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Abstract—Robots that need to act in an uncertain, populated,
and varied world need heterogeneous sensors to be able to
perceive and act robustly. For example, self-driving cars currently
on the road are equipped with dozens of sensors of several
types (lidar, radar, sonar, cameras, ...). All of this existing
and emerging complexity opens up many interesting questions
regarding how to deal with multi-modal perception and learning.

The recently developed technique of ‘“wormhole learning”
shows that even temporary access to a different sensor with
complementary invariance characteristics can be used to enlarge
the operating domain of an existing object detector without the
use of additional training data. For example, an RGB object
detector trained with daytime data can be updated to function
at night time by using a “wormhole” jump through a different
modality that is more illumination invariant, such as an IR
camera. It turns out that having an additional sensor improves
performance, even if you subsequently lose it.

In this work we extend wormbhole learning to allow it to
cope with sensors that are radically different, such as RGB
cameras and event-based neuromorphic sensors. Their profound
differences imply that we need a more careful selection of which
samples to transfer, thus we design ‘“‘cross-modal learning filters”.
We will walk in a relatively unexplored territory of multi-modal
observability that is not usually considered in machine learning.
We show that wormhole learning increases performance even
though the intermediate neuromorphic modality is on average
much worse at the task. These results suggest that multi-modal
learning for perception is still an early field and there might be
many opportunities to improve the perception performance by
accessing a rich set of heterogeneous sensors (even if some are
not actually deployed on the robot).

I. INTRODUCTION

Wormbhole learning [1] is a technique that can be used in
an object detection scenario to enlarge the effective operating
domain of a detector, if one has an auxiliary sensor available
temporarily. One can let sensor 1 “teach” sensor 2; then, the
student becomes the teacher, and sensor 2 “teaches” sensor 1 as
illustrated in Fig. 1. Surprisingly, under certain complementarity
conditions of the two sensors, one can find that the teacher has
something to learn from the student, even though the student
has learned everything it knows from the teacher.

For instance, in the scenario where the two sensors are
an RGB camera and an infrared (IR) camera, starting from
an RGB detector trained at daytime, one can first learn an
infrared detector using the RGB detector as teacher; then exploit
the invariance of the IR sensor to illumination to extrapolate
to low-light conditions; then use the detection from the IR
domain to re-learn an RGB detector, which eventually has
better performance / larger operating domain than the original
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Fig. 1. The principle of wormhole learning is illustrated. Starting from the

bottom left, in a first step, transfer learning is applied to learn a detector in the
auxiliary domain. From there, the inherent invariance to a specific nuisance for
the task allows us to travel across the operating domain. In the final step, the
loop is closed performing another domain transfer: back into the main sensor
space, but in a new operating envelope. We validate this concept adopting
an event-based camera (EB) as auxiliary sensor and exploiting its inherent
invariance to illumination, we can enhance the main RGB detector. With the
due carefulness, the principle still applies even though the two sensors are
radically different. Indeed, we have to introduce two cross-modal learning
filters (XLFs) to cope with the, otherwise “noisy”, domain transfer steps.

(b) After wormhole learning

(a) Before wormhole learning

Fig. 2. Despite the availability of labeled data only for daytime, wormhole
learning successfully improved RGB object detection performance in insuffi-
cient illuminated environments. Take, for instance, a parked car on the curb
without headlights. At night it has a different appearance than at day (e.g. no
reflections on the windows), yet is detected after wormhole learning.

one. Where does the additional information come from? The
“trick” in wormhole learning is that the invariance properties
of the second sensor act as an additional prior. So, informally,
the second sensor has “learned” some invariance from the
first sensor. The expression “wormhole” refers to the idea that
transferring to a different modality allows to create a “portal”
that connects one part of the operating domain to another.
This paper presents an advance to wormhole learning which



we name cross-modal learning filters (XLF). The basic idea is
that, if the sensors are very different, not all detections from one
sensor are useful examples for learning from data of the other
sensor. Therefore, what is needed is a decision procedure that
chooses whether to use one detection of a sensor for training
the other, or to simply just ignore the sample. We call this
decision procedure cross-modal learning filter (XLF). In Fig. 1
the XLFs are shown as funnels during the two transfer steps.

This paper applies the wormhole learning principle to the
pair RGB camera and event-based neuromorphic sensor, for
the task of object detection, and the scenario of urban driving.
We show that the XLFs for this application, in addition to
being necessary, are also intuitive and easy to compute, and so
they are a computationally-negligible addition that improves
the performance of the wormhole learning.

