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Abstract—A reliable, accurate, and yet simple dynamic model
is important to analyze, design and control continuum manip-
ulators. Such models should be fast, as simple as possible and
user-friendly to be widely accepted by the ever-growing robotics
research community. In this study, we introduce two new mod-
eling methods for continuum manipulators: a general reduced-
order model (ROM) and a discretized model with absolute states
and Euler-Bernoulli beam segments (EBA). Additionally, a new
formulation is presented for a recently introduced discretized
model based on Euler-Bernoulli beam segments and relative
states (EBR). The models are validated in comparison to ex-
perimental results for dynamics of a STIFF-FLOP continuum
appendage. Our comparison shows higher simulation accuracy
(8-14% normalized error) and numerical robustness of the
ROM model for a system with small number of states, and
computational efficiency of the EBA model with near real-time
performances that makes it suitable for large systems. The
challenges with designing control and observation scenarios are
briefly discussed in the end.

I. INTRODUCTION

Mimicking highly dexterous and deformable biological bod-
ies has been a trending topic of multi-disciplinary research,
called soft robotics, using intrinsically soft materials in the
form of continuum robotic platforms [12]. However, com-
pliance has disadvantages, such as uncertain deformations,
limited control feedback, reduced control bandwidth, stability
issues, underdamped modes, and lack of precision in tasks
involving working against external loads. These usually result
in modeling and/or control challenges for such designs. Here,
we introduce two new modeling approaches for continuum
rods and actuators, a general reduced-order model (ROM), and
a discretized model with absolute states and Euler-Bernoulli
beam segments (EBA). These models enable us to perform
more accurate simulation of continuum manipulators, as well
as modeling 2D and 3D continuum geometries, something
which has been missing in similar recent research [10]. In
addition, a new formulation is presented for a recently intro-

duced discretized model by [10, 18] which is based on Euler-
Bernoulli beam theory and relative states (EBR).

In the following sections, first, a brief review on models for
continuum manipulators is presented. Then, we discuss rigid-
body kinematics and how they can be unified with variable
curvature and discretized continuum kinematics, with relative
and absolute (independent) states. A new general yet efficient
reduced order solution for the rod backbone is discussed
based on truncated series. Continuum manipulator dynamics
is discussed where a lumped-system representation of the
Cosserat rod theory and a new discretization method based
on absolute (independent) states is presented. Experimental
results from a (STIFFness controllable Flexible and Learn-able
manipulator for surgical OPerations) continuum appendage [5]
are used to investigate the computational performance and
simulation accuracy of the discussed continuum rod models.
Finally, a discussion and conclusion are presented.

II. MATERIALS & METHODS

A. Continuum Structures Mechanics: A Short Review

If taking a theoretical approach in constrast to pure learn-
ing [23], combined reduced-order solution and learning [21]
approaches, and byond the distinction between 2D vs. 3D and
static vs. dynamic models, two key stages can be identified
which determine the modeling strategy of a soft robot [2, 6, 16]
(Table I). 1) Modeling assumptions for 1-a) the system kine-
matics, 1-b) system conservation law (system mechanics), and
1-c) material constitutional law (material mechanics). This
stage results in a system of differential equations for the
mechanics of a continuum media. 2) The method to solve this
resulting system, which can be based on 2-a) direct, or 2-b)
indirect methods. Here, we focus on modeling methods for
1-dimensional (1D) continuum elements, (continuum rods), as
the most studied continuum structure in soft robotic research.
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TABLE I: Different elements of a model for continuum rods.

1- Modeling Assumptions
a- Kinematics

i- Continuous Geometry
A- Variable Curvature (VC- finite strain assumption)
B- Truncated Series Shape Assumption
C- Constant Curvature (CC)

ii- Discretized Geometry
A- Series Rigid-Body Kinematics
B- Screw Theory
C- Forward Discretization of VC

b- Mechanics (Conservation Law)
i- Cossert Rod Method
ii- Principle of Virtual Work (PVW)
iii- Beam Theory
iv- Lagrange Dynamics

c- Material Mechanics (Constitutional Law)
i- Linear Elasticity (Hooke’s Law)
ii- Finite Strain Theory (Neo-Hookean, Money-Rivlin, Gent, ...)
iii- Visco-Hyperviscoelastic

2- Solution
a- Direct Methods

i- Analytical Integration
ii- Numerical Forward Integration Steps

b- Indirect methods
i- Optimization Based Methods
ii- Finite Element Methods (FEM)
iii- Reduced Order Method (Ritz Method)
iv- Combination of the above

Two methods are widely used to describe continuum rod
kinematics; 1-a-i) continuous kinematics, and 1-a-ii) dis-
cretized Kinematics. 1-a-i-A) Variable Curvature (VC- finite
strains assumption) [24], 1-a-i-B) truncated series shape func-
tions (Reduced Order Models- ROM) [7, 17], and 1-a-i-C)
Constant Curvature (CC- as a subset of general shape function
approach), which is probably the most simple and widely used
assumption for soft manipulator modeling [26] report instances
of employing continuous kinematics.

