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Abstract—Algorithms based on deep network models are being
used for many pattern recognition and decision-making tasks in
robotics and AI. Training these models requires a large labeled
dataset and considerable computational resources, which are not
readily available in many domains. Also, it is difficult to under-
stand the internal representations and reasoning mechanisms of
these models. The architecture described in this paper attempts
to address these limitations by drawing inspiration from research
in cognitive systems. It uses non-monotonic logical reasoning
with incomplete commonsense domain knowledge, and inductive
learning of previously unknown constraints on the domain’s
states, to guide the construction of deep network models based
on a small number of relevant training examples. As a motivating
example, we consider a robot reasoning about the stability
and partial occlusion of configurations of objects in simulated
images. Experimental results indicate that in comparison with
an architecture based just on deep networks, our architecture
improves reliability, and reduces the sample complexity and time
complexity of training deep networks.

I. INTRODUCTION

Consider an assistive robot1 tasked with clearing away a
variety of toys that children have arranged in different config-
urations in different rooms. Such a task poses a challenging
scene understanding problem. It is difficult to provide many
labeled training examples of different arrangements of objects,
and the robot has to reason with different descriptions of
incomplete domain knowledge and the associated uncertainty.
This may include qualitative descriptions of commonsense
knowledge about the domain objects and relations between
them, and default statements such as “structures with a large
object placed on a small object are typically unstable” that
hold in all but a few exceptional circumstances. In addition,
the robot may use algorithms for sensing and navigation that
model knowledge and the associated uncertainty quantitatively.
Furthermore, human participants are unlikely to have the time
and expertise to interpret sensor data or provide comprehensive
feedback, and reasoning with the incomplete knowledge may
result in incorrect or sub-optimal outcomes.

Deep network architectures and the associated algorithms
represent the state of the art for scene understanding and
many other pattern recognition and decision making tasks
in robotics and AI. These algorithms require a large set of

1We use the terms “robot”, “learner”, and “agent” interchangeably.

Fig. 1: A simulated scene with toys. The robot has to reason
about occlusion and stability of structures to reduce clutter.

labeled training samples, are computationally expensive, and
provide results that are not easily interpretable. Research in
cognitive systems has shown that many of these challenges can
be addressed by exploiting domain knowledge and the tight
coupling between knowledge representation, reasoning and
learning. Drawing inspiration from such cognitive systems,
our architecture embeds non-monotonic logical reasoning with
incomplete commonsense domain knowledge, and incremental
inductive learning of constraints governing domain states, to
guide the learning of deep network architectures. We consider
the scene understanding tasks of estimating the partial occlu-
sion of objects and the stability of object configurations, based
on limited training examples, in the context of the assistive
robotics domain described above. To focus on the interplay
between representation, reasoning, and learning, we focus on
simulated images of scenes in this domain—Figure 1 shows an
example—and limit perceptual processing to that of 3D point
clouds corresponding to these scenes. We also assume that
the robot knows the grounding (i.e., meaning in the physical
world) of words such as “above” and “left of” that describe
basic geometric relations between domain objects. We then
describe how the architecture:

• Attempts to perform the estimation tasks based on non-
monotonic logical reasoning with incomplete common-
sense domain knowledge and the extracted geometric
relationships between scene objects.

• Uses the labeled examples, i.e., images with occlusion
labels for objects and stability labels for object struc-



tures, to train decision trees for incremental learning of
previously unknown constraints governing domain states.

• Automatically identifies relevant regions of the images
not processed by non-monotonic logical reasoning; these
regions guide the training of deep networks and are
processed by the learned networks during testing.

Experimental results show a marked improvement in accuracy
and computational efficiency in comparison with an archi-
tecture that only uses deep networks, while also providing
insights about the interplay between reasoning and learning.
Section II discusses related work and Section III describes
our architecture. Experimental results and conclusions are
discussed in Section IV and Section V respectively.