The event-based detector learned in the first wormhole step
is also the first event-based object detector designed and tested
for realistic driving scenarios (previous attempts considered
much easier settings [2]-[7]).

We will see that the performance of this event-based detector
obtained with the first transfer step is much worse than the
RGB detector. This is explained by a combination of factors,
including: 1) limitations of the resolution of existing event-
based sensor prototypes; 2) the fact that event-based vision is
a very early field, and our learning methods are biased towards
frame-based representations; 3) an unavoidable difference in
sensor aptitude for the task at hand.

The very curious finding is that, while the event-based
detector performs much worse, we nevertheless observe that,
when we transfer back to the original RGB domain, we can
still improve the performance of the RGB-based detector.

Thus we find that a perception system can improve its
performance on a task by temporary access to a sensor that
does not even work that well for the task. These results suggest
that our understanding of perception and learning in multi-
modal setting is still fairly naive, and there might be many
opportunities to improve robot perception performance by
considering innovative combinations of complementary sensors.

II. RELATED WORK

Multi-modal perception, fusion, learning: Our work is
fundamentally different from works in sensor fusion, as we
never consider the data from the two sensors at the same time.
In wormhole learning, we show that having had another sensor
is valuable, even if you do not use it afterwards.

Transfer learning: Transfer learning is the ability to
transfer "knowledge" across changing data distributions [8]. A
large body of research has been developed to solve tasks such as
learning to play computer games [9], translation of previously
unseen language pairs using generalizations learned on known
language pairs [10], executing several different robotic tasks
by employing modular neural networks [11], and employing
CycleGANSs [12] to transfer one image domain to another.

The difference of our work with respect to transfer learning is
that we can show that transferring back to the original domain
might improve the performance on the task.

Beyond simple label noise: The problem of creating cross-
modal learning filters is superficially similar to the problem

of reducing “label noise” [13]. The assumption that labeled
data is correct has remained unquestioned until recently [14].
Nowadays, two main forms of label noise are distinguished:
1) Feature noise mainly affecting the observable part of a given
feature or class, for instance background noise in an image or
suboptimal bounding box position.

2) Class noise describing incorrect labeling of an instance or
object (e.g. labeling of a car where no car is observable).

The challenges encountered in our setup cannot be reduced
to dealing with simple “label noise” (thought it still exists,
naturally). Here, we deal with the case that the labels are
“correct” for one sensor but not for the other. We would like to
point the reader’s attention to a small but significant epistemic
divergence of our setup compared to the usual supervised
learning setting. If there is more than one sensor, it is important
to distinguish between the ideal task Y and the task conditioned
on the sensor data Z,, which we define as Y, = Y'|Z,. The
ideal task Y is to be considered an unobservable absolute
ground-truth. It exists independently of the sensors we might
use, or not, to peek at the world.

In a conventional supervised learning setting, this distinction
is blurred; if there is only one sensor, and annotations are
typically created from the output of that sensor, by definition
and by construction the label distribution is the same as the
label distribution given the data. In our setting, this is not the
case. For example, a camera cannot see through fog, while
an IR camera can. In these conditions, the distribution of the
task variable conditioned on the first sensor is different than if
conditioned on the second sensor; and consequently, different
from the ground truth distribution.

In the derivation of cross-modal learning filters we encounter
unusual notions of “multi-modal observability”. In the deter-
ministic case, if one only has one sensor, then a certain quantity
of interest can be observable or not. But if there are n sensors,
then there are 2™ possible observability outcomes. Further, one
can ask the question of whether the quantity is observable from
sensor a, given that it is observable for sensor b, leading to n?
pairwise conditional observability conditions. In the learning
setting, we have the added issue that, while something could
be observable in principle from a sensor, there might not be
sufficient training data to learn to detect them. Thus, if one
tries to picture all possible regions of operating domains, there
are at least 3" combinations (Fig. 4).

To our knowledge, these extended intertwined notions of
observability and data sufficiency for multiple sensors are
not well explored, neither in robotics, nor in the broader
learning/detection/filtering fields.

Fig. 3.
with temporary access to an infrared sensor can learn to recognize cars, persons,
and objects at night in spite of the initial daytime only data.

