this term will be used in this work to define to role of
a SLAM component at a higher-level of abstraction than
the underlying graphical models. Despite their versatility and
popularity, there still exists a significant gap between the scope
of those two libraries and a complete SLAM system, a gap

 0

 100

 200

 300

 400

 500

-300 -200 -100 0 100 200 300
z

[m
]

x [m]

Ground Truth
 SLAM

Sequence Start

(a) KITTI seq. #00

-100

 0

 100

 200

 300

 400

-200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
 SLAM

 Sequence Start

(b) KITTI seq. #05

-200

-100

 0

 100

 200

 300

 400

 500

 600

-400 -300 -200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
 SLAM

 Sequence Start

(c) KITTI seq. #08

 0

 100

 200

 300

 400

 500

-200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
 SLAM

 Sequence Start

(d) KITTI seq. #09

Fig. 1: Final maps obtained by the proposed system for a
subset of the KITTI odometry datasets. Refer to the text
(section VI-B) for details.

that the present proposal intends to fill. On the other hand,
one can find integrated systems which built upon the former
graphical inference libraries to provide SLAM solutions; they
are described in section II.

Next follows a summary of the main design goals addressed
with the proposed system, whose open-source implementa-
tion is dubbed MOLA (Modular Optimization framework for
Localization and mApping): Having a unified mathematical
framework (and C++ API) for SLAM, decoupled from the
use of SE(2) or SE(3) poses, or the choice between a global
map or relative submapping; Ensuring the reusability of each
component of a SLAM system, e.g. an ORB-based vision
loop-closure detector such as [19] should be usable no matter
whether the main map is built from LiDAR or visual-based
SLAM; Supporting different sensors: 2D and 3D LiDAR,

monocular and stereo cameras, odometry, IMU, and GPS;
Allowing the user to select among different state vector repre-
sentations: only poses, poses and linear velocity, or poses and
linear and angular velocity; Having built-in support for relative
coordinates (i.e. submapping), also allowing the storage of se-
mantic information and a hierarchical representation of maps;
Support for the most common map entities (structure-less,
point landmarks, lines, planes), extensible by the user to other
types; Supporting different optimization modes: smoothing vs.
batch optimization; Having convenience tools: built-in stack
trace reports on exceptions, detailed performance reports of
each code segment, etc; Exposing a uniform API to SLAM
modules, independently of sensory data coming from a live
sensor or one of the major dataset formats (i.e. KITTI [20],
EuRoC [6], ROS bag’s, MRPT rawlog’s); Transparently swap-
ping out from dynamic memory, and back in when required,
the largest part of data associated with map areas that have
not being recently accessed.

The rest of this article is organized as follows. First,
section II reviews the most prominent related works. In
section III, we address the question of how to divide a
SLAM system into modules to maximize the overall versatility
and reusability, while section IV exposes the mathematical
details of how to express different flavors of a SLAM system
in the unifying framework of factor graphs. Some of the
currently-implemented modules in our system are described in
section V, experimental results are shown in section VI, while
section VII ends with some final remarks and discussion of
future works.

II. RELATED WORKS

Only a selection of works that are useful to motivate
the need for a versatile SLAM framework are discussed
next. More comprehensive reviews can be found elsewhere
([3, 21, 13, 7]).

A. Visual SLAM

Regarding monocular visual SLAM, Montiel et al. [29]
proposed an EKF-based solution where visual landmarks are
modeled as points parameterized by polar coordinates with
inverse depth, dramatically improving the statistical validity
of the unimodal Gaussian error model for landmarks.

Monocular SLAM (without any additional sensor) has the
limitation of not being able to solve for the scale of the map.
Workarounds have been proposed for the case of cameras
attached to vehicles with non-holonomic constraints, with
Scaramuzza et al. [33] proposing exploiting such constrains to
solve for the scale, when the vehicle moves with a curvature
large enough to render the scale observable.

The kinematics of the camera, i.e. its linear (v) and angular
(ω) velocities, have been accounted for since the earliest
successful MonoSLAM system [11, 26], for the key advan-
tage that this information represents while solving the data
association. In a recent seminar paper, Leutenegger et al. [28]
proposed a visual-inertial SLAM solution where the camera
state vector is augmented to account for the IMU biases,

with a formulation that allows IMU measurements to be inte-
grated into regular least-squares optimizers seamlessly. Their
method renders SO(3) attitude increments and R3 velocity
increments directly observable, except for a gauge freedom for
the symmetry around the gravity vector. In any case, it reduces
the seven degrees of gauge freedom of monocular SLAM
[36] to only four degrees [42]. It also proposed a sliding-
window optimizer where past poses and past IMU biases are
marginalized out to keep the system complexity tractable. This
idea was further improved with the introduction of a formal
Lie group formulation for IMU factors in [17], reusing the
concept of smart factors formerly introduced in [8].

The ORB-SLAM system, presented in [32, 31], comprises
visual front-ends capable of tracking FAST features and effi-
ciently matching them between consecutive and distant key-
frames by comparing their associated ORB descriptors, using
bags of binary words [19] for efficient place recognition.
Landmarks are parameterized as points in Euclidean absolute
coordinates, with the highly non-linear problem of monocular
initialization dealt with by means of a special algorithm that
ensures that mapping is not started until the parallax is enough
to avoid numerical instabilities. The maplab framework [34] is
another C++ extensible system aimed at researchers in visual-
inertial SLAM.