II. RELATED WORK

Scene understanding is a key problem in computer vision
and robotics. It includes the identification of relations between
scene objects and a variety of estimation and prediction
problems. Deep networks provide state of the art performance
for such problems. For instance, a Convolutional Neural
Network (CNN) has been used to predict the stability of a
tower of blocks [20, 19], and to predict the movement of
an object sliding down an inclined surface and colliding with
another object [36]. However, CNNs and other deep networks
require a large number of labeled examples and considerable
computational resources to learn the mapping from inputs to
outputs. Also, it is difficult to interpret the operation of the
learned networks, or to transfer knowledge learned in one
scenario or task to a related scenario or task [37]. Since labeled
training examples are not readily available in many domains,
researchers have used physics engines, e.g., in the context of
training deep networks to predict the movement of objects in
response to external forces [9, 24, 35], or to understand the
physics of scenes [3]. Researchers have also used prior (do-
main) knowledge during training [34]. For instance, a recurrent
neural network (RNN) architecture augmented by arithmetic
and logical operations has been used to answer questions
about scenes [25]. This work used textual information instead
of the more informative visual data, and did not support
reasoning with commonsense knowledge. Another example
is the use of prior knowledge to encode state constraints in
the CNN loss function; this reduces the effort in labeling
training images but it requires the constraints to be encoded
manually as loss functions for each task [33]. The structure of
deep networks has also been used to constrain learning, e.g.,
by using relational frameworks for visual question answering
(VQA) that consider pairs of objects and related questions
to learn the relations between objects [28]. This approach,
however, only makes limited use of the available knowledge,
and does not revise the constraints over time.

Research in AI and robotics has provided algorithms and ar-
chitectures for addressing the limitations described above. For
instance, theories and algorithms have been developed to en-
able agents to reason with commonsense knowledge [10, 11].
For scene understanding, domain knowledge often includes the
grounding of spatial relations such as in and above. Measures

related to the relative position of objects have been used to pre-
dict the successful execution of actions in a new scenario [8],
and methods have been developed to reason about and learn
spatial relations between objects [13, 21]. Deep networks have
been used to infer spatial relations between objects using
images and natural language expressions, for applications
such as manipulation [26], navigation [27] and human-robot
interaction [29]. Researchers have also developed algorithms
for learning domain knowledge. Examples include the in-
cremental refinement of a first-order logic representation of
action operators [12], the use of inductive learning to acquire
domain knowledge represented as Answer Set Prolog (ASP)
programs [17], and the integration of non-monotonic logical
reasoning and relational reinforcement learning to incremen-
tally acquire domain axioms [31]. Interactive task learning is a
general framework for acquiring domain knowledge using la-
beled examples or reinforcement signals obtained from domain
observations, demonstrations, or human instructions [5, 16]. It
can be viewed as building on early work on search through
the space of hypotheses and observations [30], but such
methods have rarely been explored for scene understanding.
Our architecture exploits the complementary strengths of deep
learning, non-monotonic logical reasoning with commonsense
knowledge, and incremental learning of constraints that govern
the domain states, as described below.

III. PROPOSED ARCHITECTURE

Figure 2 is an overview of the proposed architecture, which
takes as input RGB-D images of scenes with different object
configurations. During training, the inputs include the occlu-
sion labels of objects and the stability labels of object config-
urations in the images. Our prior work is used to ground the
spatial relations between objects [22]. An object is considered
to be occluded if the view of any minimal fraction of its frontal
face is hidden by another object, and a structure is unstable
if any object in the structure is unstable. A decision tree
induction algorithm maps object attributes and spatial relations
to the target classes. Branches in the tree that have sufficient
support among the training examples are used to construct
axioms representing state constraints. The learned constraints
are encoded in an ASP2 program along with the commonsense
domain knowledge and the computed spatial relations. If ASP-
based reasoning provides the desired labels, no further analysis
of this image is performed. Otherwise, an attention mechanism
uses domain knowledge to identify the image’s Regions of
Interest (ROIs), with each ROI containing one or more objects.
A CNN is trained to map these ROIs to the desired labels.
During testing, any input RGB-D image is assigned the desired
class labels either by ASP-based reasoning or by processing
the image ROIs using the learned CNN (i.e., decision trees are
not used). We describe these components of our architecture
using the following illustrative domain.