Exemplary result from [1]. It has been shown that an RGB detector
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Fig. 4. A representation of partially overlapping operating domains (OD) of two sensors. The light color areas in yellow and blue represent the larger portion
of the space where the two sensors can idealistically operate. Darker hues are the restriction to our data samples. Wormhole learning starts off from regions 2
and 3, applies the first domain transfer in region 3, expands to 4 and 5 due to the auxiliary invariance, and transfers back to the RGB domain gaining 4.
While in [1], the transfer learning region 3 is taken for granted, in this work we look into how to enforce this region via cross-modal learning filters (XLFs).
Symmetrically, during the first domain transfer we enforce the samples to be drawn from 3 rather than 2, during the backward transfer, we ensure samples are
not taken from 5 but only from 4 or 3. It is in this context that “detection” takes over a shade of relativeness based on the sensor conditioning.

III. WORMHOLE LEARNING

In this section we recall the wormhole learning (WHL) setup.
We use common notation. A random variable is indicated by
upper case letter such as V. The random variable is a function
from the sample space (2 to the domain V: V : Q — V. A
particular sample is denoted using bold lower case, like v € V.

A. Assumptions

The WHL setup assumes that:

1. There are two sensors available. The work [1] considered
the case of an RGB camera and an IR camera; the present
work considers the pair of an RGB camera with an event-based
neuromorphic sensor. The data from sensor a is a random
variable Z, which takes values z, in set Z,.

2. The sensors are “complementary”. In an intuitive sense, the
sensors must have operating domains that are distinct enough
to not be redundant, but overlapping enough to allow transfer
of some information. Refer to [1] for an information-theoretic
formalization of this idea.

3. There exists a scene that generates the data. The scene is
a random variable indicated as X. The data from the different
sensors are independent given the scene.

4. There is a task, another random variable, called Y. In the
object detection scenario, these are the labels. Given the scene,
the task is independent of the sensing data.

5. There are available unannotated samples from the joint
distribution (Z,, Zj).

6. There is a known approximation to the label distribution
p(Y|Z,). We think of this as a pretrained object detector that
uses only the first sensor and that is trained only in a limited
operating domain.

The wormhole learning principle says that we can im-
prove the performance of the initial detector on previously-
unexperienced operating ranges by exploiting temporary access
to the second sensor, without any additional labeled data.

B. Wormhole learning algorithm

Abstracting away from the particular sensor and learning

methods, the WHL algorithm proceeds as follows (Fig. 1):

1) Obtain samples z* in a domain where the initial detector
p(y|zF) is sufficiently accurate.

2) Using z¥, generate the label y* from the initial detector.

3) Treat the pair (z},y*) as a training sample to learn the
distribution p(y|zp).

4) Once the distribution p(y|zp) is learned, we proceed in
reverse. In a different domain, where the distribution
p(y|zp) is proficient, sample (2%, 2F), compute the label
y* from p(y|zF), and treat (y¥, z%) as a sample for

learning p(y|z,).
C. Example applied to RGB and IR cameras

For the particular case reported in [1], the two sensors were
an RGB camera and an infrared (IR) camera, the learning
methods were convolutional neural networks (CNNs) [15], and
the initial approximation was a pre-trained neural network that
was trained only on daytime data. The algorithm above was
specified as follows:

1) Obtain a joint dataset for RGB and IR camera.

2) Use the pre-trained RGB network to generate detections.

3) Use these detections to train a second neural network, which
will create detections from the IR camera data only.

4) Once the IR camera-based detector has been learned, do
the process in reverse, by generating samples to re-learn (or
re-tune) the initial detector.

The enhanced RGB detector has improved its performance
outside the original operating domain. Fig. 3 provides an
example, in which the RGB detector has been enhanced to
better detect objects at night. In particular, the detector has
learned that cars have bright lights at night; something that
was not possible to extrapolate given only daytime data.



IV. CROSS-MODAL LEARNING FILTERS (XLF)
FOR WORMHOLE LEARNING

Algorithm modification: We generalize the WHL algo-
rithm by introducing cross-modal learning filters (XLFs), which
are functions of the type

XIf, .y : 24 x 2, x Y — Bool. (1)

Suppose that for sample k, we know the sensor data (z¥, zF)
and we know that this is a detection of class 7 for the first sensor:
y* = i. We want xIf, (2%, 25, y¥) to answer the question of
whether the detection y* is useful for training the detector for
the second sensor or not. If it is, we are going to proceed with
the wormhole learning step; otherwise we are going to discard
the sample. Symmetrically, we want x1f, 4 (2%, 25, y¥) to tell
us whether a detection y’bC is a good example to use to train
the detector using the first sensor.