Instances of using discretized representation of such system
kinematics are as followes. 1-a-ii-A) Employing series rigid-
body kinematics (SRL), by simplifying a continuum rod as
a hyper-redundant mechanism with finite but large enough
number of segments, based on transformation matrices for
consecutive but distinct rotational and translational joints
[4, 18]. Methods based on 1-a-ii-B) Screw Theory [10] and
1-a-ii-C) forward discretization of VC differential equations
(EBR- based on differential relative states) [18], where a skew-
symmetric matrix of local curvatures/torsion vector is used to
describe the local relative rotations along the backbone.

1-b-i) The Cosserat Rod method [24, 2], 1-b-ii) Principle of
Virtual Work (PVW) [15], 1-b-iii) Beam Theory [15], and 1-b-
iv) Lagrange Dynamics [8, 17, 4] are used to derive the system
governing equation (conversational law). The material consti-
tutional law (material mechanics) is usually derived based on
1-c-i) linear elasticity theory (Hooke’s law) [24, 8, 16], 1-c-
ii) finite strain theory (considering large strain in hyperelastic
materials, such as Neo-Hookean [24, 15, 16, 18], Mooney-
Rivlin, Gent [18], etc), or 1-c-iii) by considering hyper-
viscoelastic properties [17, 9].

Any combination of the above choices results in a system of
Ordinary (ODE) or Partial Differential Equations (PDE) to be
solved numerically based on the system initial and boundary

conditions. Using shape functions or discretized kinematics
results in PDEs with decoupled spatial and temporal domains
where direct solutions based on 2-a-i) analytical, if possible,
or 2-a-ii) numerical forward integration steps in spatial and
time domain can be used to solve the resulting initial value
problems [8, 15, 17]. Such systems turn into a Boundary
Value Problem (BVP), if static solutions are sought. Although,
forward integration is valid in such cases if distributed loads,
e.g. body weight, are neglected [18].

Alternatively, indirect solutions (2-b) can be sought. 2-b-i)
Optimization-based methods, i.e. single shooting [15, 16, 17],
multiple shooting, and concatenation methods, are suitable for
BVPs resulting from static models with general loads, or for
learning the coefficients of an approximate series solution [7]
or gains in a neural network model [23]. 2-b-ii) Finite Element
Methods (FEM) or similar segmentation methods [3, 1] are
suitable if spatial (kinematics) discretization methods are used
where, instead of a forward integration over the spatial domain,
a system of nonlinear equations is formed with a large but
sparse coefficient matrix. The system equilibrium point in
static cases or at every time step of a dynamic simulation
is found by calculating the pseudo-inverse of the coefficient
matrix, while satisfying all the geometrical, dynamical and
optimal control constraints [3]. While considering truncated
series solutions as the system kinematics 2-b-iii) reduced order
[22] or Ritz [17] method for solving a PDE problem, different
choices of weighting functions can be used to improve the
accuracy of the solution, e.g. in the case of Ritz-Galerkin
methods [25, 17]. Finally, 2-b-iv) a combination of the above
methods can be used, usually for solving PDEs resulting from
complex geometries.

As an example of general practice in many commercially
available FEM solvers, Tunay used a discrete Galerkin method,
where weighted governing equations are used to construct the
FEM solution for pneumatic actuators with general deforma-
tion [25]. Sadati et al. used forward integration on spatial
domain for the PDEs resulting from employing reduced order
solutions for continuum manipulator kinematics, and then
combined that with single shooting optimization method to
find the system static solution under excessive external tip
loads [15, 17]. Bieze et al. combined FEM and optimization
methods to solve the closed-loop control problem of contin-
uum manipulators [1]. Gazzola et al. combined FEM with
forward integration on time-domain in dynamic simulations
[6]. Thieffry et al. constructed a reduced order model based
on dominant deformation modes that are found from multiple
FEM based simulations of a system under different loading
conditions. The coefficients of such solution were then op-
timized to solve for general cases [22]. Duriez, Bieze and
Thieffry used a SOFA FEM modeling package for real-time
dynamic simulation of soft structures [3, 1, 22].