Example 1: [Robot Assistant (RA)] A simulated robot
analyzes images of scenes containing toys in different configu-

2We use “ASP” and “CR-Prolog” interchangeably.
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Fig. 2: Architecture combines the complementary strengths of non-monotonic logical reasoning, deep learning, and decision
tree induction, to perform the scene understanding tasks reliably and efficiently.

rations. The goal is to: (i) estimate occlusion of objects and sta-
bility of object structures; and (ii) rearrange object structures
so as to minimize clutter. Domain knowledge includes object
attributes such as size (small, medium, large), surface (flat,
irregular) and shape (cube, cylinder, duck), and the relation
between objects (above, below, front, behind, right, left, close).
The robot can move objects to achieve the desired goals.
Knowledge also includes axioms governing domain dynamics
but some axioms may be unknown, e.g.:

• Placing an object on top of an object with an irregular
surface causes instability;

• Removing all objects in front of an object causes this
object to be not occluded.

A. Knowledge Representation with ASP

To represent and reason with incomplete domain knowledge,
we use ASP, a declarative language that can represent recursive
definitions, defaults, causal relations, special forms of self-
reference, and language constructs that occur frequently in
non-mathematical domains, and are difficult to express in
classical logic formalisms. ASP is based on the stable model
semantics [10] and supports concepts such as default negation
(negation by failure) and epistemic disjunction, e.g., unlike
“¬a”, which implies that “a is believed to be false”, “not a”
only implies “a is not believed to be true”. Each literal can be
true, false or unknown and the robot only believes that which
it is forced to believe. ASP supports non-monotonic logical
reasoning, i.e., adding a statement can reduce the set of in-
ferred consequences, aiding in the recovery from errors due to
reasoning with incomplete knowledge. ASP and other similar
paradigms are often criticized for requiring considerable prior
knowledge, and for being unwieldy in large, complex domains.
However, modern ASP solvers support efficient reasoning in
large knowledge bases with incomplete knowledge, and are
used by an international research community in robotics [6]
and other applications [7].

A domain’s description in ASP comprises a system de-
scription D and a history H. D comprises a sorted sig-
nature Σ and axioms. Σ includes sorts arranged hierar-
chically; statics, i.e., domain attributes that do not change

over time; and fluents, i.e., domain attributes whose val-
ues can be changed. In the RA domain, sorts include
object, robot, size, relation, surface, and step for tem-
poral reasoning. Statics include some object attributes such
as obj size(object, size) and obj surface(obj, surface).
The fluents obj relation(relation, object, object) model re-
lations between objects in terms of their arguments’ sorts, e.g.,
obj relation(above,A,B) implies object A is above object
B—the last argument in these relations is the reference object.
Fluents also describe other aspects of the domain, e.g.:

in hand(robot, object), stable(object) (1)

Actions of the RA domain include pickup(robot, object)
and putdown(robot, object), and holds(fluent, step) is a
predicate implying that a particular fluent holds true at a
particular timestep. The RA domain’s axioms include:

holds(in hand(robot, object), I + 1) ← (2a)
occurs(pickup(robot, object), I)

holds(obj relation(above,A,B), I) ← (2b)
holds(obj relation(below,B,A), I)

holds(obj relation(infront,A,B), I) ← (2c)
holds(obj relation(behind,B,A), I)

¬occurs(pickup(robot, object), I) ← (2d)
holds(in hand(robot, object), I)

where Statement 2(a) describes a causal law, 2(b-c) describe
constraints, and 2(d) describes an executability condition. The
spatial relations extracted from RGB-D images are converted
to statements in ASP program. The program also includes
axioms that encode default knowledge, e.g., statements such
as “larger objects on smaller objects are typically unstable”.

¬holds(stable(A), I)← holds(obj relation(above,A,B), I),

size(A, large), size(B, small), (3)
not holds(stable(A), I)

Finally H includes records of observations received and ac-
tions executed by the robot.



To reason with the incomplete domain knowledge, we
construct the CR-Prolog program Π(D,H)—please see our
code repository [23]. Planning, diagnostics and inference tasks
can then be reduced to computing answer sets of Π, which
represent beliefs of the robot associated with Π [10]. We use
SPARC [2] to compute answer set(s) of ASP programs.

B. Decision Tree Induction

Reasoning with incomplete knowledge can result in in-
correct or suboptimal decisions. Our architecture includes
a decision tree induction component to incrementally learn
relevant knowledge in the form of axioms that represent state
constraints. Specifically, separate decision trees are constructed
in the RA domain for estimating stability and occlusion, using
the spatial relations identified between pairs of objects, and
the attributes of objects—the labels assigned to the leaf nodes
are stable/unstable or occluded/not occluded. Some example
decision trees are shown in Figures 3 and 4.