Basic considerations for the design of the XLFs: We start
by noting that the XLFs are not trivial, as there are certainly
detections that we do not want to transfer. For instance, suppose
that an RGB sensor is at rest and there is no motion in the scene.
An event-based sensor taped to the RGB sensor would produce
no events, except for spurious events due to measurement noise.
In these conditions, if the RGB sensor sees an object, we would
not want to use it as a training example for learning an event-
based object detector, because, with there not being any events,
we would just increase the variance of the weights by overfitting
to noise. Vice versa, an event-based camera can see at very low
light conditions, while an RGB camera cannot, so the XLF
is not trivial in the other direction either. (The authors were
initially divided on this prediction: shouldn’t the networks just
ignore detections that do not correlate with anything? We did
find experimentally that, in fact, the networks performance is
negatively impacted by examples that are unobservable, at least
for the common training policies that we used.)

One can expect that non-trivial cross-modal learning filters
are required for wormhole learning for any pairs of sensors
in which one does not fully “dominate” the other. (Here,
“dominate” should be intended in the meaning given by [16],
extrapolating that meaning to the probabilistic case.)

Specification for the XLFs: To get to a formalization
of what an XLF should be, we must first formalize what it
means for something to count as a detection. This can be
formalized in a handful of different ways, depending on exactly
which decision problem one is solving. One could say that
a detection for a class happens when the likelihood of the
data given the class is higher than a certain threshold. So,
we have a detection for a class if p(datalclass) > threshold.
Using our notation, we detect class ¢ with data sample z if
p(zly = i) > c. Alternatively, one could instead consider
for detection the likelihood ratio of one class w.r.t. another
exceeding a threshold, or testing posterior class probabilities.
The ensuing formalization would not change, as long as we
have defined some scalar score

Yo 1 Za XY =R 2)

that we are going to compare against a threshold c. We assume
for simplicity of notation that the threshold c is the same for
all sensors and all classes, though this can be easily relaxed.

Suppose then that we have defined these boundaries 7,
and something counts as a detection if v, > c¢. The previous
discussion referencing RGB and event-based cameras should be
sufficient to argue that, in the absence of any other assumptions
about the sensor models, the functions ~y, and 7, can be
completely unrelated. Thus, in the general case we can picture
as in Fig. 5 (left) that there are up to four regions of the data
space Z, depending on whether a particular sample would
count as a detection for sensor a ("B"), sensor b ("D"), both
("C"), or neither ("A").

B Detection for C B (&
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Detection for . \ /
Detection for <
Sensor 2, sensor b J \
feasible xIf, ¢ \
Detection for
neither
A Yo = ¢ D
zZ
Fig. 5. Left: Depicted is the operating domain of two sensors with regions

indicating where objects can be detected by both (C), sensor A (B), sensor B
(D) or neither (A). Right: Boundaries laid out by possible cross-modal learning
filters (XLF) to find whether conditioned on detection by one sensor, detection
is also possible by the other. Note that it does not to fully mimic the boundary
representing the main detection in the first sensor domain.

At this point, there might be suspicion in the reader that
we have embarked on a circular argument. Is creating a cross-
modal learning filter not equivalent to defining the detector
itself?

The answer is: no—it is actually much easier. Notice that
in the wormhole learning algorithm, we are asked to decide
whether a sample should be considered a detection for the
second sensor only in the case that it is a detection for the first
sensor. This conditioning operation makes all the difference.
Again in a graphical form (Fig. 5, right), we can see that,
conditioned on knowing that the sample is a detection for the
first sensor, we know that we are in regions "B" or "C"; we
can already exclude regions "A" and "D". Graphically, we
are not asked to reconstruct the entire boundary line between
A UB and CUD, which is equivalent to knowing the detector
for the second sensor, but only to reconstruct the boundary
between "B" and "C". Our specification for an ideal learning
filter xIf,_,; should only constrain what values it takes on the
regions "B" and "C". In formulas, we have
P)/b(zbvi) > ¢, for ’Va(zaai) >c,

lea—)b : <zaazb7i> — .
anything,

elsewhere.
3)
Finally, we need to adapt the specification above to the
noisy probabilistic setting. We can restate the formulas above
by saying that what we want is to define a random variable
xIf,_,; that is maximally predictive of the random variable
vy > ¢ when 7, > c. This can be written formally by using
mutual information as the scoring function, conditioned to
the event -, > c¢. We finally reach the definition that the
performance metric for a candidate XLF xIf,_,; is

R(xX1f,—p) = Z(xXUfqp; 7 > ¢ | Ya > ©). 4)