In a comparative study with experimental results with a
single module STIFF-FLOP appendage [16], we have recently
shown the advantage of a lumped system approach (1-a-ii-A
& 1-b-iv & 2-a-i) for dynamic analysis and traditional control
design, CC and modified CC (1-a-i-C & 1-b-ii & 2-a-i) for
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considering structural complexity and design parameter study,
Cosserat rod theory (1-a-i-A & i-b-i & 2-b-i) for accuracy in
general cases, and reduced order series solutions (1-a-i-B &
2-b-i) for real-time performance. The study in [16] is based
on 1-c-i. We showed that combining reduced order kinematics,
the Cosserat rod mechanics, numerical integration on spatial
domain and optimization based solution (1-a-i-B & 1-b-i & 2-
a-ii & 2-b-i) produces most of the aforementioned advantages,
i.e. accuracy, simple control design, real-time performance,
considering structural complexity for a single STIFF-FLOP
appendage in planar motion with excessive external load at
the tip [17]. Further, we generalize our solution for multi-
segment arms in general 3D dynamic motion and compare
the accuracy and numerical performance of the results with
models with other assumptions. Additionally, the discretization
method presented by Renda et al. [10], which is based on
Screw Theory and transformation matrices, is modified to use
absolute (independent) states to achieve discretized models for
multi-dimensional continuum geometries with a large number
of states and significantly improved numerical efficiency.

Additionally, the Reduced Order Models (ROM) for con-
tinuum rod kinematics discussed by Godage et al. [7, 8]
based on the pressure chambers’ length for a pneumatic
soft manipulator. The presented solution is hard to inter-
pret, results in complicated dynamic derivations, and the
mechanical coupling between the actuation chambers’ input
pressure and length are not considered. The large number
of coefficients that should be learned through experimental
trials is another drawback of such a method. In our previous
work, we showed the advantageous numerical performance
and accuracy of using a truncated Lagrange polynomial series
passing through some arbitrary points along the backbone
[17]. The proposed solution is easy to interpret for shape
estimation and controller design, since the used polynomial is
constructed using Cartesian coordinates of physical points, and
has small number of states (6 for a short appendage consisting
of Cartesian coordinates of 2 points at the appendage tip and
mid-length). Both the discussed methods by Godage et al.
[7, 8] and Sadati et al. [17] solve the singularity problem of
using Constant Curvature and rotation matrix representations.
However, we used the CC assumption to compensate for the
imaginary torsion of a Frenet–Serret frame and to find the
physical torsion of the appendage cross-section based on the
input chambers’ pressure. In addition, the cross-section shear
was neglected and a mean axial strain is assumed along the
backbone. The Beam theory was used for static modeling and
the PVW for dynamic modeling, based on Ritz and Ritz-
Galerkin solutions. Duriez, Bieze and Thieffry have recently
generalized the same concept to modeling and control of
complex continuum geometries by extracting the dominant
deformation maps using the SOFA FEM package [3, 1, 22].

In this paper, we continue our efforts toward framing accu-
rate and real-time modeling methods with minimal modeling
and control states that are suitable for controller design. Two
new modeling approaches are presented for continuum ma-
nipulators; I) a general reduced-order model (ROM) capable
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Fig. 1: a) Variable curvature kinematics and free body diagram
of Cosserat rod method for one differential element along the
continuum backbone. Subscript (l), (u), and (σ) are for the
external loads, loads due to internal pressures and/or tendons’
tension, and distributed loads, e.g. due to gravity, respectively.
b) Discretized VC kinematics and lumped mass representation
of Cosserat rod method for the same continuum rod as in (a).

of capturing full motion of a continuum backbone, and II)
a discretized model with absolute states and Euler-Bernoulli
beam segments (EBA) to improve the numerical performance
of simulating long continuum manipulators. The above models
alongside SLR and EBR models, based on a new formulation
are implemented in a recently developed Matlab software
package, named TMTDyn, to simplify their implementation
and comparison with real experimental results from a STIFF-
FLOP pneumatic continuum appendage.