Noteworthy are the so-called direct and semi-direct methods
to visual SLAM [10, 16], which directly minimize the pho-
tometric reprojection error of all (or most part of) the image
pixels to optimize for pose changes over time, in contrast to the
more traditional approach based on a discrete set of features,
i.e. points, lines, or planes. Finally, it must be also stressed
that visual SLAM is possible using arbitrary rigid objects as
features, e.g. see [38].

From this brief review, it is clear that the map model may
include features or not (the so called structure-less problem),
it may include just the SE(3) pose of the robot for each time
step, or it may also hold additional kinematic information, or
even IMU-related parameters, i.e. biases. All this has been
accounted for in the proposed framework.

B. LiDAR SLAM

Despite the exceptional importance of vision-based SLAM,
many other sensors have been used in the SLAM literature.
LiDAR, in its 2D and 3D versions, irrupted into the main-
stream robotics community about three and one decades ago,
respectively, and their accuracy and robustness still make them
an excellent sensor for mapping and localization, hence their
popularity.

Current 3D LiDARs provide a large amount of raw infor-
mation, which is typically first converted into 3D pointclouds
before any further post-processing and interpretation. By their
nature, feature-based SLAM is seldom applied to LiDAR point
clouds; instead, it is more common to address SLAM in its
structure-less version (with names such as pose-SLAM or
graph-SLAM [21]) where each pointcloud is registered to
its neighbors and the relative poses inserted as SE(3) pose
constraints into the graph [41]. A popular implementation of

Velodyne-based SLAM is LOAM, introduced by Zhang and
Singh [41]. Google Cartographer [22] and SegMap Dubé et al.
[14] are other public SLAM frameworks for 2D/3D LiDARs.

The LiDAR module proposed in the present paper (see
Section V) has many similarities to the aforementioned work
Zhang and Singh [41], although our modular C++ interface
between raw sensors and front-ends makes it possible to
fully exploit features such as the natural ordering of point
clouds into rings (one per individual laser in a 3D LiDAR),
something that is not possible with the current publicly-
available implementation of LOAM. Furthermore, it makes
straightforward to use more than one LiDAR onboard, in
contrast to existing implementations.

C. Map management

The idea of using local maps instead of a single, absolute
frame of reference is recurrent in the literature. For exam-
ple, Clemente et al. [9] uses an EKF to build local maps
from monocular images, then merges them in a hierarchical
manner. Eade and Drummond [15] also achieved a successful
real-time monocular SLAM system based on a hierarchical
decomposition of the map into submaps, which they called
nodes. Relative bundle-adjustment has been also proposed in
[4, 35]. In section 3 we introduce a unifying view of how
different sensor front-ends can interact with the SLAM back-
end in a way that is independent of whether absolute or local
coordinates are used, and for the latter case, what particular
policy is followed to split the world into submaps. Our solution
represents a pragmatical tradeoff between “classic” key-frame-
based pose-graph in global coordinates [27] and continuous-
time relative SLAM [2]. The result is equivalent to one of
the applications of smart factors, as introduced by Carlone
et al. [8], for summarizing long sequences of poses with a
selected set of “key-frames” to be optimized, although without
explicitly removing the intermediary poses, which would still
remain inside their corresponding submaps.

Walcott-Bryant et al. [40], among others, focuses on the
particular problem of pose graph maintenance for non-static
environments. That work proposed an algorithm for detecting
segments in the sequence of key-frames that can be safely
removed when they represent parts of the environment that
has changed and, therefore, are not useful for localization.
Our framework takes into account the important observation
that no key-frame should be used as a reference frame (neither
global nor for its submap), since all key-frames are subject to
an eventual deletion. Hence our proposal for a different kind
of map entity for reference purposes only (see Section III).

D. Optimization

Strasdat et al. [37] showed that batch optimization (i.e.
“bundle adjustment” [39], or “Graph-SLAM” [21]) achieved
better accuracy in comparison to filtering for most large-
scale SLAM problems; hence, our framework must (and does)
support both, batch optimization and smoothing [25]. Filtering
is left as a potential future work. The foundations of least-
squares minimization, Gauss-Newton or Levenberg-Marquartd

algorithms, are well-known and explained elsewhere [36, 27],
as they are their extensions, by means of Lie group “retrac-
tions”, to non-Euclidean state spaces [17].

III. FACTORING OUT SLAM: THE MOLA ARCHITECTURE

Once the last section has given a brief overview to the most
relevant ways in which SLAM has been addressed, this section
introduces a rationale of why a SLAM solution should be split
into modules, exposing the proposed software architecture.
Note that currently-implemented modules are introduced in
Section V.

A. General overview

An overview of the proposed MOLA architecture is given
by Figure 2(a). Firstly, we define the MOLA system as a
set of modules, each module being the instantiation of a
particular C++ class implementing the ExecutableBase
interface. Based on the differentiated role of each module
in the SLAM system, a number of prototypical virtual base
classes are provided for users to define their own modules of
each type, ensuring the existence of a common API as the key
for compatibility, easy reusability and interchangeability. The
system loader is in charge of interpreting a SLAM-problem
configuration file, loading the required libraries, finding and
creating the required modules and launching their life cycle
routine. It also allows running modules to find each other (ei-
ther by name or by service type) for peer-to-peer connections
to be established and allow the information and signals to flow
forth and back throughout the system.