V. APPLICATION TO WORMHOLE LEARNING
ACROSS RGB AND EVENT DATA

A. Event-based cameras

Event-based cameras have been introduced fairly re-
cently [17]. In an event-based camera each pixel works
asynchronously both in space and in time. The output from the
sensor is a stream of events, where each event is generated if the
local intensity of the light changes more than a threshold. More
formally, we have that the k-th event is a tuple (tx, Tk, Yk, Pk)
containing the timestamp ¢, € Ry, the pixel position
2k, Yr € N, and the polarity of the event p, € {—1,+1},
which indicates whether the brightness increased or decreased.
Let A be the triggering threshold, I the light intensity hitting
the photo-diode, and ¢;_; the timestamp of the last event. Then
the next spiking time can be characterized as

tr = argmin{t s.t. |log(ly) — log(Iy, ,)| > A}.  (5)
t>t 1

This expression neglects the refractory period, asymmetric
thresholds, and noise. If the signal of the light intensity is
"smooth enough" we recall from [17] that the event rate is

1 di(z,y,t)
I(z,y,t) dt

event rate oc (6)

Simply expanding the total time derivative of the light intensity
according to optical flow equation give us necessary conditions
for a non-trivial output from the sensor:

dI(z,y,t) n ol(z,y)
dt ot

Either the scalar product of the spatial gradient and the velocity
vector is non-zero, or the light intensity changes in magnitude.
Except for those cases where there are pulsing lights in the
field of view, the latter is unlikely. Thus, an object needs to
have a velocity component on the image plane in order to
produce events.

An established upside of event-based cameras is that they
can operate in very high dynamic range environments. Indeed,
while machine-vision cameras typically achieve dynamic ranges
of 60 dB, event-based cameras reach from 120 dB up to 143
dB [17]-[19].

= (VI(z,y),9) ©)

B. Using CNNs with event-based data

We use a frame-based representation of event-based data,
and use a CNN architecture for learning a detector. To generate
frames from events, we use the surface of active events (SAE)
representation [20]. The SAE can be thought as a buffer that, for
each pixel, keeps in memory the last event fired at the specific
location. In order to favor strong activations on the object
location, the SAE is weighted with a Gaussian-like profile over
the last 100 ms. This value works well for the typical stimuli
experienced by the sensor in an urban driving scenario. Note
that precise synchronization of object location can happen only
in correspondence of the frames’ timestamps. Thus, given t
as the timestamp of the RGB we extract the corresponding
frame in the event domain in the interval [t — 100 ms, t5]. We
denote this frame image as Igg.

Fig. 6. On the left the gradient of the RGB image, on the right the events
formatted into a frame. Note that polarity of the events is neglected. The score
is computed only on the detection box in red.

(a) No XLF: §¢° = 0; all labels are transferred.

(c) High threshold XLF: S€° = 0.65; only the clearly visible car is kept.

Fig. 7. The effect of XLF is illustrated from top to bottom with three
increasing filter threshold levels.

C. Cross modal filters for RGB and EB

To obtain the XLF xIfrgp_gp, we should answer the
following question: assuming that a target is detected in an
RGB frame, under what conditions is it also detectable from
event data? The answer is easy: it depends on the apparent
motion. If there is no relative motion between sensor and
object, no event will be generated; and if there is sufficient
motion, then the events contain sufficient information to detect
the object. So, all we need to compute the XLF xlfggp—gp is
finding a proxy for the intensity of the apparent relative motion
between sensor and objects. Note that we do not need to solve
an optical flow problem and estimate the apparent motion at
each point; we just need a single scalar for each detection: the
average of the norm of the apparent motion in the detection
box.

Given the detection box, for the pair of data (Irgg, Igp) we
compute an edge overlap score S as follows:
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The detection taking place in the RGB domain gives us
the confidence that VIrgp contains a signal with enough
discriminant power for the detected class. Since the velocity



is unknown for the RGB domain, we simply compute a score
proportional to events being at gradient location, which is
therefore proportional to the velocity component parallel to
the spatial gradient of the light field. The square root is not
predicted by the theory; it serves as a concave nonlinearity to
mitigate the effects of unmodeled heavy tails of noise. Without
the square root, the score can be seen as an approximated
matched filter paired to the linear observation model given
by (7).

To obtain the decision policy xlfrgs— s We check whether
the score S in (8) exceeds a threshold S°°, and thus define
the cross-modal learning filter as

€))

The backward xIfgg_,rgp is computed as the forward, but
normalizing by the conditioning signal. This corresponds to
the same expression as in (8) with >° . |les(z,y)| as
denominator.