In the following sections, first the continuum-body system
kinematics using quaternions and the reduced-order method
of using truncated polynomial series are described. Then,
the TMT dynamics of such systems are discussed. Finally,
we explain how to derive the lumped-system equivalence of
Cosserat rod and reduced-order methods with relative and
absolute (independent) states.

B. VC Kinematics for Continuum Rods

We use 1-dimensional (1D) continuum elements, i.e. contin-
uum rods, as the basis of modeling continuum geometries in
this work. Using the Cosserat rod method, which considers all
six translational (strains- ξ) and rotational (curvatures/torsion-
ζ) differential states, is beneficial for 1D continuum elements.
VC kinematics and the Cosserat rod theory are used to
model the static mechanics of continuum rods, based on
rotation matrices [6] and quaternion [24, 2] representation
of rotations. In the past, we used Variable Curvature (VC),
based on rotation matrices, and Beam theory to investigate
continuum manipulator mechanics in static and dynamic mo-
tions [16, 15, 17]. We showed that employing a beam theory
approach simplifies solving the BVP for static analysis of a
continuum rod with numerical optimization-based or reduced
order model methods. However, they are not a good candidate
as a part of a unified framework for modeling hybrid systems
and especially in a lumped system approach framework.

Here, the equations are derived in a local physical curvilin-
ear coordinates [d̂1, d̂2, d̂3], where s is a variable for axial po-
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Fig. 2: Different modeling assumptions for a continuum rod.
a) Rod differential Variable Kinematics (VC), b) discretized
VC framework, c) Reduced Order Model (ROM) based on
a polynomial series solution for the backbone kinematics, d)
equivalent highly-articulated series rigid link mechanism, e)
discretized model with relative states from Euler-Bernoulli
(EB) beams, f) discretized model with absolute states (w.r.t.
reference frame) and EB beam compliant connections. Back-
bone is shown by a continuous gray line and dashed curves
are EB beam sections.

sition along the backbone curve, d̂3 is tangent to the backbone,
and at the rod base we have [d̂1, d̂2, d̂3](s = 0) = [̂i, ĵ, k̂]
(Fig. 1.a). The rod backbone spatial configuration in Cartesian
coordinates (ρs) and 1 × 4 rotation quaternion unit vector
(Qs = [Q0, Qρ]), expressed in global coordinates ([̂i, ĵ, k̂]),
are derived according to VC as in [11, 24]

Q′s = Qs × [0, ζs]/2, ρ
′
s = Qs ∗ (ξs + [0, 0, 1]), (1)

where ξ and zeta are the curve local strain and bending/torsion
vectors, superscript ( ′ ) is used for spatial differentiation by s,
× represents quaternion multiplication and ∗ is the operator for
quaternion rotation of a vector as in [11]. The implementation
of quaternion rotation (∗) is more computationally expensive
than using rotation matrices Rs as R′s = R[ζs]× and ρ′s =
R(ξs + [0, 0, 1]), where [ ]× denotes the standard mapping
from R3 to ∼o(3) [2]. However, quaternions are reported to be
better in terms of numerical integration accuracy, and preserve
frame orthogonality and vector length [24, 11].

C. Discretized VC Kinematics
First-order forward difference is probably the simplest way

for discretization of a differential equation, where the differ-
ential terms are substituted with the finite difference of the
system states subject to small increments of the free variables,
here spatial states. Discretized versions of Eq. 1 with rotation
matrices are discussed in [20, 10, 18]. Shiva et al. used first
order discretization, Ri+1 = Ri(ζi∆s + I[3×3]) (i is the ele-
ment numerator,), which is probably the simplest assumption,

failing to conserve the principal properties of a rotation matrix.
Renda et al. used the same method in the context of screw
theory as Ri+1 = Rie

ζi∆s, where eζ∆s = ζ∆s + I[3×3]

[10]. Takano et al. used the most accurate representation for
ζ with Euler angles (three consecutive rotations around local
frame principle unit vectors) with 1-2-3 (x − y − z) order
(Rxyzζ = Rxζ1Ryζ2Rzζ3 ), as Ri+1 = RiRxyzζi . A similar
representation is discussed by Shiva et al. in [18], appendix
section, arguing that the order of the rotations is not important
as long as small enough elements are considered along with the
backbone (infinitesimal curvatures/torsion). They showed that
using any of the above methods does not affect the accuracy of
modeling a short appendage with beam theory, even for large
deformations.