Note that the entire system is designed as a single pro-
cess, with each module being run in at least one thread,
and message passing occurring with a zero-copy protocol by
means of std::shared_ptr<> smart pointers. As illus-
trated in Figure 2(b), all modules inherit from a common base,
ExecutableBase, which provides them a standardized life-
cycle that allows an ordered system start-up and tear-down, the
opportunity to work synchronously by running an algorithm at
an exact constant rate –in spin_once()– or to dynamically
react to incoming data or service requests by means of events,
which may be attended immediately (blocking) or deferred to
a per-module thread pool (non-blocking).

The entire system is accessible to a robotics researcher or
application developer in two modes: from the command-line
program mola-cli, which takes a SLAM problem definition
file and executes it, or directly using the MOLA system loader
as a C++ library that can be configured programatically.

Note that system dependencies were kept as reduced as
possible, considering the ambitious scope of the proposal. In
particular, MOLA depends on GTSAM and MRPT and re-
quires a C++17 compiler. ROS1 and ROS2 were intentionally
left out as optional dependencies, allowing the interconnection
of a MOLA system with a ROS ecosystem but not imposing
it as mandatory.

MOLA System Loader

User applicationsmola-cli (...)

Other MOLA tools

(...)

L
i
b
r
a
r
i
e
s

Sensor
#1

...

Sensor
#N

Inputs Front-ends SLAM back-end

Lidar
front-end

Stereo
front-end

IMU
front-end

...

Global or
Relative

SLAM back-end

Graph
optimizer

Map storage

World model

Entities

Relations

Outputs

Map
visualizer

ROS
publisher

...

(a)

Constructor

initialize_common()

initialize()

shutdown()?

Wait for desired
spin rate

spin_once()

no

yes

onQuit()

Destructor

onEventXX()

doXXX()

return T

return
std::future<T>

T
h
r
e
a
d

p
o
o
l

(b)

Fig. 2: (a) A typical set-up with the proposed modular SLAM architecture. Refer to Section III for discussion. (b) Module
life-cycle, as imposed by the common base class ExecutableBase. In most modules, API calls can be attended either
synchronously (blocking) or asynchronously (non-blocking) on a local worker threads pool, in which case std::future<T>
objects are used for inter-module synchronization. Refer to Section III for discussion.

B. MOLA arquitecture

Next, we describe the rationale behind why the SLAM
system, inside the dotted box in Figure 2(a), is split into
modules.

Starting from the leftmost side, we find input modules. They
provide the raw data from either real sensors (e.g. cameras,
GPS readings, odometry) or from offline datasets. Each input
module can publish one or more kind of observations, pieces
of timestamped raw sensory data. One sensor output can be
used by several consumers, and each consumer subscribed
to more than one sensor. Each kind of sensor has its own
standardized C++ class that includes the raw data and key
calibration data, e.g. distortion parameters for images, or pose
within the vehicle body for a LiDAR or IMU. Redundant as
it might seem, keeping the calibration and raw data together
makes any data consumer independent of knowing details
about the exact sensory system, avoiding the need for sensor-
related configuration parameters on all modules except those
directly in charge of accessing them.

Following the direction of the data stream to the right, we
find the layer of SLAM front-ends. These are the most hard-to-
develop modules in the system, in charge of taking raw data
and converting them into SLAM API calls (see Table I) to
the SLAM back-end. The easy reusability of these front-ends,
allowing several of them (of the same or different kind) to
run concurrently depending on the number and kind of sensors
installed on a robot or vehicle, and still feeding a single SLAM
solver, is probably the single most significant contribution of
the proposed system.

There should be only one SLAM back-end module in any
given system (except if used for multi-robot SLAM), providing
a particular mapping between MOLA SLAM API calls and an
underlying graphical model. As discussed in Section IV, basi-
cally we can devise two options: SLAM in global coordinates,

addKeyFrame() Creates a Key-frame in the World-
Model, or returns an existing one for a
matching timestamp if another sensor
front-end already created it.

addFactor() Creates a constraint (factor in a factor
graph) of the given type and between
the given variables. Note that factors at
this level are abstract since the partic-
ular state-space (SE(2) vs SE(3), etc.)
is unknown.

advertiseLocalization() Publish a current pose estimate with
respect to any existing key-frame.

onSmartFactorChanged() Notify the change in the internal data
of a smart factor [8], which summa-
rizes multiple individual factors and
variables.

TABLE I: Excerpt of key SLAM API calls that a front-end
can invoke in a SLAM back-end.

and SLAM with submaps. Notice that, in any case, the front-
end will not notice the difference. Table I gives a glimpse into
the kind of interactions that are possible between front-ends
and back-ends.

Finally, the World Model module stores what is normally
known as the “map” itself, although it is done in a way
generic enough to allow the maximum number of SLAM
algorithms to work with it. The World Model comprises two
sets of objects: entities and relations, which most often can
be thought of as directly mapping to variables and factors
of a factor graph. Most common 3D entities are: RefPose3
(a frame of reference), RelPose3 (a relative pose, such as
the relative pose of a sensor on a vehicle in a self-calibration
SLAM problem), RelPose3KF (a robot key-frame, relative
to a frame of reference), a RelKinPose3KF (a key-frame,
with velocity information), or LandmarkPoint3 (a point
landmark). Section IV will show how a real SLAM problem
can be written down as different combinations of these entities

x(t0)

x(t1)

x(t2)
x(t3)

x(t4)x(t5)

f1

f2

f3f4

(a) Physical entities

wx0
wx1

wx2
wx3

wx4wx5

wf1

wf2

wf3
wf4

w

(b) SLAM in global coordinates

wx0

fprior(x0)

wx1 wx2 wx3 wx4

ffeat(f1)

wx5

ffeat(f2)

ffeat(f3)

ffeat(f4)