We use an existing algorithm that constructs decision trees
by computing the potential change in entropy (i.e., information
gain) caused by a split based on each attribute. One half of
the available examples are used for training. Once a tree is
constructed, any branch of the tree in which the leaf represents
a precision higher than 95%, i.e., most examples correspond
to a particular class, is used to construct candidate axioms that
are validated using the other half of the labeled examples. The
validation process: (i) removes axioms without a minimum
level of support from the training examples; and (ii) compares
the discovered axioms to only retain the most general version
of each axiom. Since the number of labeled examples is small,
we reduce the effect of noise through an ensemble learning
approach, i.e., we repeat the learning and validation steps a
number of times (e.g., 100) and only the axioms voted more
than a minimum number of times (e.g., 50%) are encoded in
the ASP program for subsequent reasoning.

Consider the branches highlighted in gray in Figures 3
and 4, which can be translated into the following axioms:

stable(A)← ¬obj relation(above,A,B) (4a)
¬occluded(A)← ¬obj relation(behind,A,B) (4b)

where Statement 4(a) implies that any object that is not above
another object is stable, whereas Statement 4(b) says that an
object is not occluded if it is not located behind another object.
More elaborate axioms are created when other attributes (e.g.,
size and surface of objects) are considered. For example, the
branch highlighted in gray and blue in Figure 3 translates to:

¬stable(A) ← obj relation(above,A,B), (5)
obj surface(B, irregular)

which states that an object is unstable if it is located above
another object with an irregular surface.

Our architecture is also able to discover default knowledge
that holds in all but a few exceptional circumstances. To
find these axioms while still allowing for some exceptions,
we reduced the threshold for selecting a branch of a tree

to construct candidate axioms (e.g., from 95% to 70%). The
lower threshold results in the discovery of additional axioms,
but it also introduces noise. The underlying non-monotonic
logical reasoning capability can be used to identify any incon-
sistencies caused by the inclusion of incorrect axioms—these
errors can be corrected manually or through learning.

C. Attention Mechanism

The attention mechanism module is used only when ASP-
based reasoning cannot assign labels to objects in the input
image. In each such image, this module identifies and directs
attention to regions of interest (ROIs) that contain information
relevant to the task at hand. To do so, it first identifies each
axiom in the ASP program whose head corresponds to a rela-
tion/fluent of interest. For instance, the head of Statement 4(a),
which implies that a particular object is stable, holds true in
any state in which all the relations in the body of the axiom
are satisfied. Statement 5 defines some conditions under which
an object is considered to be unstable. Both these statements
will be considered by the attention mechanism if the robot’s
task is to estimate the stability of object configurations. In a
similar manner, Statement 4(b) will only be explored further
when the task is to examine the occlusion of objects.

The selected axioms are used to identify ROIs in the image.
More specifically, the relations in the body of each selected
axiom are used to identify ROIs that are considered for
further processing; the remaining image regions are unlikely
to provide relevant information and are not analyzed further.
For instance, to estimate stability in Figure 1, the attention
mechanism should consider the stack comprising the red cube,
white cylinder and the green ball, since they satisfy the relevant
relation above—the other two objects (duck and pitcher) can
be disregarded. Any image may contain multiple such ROIs,
and each ROI may have multiple objects.

D. Convolutional Neural Networks

The ROIs identified by the attention mechanism serve as
input to a deep network. Recall that ROIs are only extracted
from images that could not be classified using ASP-based
reasoning, and that pixels of any such ROI are considered to
provide information relevant to the task at hand. We explore
two variants of a CNN, and the training dataset comprises
ROIs and the target labels to be assigned to objects (and
structures) in the ROIs. The CNN learns the mapping between
the image pixels and target labels, and then assigns these
labels to ROIs in previously unseen test images that ASP-
based reasoning is unable to process.