Here we use the first representation used by Shiva et al.
and Renda et al., since it is easy to interpret its inverse; i.e.
ζi = R>i (Ri+1 − Ri)/∆s, which is necessary for modeling
a continuum rod with absolute (independent) modeling states.
Using quaternions and their properties, the final form of the
discretized equations are

Qi+1 = Qi × [1, αi/2], (2)
ρi+1 = Qi ∗ εi + ρi,

for VC kinematics and

[0, αi] = 2Q−1
i × (Qi+1 −Qi), (3)

εi = Q−1
i ∗ (ρi+1 − ρi),

for their inverse. Following the definition of engineering
strains, α = ζ∆s is the local bending/twist angle vector,
and ε = ∆ρ = (ξ + [0, 0, 1])∆s is the deformed local
position/translation vector. Notice that Qi is the absolute ori-
entation quaternion at each point, but α describes the relative
orientation of consecutive elements. The above equations show
that the deformation of a discretized element can be modeled
as a 3D translational joint with state space ε and initial value
ε0, followed by a 3D rotational joint with state α, initial value
α0 and quaternion representation of Qα = [1, α/2] (Fig. 1.b).

Having an element’s initial bending/twist angle (α0) and
a local translation vector (ε0), the local deformation of the
discretized geometry (∆α = α − α0 and ∆ε = ε − ε0) can
be calculated for deriving the element viscoelastic mechanical
action due to system deformation.

D. Reduced Order Kinematics

As mentioned earlier, our reduced order method based on
a truncated polynomial solution in [17] relays on estimation
of the cross-section torsion based on CC assumptions and
internal pressures/tensions of the manipulator actuators. Here,
we drop using Frenet–Serret frames and present a new general
ROM approach to account for the cross-section local strains, as
well as dealing with curvatures/torsion without any secondary
assumptions, e.g. CC. Additionally, a simple polynomial is
used instead of a Lagrange polynomial which results in simpler
and faster derivation of the system kinematics. An inverse
linear problem is solved to find the initial value of the
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polynomial coefficients based on the position and orientation
of some nodes along the rod backbone. The final solution
is more suitable for Cosserat rod and PVW methods. We
assume that the manipulator geometry is defined by 6 truncated
polynomial series of order nr + 1 for position and nr for
orientation map (3 for ρ vector and 3 for vector part of local
frame quaternion representation of orientation Qρ), as

[ρ,Qρ] =

nr∑
i=1

(CrSi) + S0, (4)

where Qρ is the vector part of the quaternion representa-
tion of backbone orientation (Q = [Q0, Qρ]) with Q0 =√

1−QρQ>ρ , nr is the polynomial order, Cr[6×nr] is the
polynomial coefficient matrix which is considered as the
system modeling states, Si = [s, s, s, 1, 1, 1]si and S0 =
[0, 0, s, 0, 0, 0] are the shape function matrices that satisfy
the rod base boundary conditions, i.e. being perpendicular
to the base. For cases where the nodes rotate more than
180 [deg] around any axis, the full quaternion (Q) with all
four elements is used instead of Qρ to avoid any singularity.
In this case, the quaternion conjugate should be handled
as Q−1 = [Q0,−Qρ]/

√
QQ>. Quaternion representation

of rotations ans system kinematics are handled as in [11].
Defining S ≡ S1:nr , we can rewrite the above equation as
[ρ,Qρ] = CrS+S0. The state (coefficient matrix) initial values
(Cr0) are found based on position (ρ0) and orientation (Qρ0)
of a few points along the manipulator backbone (sr) by solving
the following inverse problem, Cr0 = ([ρ0, Qρ0]− S0s0

)S−1
s0 .

The above inverse problem can be solved efficiently using
Matlab inv function. ρ0 and Qρ0 can be simply measured from
experimental observations using magnetic or visual trackers.
For the local strain ξ and curvatures/torsion ζ, from Eq. 1 and
similar to the inverse map in Eq. 2, we obtain

[0, ζ] = 2Q−1 ×Q′, ξ = Q−1 ∗ ρ′ − [0, 0, 1]. (5)

ξ and ζ are used to calculate the mechanical action of the rod
structural compliance.

The next step is dealing with the continuum manipulator
dynamics while incorporating the discussed kinematics. To this
end, in the next section, we adopted a differential form for the
TMT method of deriving Lagrange EOM.