(c) Global SLAM: Factor graph

wx0

fprior(x0)

wx1 wx2 wx3 wx4

ffeat(f1)

wx5

ffeat(f2)

ffeat(f3)

ffeat(f4)

fkin fkin fkin fkin fkin

(d) Global SLAM: Factor graph incl. kinematics

ax0

ax1
ax2

ax3

bx4bx5

af1

af2

bf3
bf4

a

b

apb

(e) SLAM in relative coordinates

ax0

fprior(ax0)

ax1 ax2 ax3 bx4

ffeat(af1)

bx5

ffeat(af2)

ffeat(bf4)

apb

ffeat(bf3)

fprior(bx4)

(f) Relative SLAM: Factor graph

wx0 wx1

wf1

w wf2

wx2 wx3

Sensor
#1

Sensor
#2

(g) Set-up with two asynchronous sensors

wx0

fprior(x0)

wx1 wx2 wx3

ffeat(f1) ffeat(f2)

fkin fkin fkin

(h) Two sensors + kinematic model: Factor graph

Fig. 3: Different parameterizations of a SLAM problem, together with their corresponding factor graphs. See Section IV.

and factors for absolute and relative SLAM. The most common
relation used in this paper is FactorRelativePose3, a
relative pose constraint between two key-frames. Note that re-
lations can be used to reflect semantic information in addition
to those having a pure geometrical meaning, e.g. the inclusion
of several key-frames into a place with a significance for
human users, such as ”kitchen” or ”bedroom” [18]. Keyframes
keep accurate timestamp information and the raw sensory data
captured by the robot at that instant. Pure metric maps, such
as point clouds, occupancy grids, octomaps, etc. can be always
recovered from these data, hence they are not explicitly stored
in the map. Those key-frames whose raw sensory information
has not been accessed by any front-end or back-end during a
certain time frame, are swapped out to disk using an efficient
binary serialization protocol, and are transparently re-loaded
when needed later one, e.g. when closing a large loop. This
is only possible if the map is stored in its own independent
module.

IV. GRAPHICAL MODELS

In this section we discuss how a SLAM problem can be
modeled as different factor graphs depending on the choice
for: (a) global vs. relative coordinates, and (b) components of
the state-vector. SLAM back-ends in the proposed system are
in charge of converting SLAM API calls like those in Table I
into their corresponding graphical models. Users could extend
the possibilities in the future, if so needed, by modifying the
existing backend modules or writing new ones from scratch.

Consider the SLAM problem in Figure 3(a), with a camera
describing a trajectory while observing four landmarks. Firstly,
our system assumes a discrete time implementation, hence the
need to define key-frames whenever the front-end so requests
it. A representation of the problem in global coordinates is
shown in Figure 3(b): a reference frame w is created as
the absolute frame of reference (this is what a RefPose3
means in the WorldModel), and the i-th key-frame is defined
as a relative pose wxi with respect to it. Each such variable

can be a SE(2) or SE(3) pose, or the Cartesian product of
such manifolds with the kinematic variables wvi (R3 velocity
vector w.r.t. w) and bωi (R3 angular velocity vector w.r.t. body
frame). Notice that the cost of including the angular velocity
into the state vector is not worth when an IMU is available.

In the particular case of not including kinematic variables in
the state vector, a global SLAM problem such as Figure 3(b)
should be mapped into the factor graph in Figure 3(c), with a
prior factor for the first key-frame and with one smart factor
per observed feature. Alternatively, landmarks could be also
added as variables and simple factors added for each pose-
landmark observation, but this approach is generally more
costly for large maps [8]. If kinematics are to be included into
the state vector, the SLAM back-end will add kinematic factors
between consecutive key-frames, as shown in Figure 3(d). Our
current implementation employs a constant-velocity factors as
kinematic constraint, with the following error function:

h1(xi,xj) =

�
pi + viδt − pj

vj − vi

�

6×1

(1)

where xi = (Ri,pi,vi) is the state vector for the i-th key-
frame, δt is the time interval between both key-frames, and
with Jacobians:

∂h1

∂pi
=

�
I3
03

�
∂h1

∂vi
=

�
δtI3
−I3

�
(2)

∂h1

∂pj
=

�
−I3
03

�
∂h1

∂vj
=

�
03

I3

�
(3)

In case of a kinematic state-vector that includes the angular
velocity bωi to model the evolution of the SO(3) orientation
Ri over time, we would need to use the equation, from rigid-
body kinematics, Ṙi = Ri

bωi, which using a first-order
approximation would lead to the following error function for
a constant velocity model:

h2(xi,xj) =

log
�
R−1

j Ri exp
�
bωi δt

��

pi + viδt − pj

vi − vj

Ri
bωi −Rj

bωj

12×1

(4)

Relative pose factors follow the common practice of being
linearized on the SE(3) Lie-group retraction (typically, the
matrix logarithm) for residuals M−1

ij P−1
i Pj , with Mij , Pi,

and Pj being the SE(3) matrices for the measurement and the
i-th and j-th key-frame estimated poses, respectively.