Choice of thresholds: In principle, we could choose a
different threshold S°° for each class; for now, we only explored
the method properties for a fixed threshold.

We can predict that there is an optimal value of the threshold
from simple considerations. As we increase the threshold, it is
increasingly likely that the examples are good examples to use
for learning the detector for the second sensor. However, as
we increase the threshold, we use fewer and fewer examples,
so the performance of the detector will suffer. Thus we can
predict that there is a point of diminishing returns, and we
observed this empirically.

At this point, we have not found a way to obtain the best value
for the threshold analytically; because it is a scalar quantity,
we just sweep a plausible range to find the best choice.

xlfre—EB (2EB, ZRGB) = 57 > S°°.

VI. EXPERIMENTAL RESULTS
A. Dataset

We recorded our own multi-modal dataset, using a device
that contains in the same physical package RGB cameras,
neuromorphic sensors, and IR camera. The data is collected
by driving in an urban environment. The dataset comprises
approximately 500k camera frames and is much more extensive
and realistic compared to the existing datasets that have
simultaneous event-based and RGB cameras streams [2], [21]-
[23]. The dataset will be subsequently released. The details for
the two sensors that we adopted in this work are provided in
Table 1.

To perform WHL, an initial separation between daytime (D)
and night (N) is required. Subsequently, in order to evaluate
the detectors reliably, we split the dataset in three: training,
validation, and testing. The test set has been generated by
uniform sub-sampling — at a rate of 1 out of 4 frames — of
few recordings that have been kept aside throughout the whole
WHL process. This data has been hand-labeled adding up to a
test set size of 2.2k frames at day and another 2.2k samples
of night. The second partition of recordings was employed to
create a validation set for monitoring the training. We hand-
labeled a validation set of 1.1k frames at day, as well as at
night, also sub-sampling uniformly 1 out of every 3 frames
from separate recordings kept for this purpose. Finally, the

training partition accounts for 98.3k frames at daytime and
42k at night time. Note that these three partitions belong to
completely different recordings.

TABLE I
HARDWARE SPECIFICATIONS

Feature Color Camera  Event-based Camera
Brand Stereolabs Insightness
Type ZED Silicon Eye
Sensor Size 1/3" 1/3.2"

Pixel Size 2 pm 13 pm
Spatial Resolution 1280 x 720 px 326 x 260 px
Temporal Resolution 30 Hz ~10 KHz
Dynamic Range 12 - 14 dB > 98 dB

Lens Built-in Mi12
Aperture f2 f2.1

Field of View 90° 85°

B. Training details

We adopt the pretrained Faster-RCNN NASnet [24] check-
point, which is publicly available through the Tensorflow model
700 project [25] to generate the labels of the initial dataset for
daytime training of the first RGB detector. The WHL process
requires the training of three detectors. The first originates
from the initial dataset, the second corresponds to the detector
in the auxiliary sensor domain, the last is, again, in the main
sensor domain expanding the operating domain of the first by
leveraging semi-supervised learning from the second.

Each step of the training sessions share the same initial
network checkpoint of the Single Shot Detector (SSD) with In-
ception V2 modules [26]. This is done for ease of convergence
and keep the architecture of the three detectors as a constant.

We chose a batch size of 32 per step for our learning
configuration. Furthermore, an RMSprop optimizer with initial
learning rate of 6 - 1073, momentum of 8 = 0.9, and
an exponential decay factor of 0.95 after 60k steps were
applied. Additionally we used standard data augmentation
techniques [27] to increase robustness and prevent overfitting;
these include: random horizontal flips and random crops. In
the RGB domain we additionally applied random scaling
in brightness and contrast. The latter techniques have to be
considered as having only a small and local impact with respect
to the general changes in illumination (such as day and night).

C. Wormhole Learning Process

1) Step 1: Training of a daytime only RGB detector:
We denote a detector by its parameters 6. An initial network
Ry is trained using small amount of ground-truth data Y2,
for day-time only RGB images, as depicted in Fig. 8. Then
Ry is deployed to generate inferred labels Yy that can be
transferred to Yo, thanks to paired images in the RGB/EB
setup. Before being passed to EB domain, each detection pair
is parsed by the cross-modal filters.