E. Continuum Body Dynamics

EOM for a rigid system can be derived using TMT repre-
sentation of Lagrange method as [14]∑

i=1

M̄i q̈ =
∑
i=1

d̄i −
∑
i

w>i , (6)

where, q is the system states, M̄ = T>MT is the system iner-
tial matrix (M ) in state scape (q), d̄ = T>(−M(T q̇),q q̇+ fg)
is the other inertial and gravity (fg) terms in EOM, ,q is partial
differentiation w.r.t. q, T = χq is the transformation Jacobian
between Cartesian (χ) and state space (q) coordinates, w =
T>f f represents other mechanical actions in the system due to
viscoelastic elements, external, internal, and body forces, etc.,

f is the action exerting force, Tf is the Jacobian transformation
of the action exerting point from Cartesian to state space,
X,x = ∂X/∂x, and the summation is over the total number
of inertial elements and other actions in the system. Eq. 6
can be easily adapted for a discretized continuum rod using
the lumped mass method where the differential form of TMT
terms (replacing

∑
X with

∫
dX) can be used [17]. For

each ROM element in the system, the above spatial integrals
can be handled with a numerical forward integration method,
e.g. trapezoidal rule implemented in Matlab software trapz
function, in each integrating time step of differential form of
Eq. 6. To this end, we start with the differential form and
then differential lumped mass representation for Cosserat rod
model.

F. Discretized Continuum Dynamics with Relative States

Discretizing Cosserat rod mechanics [24], a highly articu-
lated system with length l, nd elements, and relative states
(q = [ε, α]) is formed with the kinematic relation expressed
in Eq. 2. M and Tm are found by substituting ρi and Qi
from Eq. 2 to find the TMT inertial terms as in Eq. 6. The
external loads are handled based on their exerting point, found
from Eq. 2. In such systems, beam elasticity and damping,
and the internal pressure/tendon tension acts parallel to the
states q, so we set the states elastic k and viscous damping
µ coefficients as k|µq = [k|µε, k|µα] and flq = [fu, τu],
and follow the relevant procedure for compliance elements
and loads explained above. Finally, the above terms are used
alongside other terms in Eq. 6. The proposed procedure is
easy to implement; however, the derived equations tend to
be complex for more than ten elements, which results in
long segments, resulting in inaccurate results, slow derivation
and simulation [13, 20]. The method is not suitable for large
system models.

G. Discretized Continuum Dynamics with Absolute States

To avoid complex derivations for a high number of elements,
we may assume the discretized system states to be the lumped-
masses’ Cartesian positions and take the vector part of their
unit quaternion orientation as q = [ρ,Qρ]. Q0 is derived based
on Qρ to form a unit quaternion. The system kinematics is
the same as q and increasing the number of elements does
not increase the complexity of the derivations. M and Tm
are found based on ρ and Q, to find the TMT inertial terms
of Eq. 6 differential form. The external loads become loads
directly acting on system states flq = fl. The inverse map
presented in Eq. 3 is used to derive εi and αi, based on which
the beam elasticity (wk) and damping (wv), and the internal
pressure/tendon tension (wu) actions are calculated as

χb = [εi, αi], Tb = χb,q, (7)
w>k = T>b kε|α(χb − χb0),

w>v = T>b µε|α(Tbq̇)
ν , w>u = T>b [fu, τu],

where χb0 is the beam initial position vector and bending/twist
angle that can be fund based on the system states’ initial
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ν 2

Fig. 3: a) Structural design, b) parameters and c) sequences of experiments with a pneumatically actuated STIFF-FLOP
continuum appendage. d) The structural parameters and their units are based on experimental measurments.

condition q0 as χb0 = χb(q0). The above terms are used
alongside other terms in Eq. 6. The proposed method allows
handling a large number of elements. To the best of our
knowledge, this is the first time that such a discretization
method is used for modeling an actuated continuum manip-
ulator, as well as its integration to a unified hybrid system
modeling framework. However, similar discretization methods
are widely being used to solve hyperbolic PDEs numerically.
Meeting Courant−Friedrichs−Lewy condition is necessary for
converging the solution which usually results in systems with
very large number of elements and hence slow performance
[19]. We do not analyze the convergence criteria in this paper,
but a comparison with experimental results and the other
presented methods in this paper are provided later.