If using a relative SLAM backend, the problem of Fig-
ure 3(a) should be mapped into something like Figure 3(e).
In this example, there are two frames of coordinates (a and
b), each being the frame of reference of the key-frames in
its own submap. Regarding the corresponding factor graph, in
Figure 3(f), notice the inclusion of two prior factors (one for
each submap), and the existence of a new variable to model
the relative pose of the submaps. Factors for landmarks seen
from key-frames in different submaps will depend on these

relative-pose variables as well, rendering the underlying linear
problem Hessian matrix less sparse. Therefore, a criterion to
split key-frames into submaps should be the minimization of
co-visibility across submap boundaries.

Note that enhancing the state-vector with kinematic infor-
mation, and using a kinematic model (e.g. constant-velocity)
automatically solves the otherwise indeterminate problem of
fusing information from asynchronous sensors without shared
landmarks, e.g. when they observe disjoint parts of the en-
vironment, a set-up sketched in Figure 3(g). As shown in
the factor graph of Figure 3(h), it is only by means of the
kinematic factors that information can be shared between the
otherwise independent sequences of poses.

V. IMPLEMENTED MODULES

This section briefly introduces some of the key libraries and
modules that are available in our open-source implementation.
mola-kernel library: It comprises the WorldModel

module, and declarations of the most-common entities and
relations, as well as the generic containers Entity and
Relation, implemented as C++17 std::variant to al-
low the efficient storage of large number of such objects
without dynamic memory, but retaining the advantages of
polymorphism. A special type is also included into the variant
to allow for user-defined types, at the cost of being allocated
dynamically.

Module G2ODataset: Allows reading a G2O plain-text
file with a SLAM problem, and re-plays it, by mapping the
vertex and edge definitions into MOLA SLAM API calls.

Module EurocDataset, KaistDataset, and
KittiOdometryDataset: Provide image, LiDAR,
and IMU readings from the EuRoC [6], Kaist [24], and the
KITTI datasets [20], respectively.

Module GenericSensor: An interface to
mrpt-hwdrivers generic sensor classes, allowing
the direct connection of many kinds of monocular and stereo
cameras, IMU sensors, SICK and Hokuyo scanners, and
OpenNI-enabled RGB-D cameras. Noteworthy is the support
for Velodyne LiDARs, both live or from offline PCAP logs,
including support for dual-return scans.

Module PreintegratedIMU: A front-end to parse raw
IMU data and feed a preintegrated IMU smart factor.

Module ASLAM_gtsam: An implementation of a SLAM
back-end for absolute coordinates, based on the GTSAM
library. A number of custom factors have been defined to
map the different kinematic models described above. The user
can select two solver modes: a full batch estimator (based on
Levenberg-Marquardt), or the iSAM2 smoother.

Module VisualORB_Stereo: A front-end to handle
stereo cameras. It takes stereo image, rectifies them if needed,
and looks for FAST features, matching them by their ORB
descriptors. We have experimented with two working modes:
(a) by using a local feature optimizer and sending the resulting
SE(3) pose constraints to the SLAM back-end, and (b), by
directly storing visual smart factors in the World Model and re-
lying on the SLAM back-end solver. Preliminary results shown

(a)

200 400 600 800 1000

20

40

60

80

Time step

SL
AM

so
lv

er
co

st
(m

s)

(b)

Fig. 4: (a) View of the final 3D map obtained for the “garage”
dataset from [27]. (b) Computational cost of the SLAM solver.

in the accompanying video are for the former alternative, but
we expect the latter to eventually become the definitive, most
robust solution.

Module LidarOdometry3D: A front-end to perform
odometry and mapping from 3D point clouds from a Velodyne
LiDAR or alike. A direct use of ICP for such point clouds
leads to unacceptable results due to both, computation time,
and accuracy. In particular, the strong differences in sample
densities inherent to 3D radial scanners may lead to poor
alignments if nearby points dominate the cost function. To
overcome this, we devised a multi-layer ICP algorithm, where
each pointcloud to be registered is split into three layers
(“edges”, “planes”, and “raw-decimated”) and each layer is
registered against points in its corresponding layer on the
other pointcloud. For each input pointcloud, we divide the
3D space into a regular grid of voxels (of 1× 1× 1 meters),
and all points in each voxel are firstly decimated and then
stored into one of the layers depending on a classifier. In
particular, each voxel is classified as either edges or planes by
checking the ratio between the largest and smallest eigenvalues
of the covariance matrices that model the dispersion of points
in the voxel. Finally, all voxels are also stored into the
“full-decimated” layer. The intuition behind this algorithm,
inspired by [41], is that by drastically reducing the number of
potential candidates for each subset of points, the alignment
can be done much more efficiently, and with a higher chance
of selecting a correct match for each point. We use KD-
trees to look for candidate pairings in each layer, and store
the point-clouds (and their precomputed KD-trees) in the
WorldModel key-frames, to ease posterior checks for potential
loop-closures, triggered by the detection of key-frames within
a given threshold distance whose topological distance in the
WorldModel graph (computed with the Dijkstra algorithm) is
large enough to look like a loop-closure candidate. Checks
for loop-closures and additional SE(3) constraints with past
key-frames are queued in a worker thread pool to avoid
delays in the LiDAR odometry. Most of this functionality (i.e.
odometry, loop closure, classifier) will be split into different
modules to increase the possibilities of researchers improving
the whole 3D LiDAR frontend. At present, at the core of the
ICP algorithm we use the OLAE method [30], an alternative to
the well-known Horn’s quaternion method [23], but relying on
the Gibbs/Rodrigues vector and allowing the direct integration

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

140

Time step

W
ho

le
 p

ro
ce

ss
in

g
tim

e
(m

s)

(a)

20 40 60 80 100 120 140
0

500

1000

1500

2000

Point cloud registration cost (ms)

(b)

Fig. 5: Selected performance results from our LiDAR front-
end processing the KITTI seq. #00.

of plane normals and line directions seamlessly with point-to-
point correspondences. More details on this proposed scheme
can be found in a separate technical report [5].