2) Step 2: Training of an event-based detector: An auxiliary
detector 02y is trained in the event-based domain by exploiting
YD, and ZP;. Thanks to the approximate domain invariance to
D/N, this particular network 0 is also effective on event-based
data at night Z};. Hence, it represents a proxy also for Y,
which in turn can be transferred back to Yz. Symmetrically,



Wormhole Learning
Process Pipeline

Generate
YD

L

Split /TN
Day Operating Domain Night )
D Split (N Split N
Sensor ZEB_|sensor[ "\ ZRGB.
¢ + + 1 1
Train Inference ' ‘ Train P) Inference ’ ‘ Train gD+N
RGB GD [ \_“RGB on 7b @ GEB EB on 7N % 9D+N RGB
RGB RGB ‘ ‘ EB ‘ J RGB
- JoL - JU . J
WOI‘th|e StepS 1 leRGB—)EB 2 leEB—>RGB 3

Fig. 8. The process can be generally divided into three sub-tasks: 1) Training of the network using day-time only annotations and transferring generated labels
to ODgg, after it has been passed through the cross-modal learning filter (xIfrgs—EB), depicted as orange funnel. 2) Training of the event-based network
using labels generated by the object detector trained in last step and exploiting invariance of the DVS camera to generate labels at night, which are transferred
back to ODrgp. Here, the violet funnel represents the cross-modal learning filter (xlfgg—rgp) from EB to RGB. 3) Wormhole loop is closed by retraining
the original network with day-time and night-time data from the event-based network.

we apply the backward cross-modal filter (xIfgg_,rgp) to enrich
the future dataset.

3) Step 3: Training of a day & night RGB detector: In the
last step the wormhole is completed. The original network is
re-trained with the initial labels at day and newly generated
labels at night Yiigp + VG to yield Oy’ As a result, the new
detector "exits the wormhole" in a new operating environment.

D. Results

In this section, we present the results of the wormhole
learning experiment summarized in Tab. II, III and Fig. 9. The
performance assessment of the networks follow the PASCAL
VOC best practice guidelines [28]. We use the standard 0.5
IoU score for a positive match and multiple detection of the
same object are classified as false positives'.

In Tab. II, the first two rows display the performance of the
initial RGB object detector, as evaluated against our test-set
at day and night, respectively. It performs well at day-time but
suffers from a drop in prediction performance at night-time,
as is evident by the drop from 59.07% to 32.19% in mean
average precision (mAP). The next two rows contain average
precision scores of the event-based detector. We can clearly
see, that it underperforms at day and night compared to the
initial RGB object detector exhibiting a mAP of 26.20% and
16.22%, respectively. Notably, the performance at night is also
inferior to the one of the initial RGB detector.

The last two rows showcase the RGB detector results after
WHL, revealing that even with the meager result of the event-
based network we are able to elevate the initial RGB detection
performance at night by inheriting part of the invariance of the
EB sensor. Although the day-time mAP scores decreases by
1.73% to 58.05%, we can see a relative increase of 28.8% to
41.46% in mAP at night. The single class average precision
rises at night frequently measured classes such as car, person,
truck or train. On the other hand, due to natural imbalance of

'We note in passing that these thresholds are not entirely reasonable for the
self-driving car application, where the cost of a false negative is very high.

objects in the recordings (indicated by the class count in the
parentheses in Tab. II), the detection performance of bicycle
and motorcycle, respectively drops or is non-existent. The truck
class experienced the highest relative increase in detection
performance of 147.7%, followed by truck with a rise of 133.1%
and 36.7% for car.

More interestingly, in Tab. III we see the performance of the
event-based detector depending on the learning filter threshold.
Compared to not applying the cross-modal learning filter, the
detection performance at day can be increased by 27.5% when
choosing a learning filter with low threshold but only increases
by 9.4% when choosing one with a high threshold. At night, the
detection performance of the network trained using a learning
filter with low threshold shows a 97.1% increase while using
a high threshold filter setting the performance shows a 126.2%
increase, compared to the network trained without applying any
cross-modal filter. Note that if the filter is chosen to discard
labels too freely, the dataset is shrunk significantly and thus
decreases in performance.

Eventually we observe here, that although the performance at
night using the high threshold learning filter is slightly superior,
we chose to conduct the experiment using the network trained
on the low threshold learning filter as it performed best during
training on the validation set in overall performance.

VII. DISCUSSION

These results on wormhole learning show that there are many
creative ways to combine the data from heterogeneous sensors,
and an additional sensor can be useful, even if you only have
it during training, and even if it is not particularly good at the
task at hand, or, equivalently, even if we do not know how to
use it well for the task at hand.