H. Reduced Order Model Dynamics

In the case of reduced order model kinematics, the system
spatial and temporal domains are decoupled. So we keep the
differential form of Eq. 6, and perform a forward numerical
integration over the ROM terms in each time step of the final
system EOM numerical temporal integration. Here the states
are the elements of Cr in Eq. 4 which gives 6×nr states. The
system kinematics is presented in Eq. 4 as χs = [ρs, Qρs ],
and Tm is found based on ρs and Qρs . for dM we have,
dm = σads and Jms is found based on the second moment
of inertia for planar objects with the shape of the rod cross
section. TMT differential terms are found as in [17]. The
contact point kinematics of an external load at location sl
along the backbone is found by substituting s = sl in Eq. 4.
Using the inverse map in Eq. 5 to find ξ, ζ, the differential
form of Eq. 7 is used to find the action derivatives for
viscoelastic structure and internal pressures/tendon tensions.
This method does not suffer from discretization inaccuracy;
however, the modeling accuracy depends on the order of
the polynomial, while a higher number of terms does not
necessarily improve the accuracy. Initial bent configurations,
rods with initial arbitrary geometries are easy to handle, by
choosing appropriate values for χs0 .

The discussed modeling frameworks for soft robots have en-
abled us to incorporate their states into the traditional modeling
and control frameworks of rigid body dynamics. In the next
section, experimental results from random pressurization of a

pneumatic continuum appendage (STIFF-FLOP) are compared
with the simulation results from ROM, SRL, EBR, and EBA
modeling approaches. We have implemented these methods in
our recently developed software package, named TMTDyn
[14, 13]. The methods complexity and numerical performance
are compared based on the derivation and optimization time of
forming the system EOM in a symbolic form, and numerical
simulation times of the experimental scenarios.

III. NUMERICAL SIMULATIONS & EXPERIMENTS

A. Experimental Setup & Procedure

Results for dynamic motion of a single STIFF-FLOP
continuum appendage in presence of external loading are
used to verify and compare the presented modeling methods
in comparison to experiments. A STIFF-FLOP (STIFFness
controllable Flexible and Learn-able manipulator for surgical
OPerations) module [5] is a pneumatic continuum appendage
(Fig. 3). The same setup as in [18] is used to conduct the
experiments with and without external load at the appendage
tip. Sample sequences of the experiments with and without
tip external loads are shown in Fig. 3.c . The measured and
identified structural parameters of the experimental setup are
presented in Fig. 3.d. The explanation for how to consider
the actuation chamber arrangement in calculating the cross-
section second moment of area, manipulator mass and inertia,
input pressure action, and hyper-elasticity of the manipulator
are provided in [17, 13].

B. Experimental Results & Discussion

Two sets of experiments were carried out with and without
external load at the manipulator tip, and for different input
pressures. Each experiment takes about 55 [s] and dynamic
data for the actuator inputs, the manipulator tip position,
orientation, and force were recorded. Sample recordings from
the two experiments in comparison to simulation results from
EBR model (Euler-Bernoulli beam model with Relative states)
with nd = 4 are presented in Fig. 4. Matlab ode15s was
used to speed up the numerical integration in our simulation
in this section. We observed that except for ROM (Reduced
Order Model), other models accuracy are very sensitive to the
change of cross-section parameters due to the hyper-elasticity
assumption, in experiments with external tip load. Hence, we
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Fig. 4: Sample recordings from the two experiments with a STIFF-FLOP appendage in comparison to simulation results with
EBR model with nd = 4. top) experiments with no external load, middle & bottom) experiments with tip external loads. right)
Sample sequences of experiments with external load.

neglected this change for the SRL (Series Rigid Link method),
EBR, and EBA (Euler-Bernoulli model with Absolute states)
cases in the externally loaded cases to avoid any numerical
divergence in the simulations. Considering hyper-elasticity
effects, if possible, improves the simulation results accuracy by
up to %6. This is in accordance with our previous observations
in [17]. We set µξ = 0.1, µζ = 1e − 5 for ROM and SRL,
µξ = 100, µζ = 0.5 for EBR, and µξ = 100, µζ = 0.01 for
EBA model. EBR model required higher damping coefficients
to compensate the system sensitivity to rapid changes in the
states in dynamic simulations. Considering these, EBR is more
prone to be sensitive to numerical instability.