VI. EXPERIMENTAL RESULTS

This section exposes some results obtained with the pro-
posed SLAM system for different datasets and set-ups. All per-
formance statistics have been collected using the MOLA built-
in profiling system, which enables the optional generation of
detailed performance reports for most function calls. Reported
CPU times are for an Intel Core i7-3770 at 3.40GHz. The
MOLA system creates about 20 threads for each experiment,
but the average number of active threads is within 1 and 4, with
most other threads being only briefly active for GUI updates
and to allow asynchronous API calls. The accompanying video
illustrates these experiments, as well as preliminary results for
stereo SLAM.

A. Garage G2O dataset

The results in Figure 4 illustrate the final map obtained for
the “garage” dataset [27] (in G2O format), together with the
cost of updating the smoother (iSAM2) for each time step
inside the ASLAM_gtsam module.

B. LiDAR-based odometry & SLAM

We validated our entire system, and in particular the LiDAR
odometry and mapping front-end, with the KITTI datasets. The
configuration of the MOLA system is defined in Listing 1, and
some example maps (compared to ground-truth) are shown in
Figure 1. The translation errors for each dataset sequence have
been evaluated using the scripts provided by Geiger et al. [20],
and are summarized in Table II. It can be seen that our method
performs well in urban, quasi-static environments, with an
excellent rotational error in all cases and a translation error
in the range 0.4% to 2.0% for 9 out of the 11 sequences. The
large error in Seq. 01 is due to a vehicle overtaking at the
highway in a particularly feature poor segment.

Regarding the real-time performance of the LiDAR front-
end, Figure 5(a) shows how one entire iteration of our front-
end takes an average of 60 ms, allowing processing the original
KITTI LiDAR data stream at almost twice its original rate of
10 Hz. Figure 5(b) shows the histogram (and the average value
as a vertical line) for one of the most important piece of the

Seq. no. 00 01 02 03 04 05 06 07 08 09 10
Trans. error (%) 1.09 % 12.8 % 1.37 % 1.32 % 1.98 % 0.81 % 0.38 % 0.88 % 1.59 % 1.59 % 4.09 %

TABLE II: Summary of translation and rotation errors for the KITTI datasets using the LiDAR sensor only.

0 50 100 150 200 250
0

100

200

300

Time (s)

x(
t)

0 50 100 150 200 250
-15

-10

-5

0

5

10

15

vx
(t)

0 50 100 150 200 250

-200

-100

0

100

Time (s)

y(
t)

0 50 100 150 200 250
-10

-5

0

5

10

vy
(t)

Fig. 6: An extract of pose and kinematic state (velocities)
estimated by our generic SLAM back-end for the KITTI #00
sequence when selecting a the DynSE3 state vector model.

front-end: the multi-layer ICP algorithm. Regarding the voxel-
based filter to classify incoming point-clouds voxels into edges
and plane patches, its average processing time is 5 ms.

C. Kinematic model

To demonstrate how the state-space of the SLAM solution
can be easily changed in the proposed framework, we replaced
SE3 with DynSE3 in the state_vector parameter of the
SLAM back-end in Listing 1, and re-processed the KITTI seq.
#00. As a result, the state space for each timestap xi is ex-
tended with velocity information, which is then automatically
estimated using the constant velocity model discussed above;
refer to Figure 6 for a plot of the estimated velocity.

D. Smart memory management

Finally, Figure 7 illustrates how the memory requirement
of our LiDAR mapping solution is drastically reduced from
4 GiB to 0.5 GiB thanks to the automatic map swapping-out
mechanism implemented in the WorldModel module. This is
a key feature required when handling maps of large areas, e.g.
for autonomous vehicle navigation.

VII. CONCLUSION AND FUTURE WORKS

This paper presented a proposal for a factorization of
SLAM into a set of so-called “modules”, with their roles and
interfaces designed such that their reusability is maximized for
a large number of possible combinations of SLAM problems.
Experimental validation has demonstrated that the system
is functional in its present form and capable of processing
LiDAR datasets. Future works include the completion of a
relative-SLAM module, and the development of modules for
other sensors such as odometry, GPS, IMUs, monocular, and
stereo cameras.

modules:
- name: backend # -- SLAM back-end --

type : ASLAM gtsam
e x e c u t i o n r a t e : 1 # update rate [Hz]
params:
iSAM2 vs Lev-Marq
u s e i n c r e m e n t a l s o l v e r : t rue
s t a t e v e c t o r : SE3

- name: map # -- World Model --
type : WorldModel
params:

age to unload key−frames : 50 # [s]
- name: l i d a r f e # -- SLAM front-end --

type : LidarOdometry3D
raw data source : k i t t i i n p u t
r a w s e n s o r l a b e l : l i d a r
params:
...

- name: k i t t i i n p u t # -- Data sources --
type : K i t t i O d o m e t r y D a t a s e t
e x e c u t i o n r a t e : 50 # Hz
params:

b a s e d i r : ${KITTI BASE DIR}
sequence : 00
t ime warp sca le : 1 . 5

Listing 1: Example configuration (YAML) file for running
LiDAR odometry/SLAM on sequence 00 of the KITTI dataset.