For the particular case of event-based neuromorphic sensors,
we remark that we do not consider the reported performance
to be representative of the possible performance when the
technology is more mature. The hardware is still developing
and nowhere near the projected future performance. There exists
a handful of event-based sensors being developed independently



TABLE I
DETECTION PERFORMANCE COMPARISON FOR EACH CLASS. IMPROVED VALUES ARE MARKED IN BOLD. NUMBER OF TRAINING SAMPLES IN ().

Network  Testset Car Person Truck Bus Train Bicycle Moto. mAP
| RGB Day 60.00 (404.0k)  52.99 (144.9k) 61.98 (35.1k)  0.26 (16.3k)  89.74 (9.5k)  41.80 (13.2k)  6.06 (4.9k) 59.07
Night 33.31 (0k) 35.15 (0k) 6.40 (0k) 27.56 (0k) 24.61 (0k) 29.46 (0k) 0.00 (0k) 32.19
» EB b Day 29.35 (141.7x) ~ 31.80 (55.2k) 17.54 (16.2k)  0.00 (4.1k) 46.14 (4.7k)  8.06 (2.8k) 0.49 (1.6k) 26.20
Night 19.61 (0k) 8.26 (0k) 4.53 (0k) 3.87 (0k) 19.43 (0k) 0.43 (0k) 0.03 (0k) 16.22
3 RGB © Day 56.01 (404.0k)  49.29 (144.9k)  68.06 (35.1k)  0.44 (16.3k)  88.76 (9.5k)  39.59 (13.2k)  2.75 (4.9k) 58.05
Night 45.53 (15.9k) 37.18 (6.8k) 14.92 (0.4k) 1590 (0.1k)  60.97 (0.1k)  5.08 (Ok) 0.00 (0k) 41.46

2 Network trained on day only data

b Network trained on data generated automatically by first network in conjunction with a learning filter with low threshold

¢ Network re-trained on day + night data
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Fig. 9.

The two detectors are almost equivalent.

bounds — a significant improvement can be appreci-
ated.

Precision-Recall plots comparing the single class performance of the RGB detector before wormhole learning (orange) and after (blue). The 95%

upper and lower confidence bounds are visualized using dashed lines, showing significant increase in performance for class car and train, but not for person.

TABLE III
DETECTION PERFORMANCE IN MAP DEPENDING ON XLF SETTINGS

Network  Testset None Low Threshold High Threshold

2 EB Day 20.55%  26.20% (+27.5%) 22.49% (+9.4%)
Night 8.23% 16.22% (+97.1%)  18.63% (+126.2%)

3 RGB Day 58.05%  53.53% (-7.8%) 58.90% (+1.5%)
Night 41.46%  36.43% (-12.1%) 32.93% (-20.6%)

by different groups, and these vary considerable in their output
and the tuning parameters that they expose. These are also
very early days for event-based vision. In fact, this work is,
to the authors’ knowledge, the first to consider the problem
of object detection in an urban driving scenario under the
same conditions used for RGB detection. There is certainly
considerable room for improvement, as we used techniques
very similar to their frame-based counterparts (partly because
here we were interested in the gap in performance allowed
by wormbhole learning, rather than in the absolute precision
of event-based detectors.) Nevertheless, it looks like that we
have proved that neuromorphic sensors are already useful
complements to RGB sensors; even if they do not have the
same performance by themselves, they can help cover the blind
spots of RGB cameras.

To the best of our knowledge, the idea that a sensor
can “donate” its invariance to another sensor has never been
discovered before, and no available theory explains it. For the
particular pair of sensors used in this work, it was relatively

obvious how they complemented each other, by analyzing their
invariance properties to motion and illumination. And it was
intuitive what was the best dataset split to consider: day and
night. One can ask, more generally, given two sensor models,
what are the statistics that maximally segment the dataset to
increase the wormhole gain. We do not see any easy answer
even in the case where the invariance is represented by a group
action for both sensors.

We also see the cross-modal learning filters as a first
approximation to a process that can be more nuanced. For
example, the natural generalization is to allow the filters to
output a scalar importance value rather than a binary decision,
and use these values to weigh the importance of the samples
during learning. In that case, the simple geometric argument
described in Fig. 5 does not apply anymore.

The other generalization is to the case of more than two
sensors; for three or more sensors there are many possible
orders in which the wormhole jumps can be ordered. A more
technical question is what happens if we iterate the jumps.
Is it allowed to use the same data multiple times? Does the
process converge to a fixed point? We smile contemplating all
the interesting things that we do not know yet.
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