Fig. 5-7 presents a comparison between computational
performance and accuracy of these models with experimental
results. ROM consumes the least memory and computer CPU
time to derive the EOM, but EBA is the best in terms of CPU
time for equation optimization. SRL is the worst in this regard.
It takes hours to optimize the EOM for a system with more
than three consecutive links. The change in system links, either
to improve accuracy of a single rod model as presented here or
in a system with multiple links, affects the EBA model CPU
usage the least. For planar geometries (results are not provided
here), a system with three times nr or nd of those presented
here consumes the same memory and CPU time (Fig. 5). As a
result, EBA is the best model for systems with a large number
of bodies. EBR and EBA have the best simulation time, as well
as static and dynamic, performance. However, EBR showed
to be very sensitive to sudden changes in the input pressure
and external force values. High viscous damping values were
considered to prevent exponentially growing errors (numerical
analysis diverge) in this case. As a result, EBR simulation
outputs were not reliable for fast dynamic motions. All the
models show almost real-time performance (CPU time < 1

[s]) except ROM which has the highest CPU time demand in
simulations (Fig. 6). ROM presents relatively lower errors for
a system with fewer number of states, even nr = 1, compared
to other models, with 6 [mm] absolute error (Abs. Err.) & 9%
normalized error (Norm. Err.) for static motion and 3.5 [mm]
& 5.5% for dynamic motion in experiments without external
loads (Fig. 6). These values are 12.5 [mm]& 19% for static and
9 [mm]& 14% for dynamic motion in presence of external tip
loads (Fig. 7). The accuracy of other methods increases rapidly
with higher number of states and even slightly surpass the
accuracy of the ROM for experimental cases without external
tip load (Fig. 6). The EBA model with 5 segments had 5.2
[mm] absolute error (Abs. Err.) & 8.1% normalized error
(Norm. Err.) for static motion and 3 [mm] & 4.7% for dynamic
motion in experiments without external loads (Fig. 6). This
accuracy increase is less noticeable and even reverses in some
cases (static motion with external load, Fig. 7) for the ROM.
The ROM remains the most accurate model for experimental
cases with external load. The EBA and EBR methods show
similar performance for static analysis of the experimental
case without external load while the EBA performs better for
static analysis of cases with external load. However, the EBA
method accuracy is much higher than the EBR method in
dynamic simulations. The SRL method shows closer results
to EBA, but we did not report the results for a model with
more than three segments since it takes hours to derive and
optimize their EOM. Results for EBR were not reliable for
dynamic simulations since high viscous damping values filters
parts of the dynamic motion. Our dynamic simulation results
are more accurate than the static ones. However, we did
not try to optimize the manipulator parameters or numerical
analysis properties to find the best results, since this is not
our main purpose in this study. It is possible to improve
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Fig. 5: Comparison between derivation complexity of different modeling assumption for a continuum rod based on (left)
symbolic derivation file size, and (middle) derivation and (right) optimization time of derived EOM.

Fig. 6: Comparison between computational performance of
simulations with different modeling assumption in compar-
ison to experiments with a STIFF-FLOP continuum ap-
pendage with tip external load. (top) Static, (down) dynamic
motion.

Fig. 7: Comparison between simulation accuracy of different
modeling assumption for a continuum rod based on absolute
and normalized % error analysis in comparison to experi-
ments with a STIFF-FLOP continuum appendage without any
tip external load. (top) Static, (down) dynamic motion.

the accuracy by tuning these parameters or finding a way to
effectively implement the hyper-elasticity assumption for all
the modeling cases. Overall, we observed better accuracy of
ROM, especially for a system with small number of states and
cases with external tip loads, but better numerical performance
of EBA, especially for large systems.

IV. CONCLUSION AND DISCUSSION

In this paper, we develop two new models for continuum
rods and actuators: a general reduced-order model (ROM), and
a discretized model with absolute states and Euler-Bernoulli
beam segments (EBA). These models enable us to perform
more accurate simulation of continuum manipulators [10].
Furthermore, a new formulation is presented for a recently
introduced discretized model by [10, 18] which is based on
Euler-Bernoulli beam theory and relative states (EBR). The
package is used to compare and validate the aforementioned
modeling methods in comparison to experimental results on
general motion of a STIFF-FLOP continuum appendage under
external loads. We observed higher simulation accuracy (with
as little as 8-14% normalized error) and numerical robustness
(enabling consideration of material hyper-elasticity) of the

ROM model, while EBA is less computationally cumbersome
to derive and simulate with near real-time performance. EBR
shows high sensitivity to sudden changes in the system actu-
ation inputs and external loads and relatively higher compu-
tational cost both in derivation and simulation. The lumped
system approach for modeling continuum rods as a hyper-
redundant series-rigid-link system (SRL) is investigated as
well. SRL has the highest computational cost to derive and
optimize the system EOM. We plan to test our methods for
hybrid force-position estimation and control of continuum
manipulators in medical, inspection, and space robotics ap-
plication.
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