100 200 300 400 500 600 700 800
Time step

0

1000

2000

3000

4000

M
em

or
y

us
ag

e
(M

iB
)

Fig. 7: Dynamic (heap) memory use during the LiDAR
mapping process for KITTI-00, without (solid) and with
(dashed) the automatic swap-out mechanism featured by the
WorldModel module.

REFERENCES

[1] Sameer Agarwal, Keir Mierle, et al. Ceres solver. 2012.
URL http://ceres-solver.org/.

[2] Sean Anderson, Kirk MacTavish, and Timothy D Bar-
foot. Relative continuous-time slam. The Interna-
tional Journal of Robotics Research, 34(12):1453–1479,
2015. URL http://journals.sagepub.com/doi/abs/10.1177/
0278364915589642.

[3] Tim Bailey and Hugh Durrant-Whyte. Simultaneous
localization and mapping (slam): Part ii. IEEE Robotics
& Automation Magazine, 13(3):108–117, 2006.

[4] José-Luis Blanco, Javier González-Jiménez, and Juan-
Antonio Fernández-Madrigal. Sparser relative bundle
adjustment (srba): constant-time maintenance and local
optimization of arbitrarily large maps. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 70–77. IEEE, 2013. URL https://ieeexplore.ieee.
org/abstract/document/6630558/.

[5] José-Luis Blanco-Claraco. OLAE-ICP: Robust and fast
alignment of geometric features with the optimal linear
attitude estimator. arXiv preprint, 2019.

[6] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas
Schneider, Joern Rehder, Sammy Omari, Markus W
Achtelik, and Roland Siegwart. The euroc micro aerial
vehicle datasets. The International Journal of Robotics
Research, 35(10):1157–1163, 2016.

[7] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif,
Davide Scaramuzza, José Neira, Ian Reid, and John J
Leonard. Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception
age. IEEE Transactions on Robotics, 32(6):1309–1332,
2016.

[8] Luca Carlone, Zsolt Kira, Chris Beall, Vadim Indelman,
and Frank Dellaert. Eliminating conditionally indepen-
dent sets in factor graphs: A unifying perspective based
on smart factors. In IEEE International Conference
on Robotics and Automation (ICRA), pages 4290–4297.
IEEE, 2014.

[9] Laura A Clemente, Andrew J Davison, Ian D Reid,
José Neira, and Juan D Tardós. Mapping large loops
with a single hand-held camera. In Robotics: Sci-
ence and Systems, number 2, 2007. URL http://www.
roboticsproceedings.org/rss03/p38.pdf.

[10] Andrew I Comport, Ezio Malis, and Patrick Rives. Real-
time quadrifocal visual odometry. The International
Journal of Robotics Research, 29(2-3):245–266, 2010.

[11] Andrew J Davison, Ian D Reid, Nicholas D Molton,
and Olivier Stasse. Monoslam: Real-time single camera
slam. IEEE Transactions on Pattern Analysis & Machine
Intelligence, 29(6):1052–1067, 2007.

[12] Frank Dellaert. Factor graphs and gtsam: A hands-
on introduction. Technical report, Georgia Institute of
Technology, 2012.

[13] Gamini Dissanayake, Shoudong Huang, Zhan Wang, and
Ravindra Ranasinghe. A review of recent developments

in simultaneous localization and mapping. In Industrial
and Information Systems (ICIIS), 2011 6th IEEE Inter-
national Conference on, pages 477–482. IEEE, 2011.

[14] Renaud Dubé, Andrei Cramariuc, Daniel Dugas, Juan
Nieto, Roland Siegwart, and Cesar Cadena. Segmap: 3d
segment mapping using data-driven descriptors. arXiv
preprint arXiv:1804.09557, 2018.

[15] Ethan Eade and Tom Drummond. Monocular slam
as a graph of coalesced observations. In IEEE 11th
International Conference on Computer Vision, pages 1–
8. IEEE, 2007. URL http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.141.6056&rep=rep1&type=pdf.

[16] Christian Forster, Matia Pizzoli, and Davide Scaramuzza.
Svo: Fast semi-direct monocular visual odometry. In
IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 15–22. IEEE, 2014.

[17] Christian Forster, Luca Carlone, Frank Dellaert, and
Davide Scaramuzza. On-manifold preintegration for real-
time visual–inertial odometry. IEEE Transactions on
Robotics, 33(1):1–21, 2017.

[18] Cipriano Galindo, Alessandro Saffiotti, Silvia Corade-
schi, Pär Buschka, Juan-Antonio Fernandez-Madrigal,
and Javier González. Multi-hierarchical semantic maps
for mobile robotics. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages
2278–2283. IEEE, 2005.

[19] Dorian Gálvez-López and Juan D Tardos. Bags of binary
words for fast place recognition in image sequences.
IEEE Transactions on Robotics, 28(5):1188–1197, 2012.

[20] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are
we ready for autonomous driving? the kitti vision bench-
mark suite. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3354–3361. IEEE,
2012.

[21] Giorgio Grisetti, Rainer Kummerle, Cyrill Stachniss, and
Wolfram Burgard. A tutorial on graph-based slam.
IEEE Intelligent Transportation Systems Magazine, 2(4):
31–43, 2010. URL https://ieeexplore.ieee.org/abstract/
document/5681215/.

[22] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel
Andor. Real-time loop closure in 2d lidar slam. In
2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 1271–1278. IEEE, 2016.

[23] Berthold KP Horn. Closed-form solution of absolute
orientation using unit quaternions. Josa a, 4(4):629–642,
1987.

[24] Jinyong Jeong, Younggun Cho, Young-Sik Shin,
Hyunchul Roh, and Ayoung Kim. Complex urban dataset
with multi-level sensors from highly diverse urban en-
vironments. The International Journal of Robotics Re-
search, 38:642–657, 2019.

[25] Michael Kaess, Hordur Johannsson, Richard Roberts,
Viorela Ila, John J Leonard, and Frank Dellaert. isam2:
Incremental smoothing and mapping using the bayes tree.
The International Journal of Robotics Research, 31(2):
216–235, 2012.

[26] Georg Klein and David Murray. Parallel tracking
and mapping for small ar workspaces. In Mixed and
Augmented Reality, 2007. ISMAR 2007. 6th IEEE and
ACM International Symposium on, pages 225–234. IEEE,
2007.

[27] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt
Konolige, and Wolfram Burgard. g2o: A general frame-
work for graph optimization. In IEEE International
Conference on Robotics and Automation (ICRA), pages
3607–3613. IEEE, 2011. URL https://ieeexplore.ieee.org/
abstract/document/5979949/.

[28] Stefan Leutenegger, Simon Lynen, Michael Bosse,
Roland Siegwart, and Paul Furgale. Keyframe-based
visual–inertial odometry using nonlinear optimization.
The International Journal of Robotics Research, 34(3):
314–334, 2015. URL https://journals.sagepub.com/doi/
abs/10.1177/0278364914554813.

[29] JM Martı́nez Montiel, Javier Civera, and Andrew J Davi-
son. Unified inverse depth parametrization for monocular
slam. In Robotics: Science and Systems. Robotics: Sci-
ence and Systems, 2006. URL http://roboticsproceedings.
org/rss02/p11.pdf.

[30] Daniele Mortari, F Landis Markley, and Puneet Singla.
Optimal linear attitude estimator. Journal of Guidance,
Control, and Dynamics, 30(6):1619–1627, 2007.

[31] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An
open-source slam system for monocular, stereo, and rgb-
d cameras. IEEE Transactions on Robotics, 33(5):1255–
1262, 2017. URL https://ieeexplore.ieee.org/iel7/8860/
4359257/07946260.pdf.

[32] Raul Mur-Artal, Jose Maria Martinez Montiel, and
Juan D Tardos. Orb-slam: a versatile and accurate
monocular slam system. IEEE Transactions on Robotics,
31(5):1147–1163, 2015. URL https://ieeexplore.ieee.org/
iel7/8860/4359257/07219438.pdf.

[33] Davide Scaramuzza, Friedrich Fraundorfer, Marc
Pollefeys, and Roland Siegwart. Absolute scale in
structure from motion from a single vehicle mounted
camera by exploiting nonholonomic constraints. In
IEEE 12th International Conference on Computer
Vision, pages 1413–1419. IEEE, 2009. URL
https://www.research-collection.ethz.ch/bitstream/
handle/20.500.11850/19362/eth-7807-01.pdf.

[34] Thomas Schneider, Marcin Dymczyk, Marius Fehr,
Kevin Egger, Simon Lynen, Igor Gilitschenski, and
Roland Siegwart. maplab: An open framework for re-
search in visual-inertial mapping and localization. IEEE
Robotics and Automation Letters, 3(3):1418–1425, 2018.
URL https://arxiv.org/pdf/1711.10250.

[35] Dieter Sibley, Christopher Mei, Ian D Reid, and Paul
Newman. Adaptive relative bundle adjustment. In
Robotics: science and systems, volume 32, page 33,
2009. URL http://www.roboticsproceedings.org/rss05/
p23.pdf.

[36] Hauke Strasdat, J Montiel, and Andrew J Davison.
Scale drift-aware large scale monocular slam. Robotics:

Science and Systems VI, 2, 2010. URL http://
roboticsproceedings.org/rss06/p10.pdf.

[37] Hauke Strasdat, JMM Montiel, and Andrew J Davison.
Real-time monocular slam: Why filter? In IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 2657–2664. IEEE, 2010.

[38] Henning Tjaden, Ulrich Schwanecke, Elmar Schömer,
and Daniel Cremers. A region-based gauss-newton
approach to real-time monocular multiple object tracking.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2018.

[39] Bill Triggs, Philip F McLauchlan, Richard I Hart-
ley, and Andrew W Fitzgibbon. Bundle adjust-
menta modern synthesis. In International workshop
on vision algorithms, pages 298–372. Springer, 1999.
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.230.4821&rep=rep1&type=pdf.

[40] Aisha Walcott-Bryant, Michael Kaess, Hordur Johanns-
son, and John J Leonard. Dynamic pose graph slam:
Long-term mapping in low dynamic environments. In
2012 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 1871–1878. IEEE,
2012. URL https://ieeexplore.ieee.org/abstract/document/
6385561/.

[41] Ji Zhang and Sanjiv Singh. Loam: Lidar odometry and
mapping in real-time. In Robotics: Science and Systems,
volume 2, page 9, 2014.

[42] Zichao Zhang, Guillermo Gallego, and Davide Scara-
muzza. On the comparison of gauge freedom handling in
optimization-based visual-inertial state estimation. IEEE
Robotics and Automation Letters, 3(3):2710–2717, 2018.