CNNs have many parameters based on size, number of
layers, and activation functions, but the basic building blocks
are convolutional, pooling, and fully-connected layers. The
convolutional and pooling layers are used in the initial or in-
termediate stages of the network, whereas the fully-connected
layer is typically one of the final layers. In a convolutional
layer, a filter (or kernel) is convolved with the original input
or the output of the previous layer. One or more convo-
lutional layers are usually followed by one pooling layer.
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Fig. 3: Example of a decision tree constructed for stability estimation using some labeled examples. Highlighted branches are
used to construct previously unknown axioms.
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Fig. 4: Example of a decision tree constructed for occlusion estimation using some labeled examples. Highlighted branch is
used to construct previously unknown axiom.

Fig. 5: Lenet architecture.

Common pooling strategies such as max-pooling and average-
pooling are used to reduce the dimensions of the input data,
limit the number of parameters, and control overfitting. The
fully-connected layers are equivalent to feed-forward neural
networks in which all neurons between adjacent layers are
connected—they often provide the target outputs. In the con-
text of images, convolutional layers extract useful attributes to
model the mapping from inputs to outputs, e.g., the initial
layers may extract lines and arcs, whereas the subsequent
layers may compose complex shapes such as squares and
circles. While estimating the stability of object configurations,
the CNN’s layers may represent attributes such as whether:
(i) a tower of blocks is aligned; (ii) a round object is under
another object; or (iii) a tower has a small base.

In this paper, we explored two CNN architectures: (i)
Lenet [18], initially proposed for recognizing hand-written
digits; and (ii) Alexnet [15], which has been widely used since
it provided best results on the Imagenet benchmark dataset.
The Lenet has two convolutional layers, each one followed
by a max-pooling layer and an activation layer. Two fully
connected layers are placed at the end. Unlike the 28 × 28
gray-scale input images and the ten-class softmax output layer
used in the original implementation, we consider 56 × 56

RGB images as input and an output vector representing the
occlusion and stability of each object in the image. Figure 5
is a pictorial representation of this network. As described later
in Section IV-A, we consider ROIs with up to five objects,
and the network outputs estimate the occlusion of each object
and the stability of the structure in the ROI. The Alexnet
architecture, on the other hand, contains five convolutional
layers, each followed by max-pooling and activation layers,
along with three fully connected layers at the end. In our
experiments, 227× 227 RGB images were used as input and
the output classes determined the target variables estimating
occlusion and stability—the number of outputs is the same as
with the Lenet architecture. Due to the multi-class labeling
problem, the sigmoid activation function was used in both
networks. We used the Adam optimizer [14] in TensorFlow [1]
with a learning rate of 0.0001 for the Alexnet network and
0.0002 for the Lenet network and the weights were initialized
randomly. The number of training iterations varied depending
on the network and the number of training examples. For
example, Lenet using 100 and 5, 000 image samples was
trained for 10, 000 and 40, 000 iterations respectively, whereas
the Alexnet with 100 and 5, 000 samples was trained for
8, 000 and 20, 000 iterations respectively. The learning rate
and number of iterations were chosen experimentally using
validation sets. The number of epochs was chosen as the
stopping criteria, instead of the training error, in order to allow
the comparison between networks learned with and without the
attention mechanism. The code for training the deep networks
is in our open source repository [23].

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, we describe the experimental setup and the
results of experimental evaluation of our architecture.



A. Experimental Setup

To simulate experiments in a dynamic domain in which
a large number of training samples are not available, we
used a real-time physics engine (bullet physics library) to
generate 6000 labeled images for estimating occlusion and
stability of objects. Each image had ROIs with up to five
objects with different colors, textures and shapes. The objects
included cylinders, spheres, cubes, a duck, and five household
objects from the Yale-CMU-Berkeley dataset (apple, pitcher,
mustard bottle, mug, and cracker box) [4]. We considered three
different arrangements of these objects:

• Towers: images containing 2− 5 objects stacked on top
of each other;

• Spread: images with five objects placed on the flat
surface (i.e., the ground); and

• Intersection: images with 2− 4 objects stacked on each
other, with the rest (1− 3) spread on the flat surface.

The vertical alignment of stacked objects is randomized creat-
ing either a stable or an unstable arrangement. The horizontal
distance between spread objects is also randomized, which can
create scenes with complex, partial or no occlusion. Lighting,
orientation, camera distance, camera orientation, and back-
ground, were also randomized. Also, for the experimental trials
summarized below, the ASP program was initially missing
three state constraints (each) related to stability estimation and
occlusion estimation.

A second dataset was derived from the dataset described
above to simulate the effect of the attention mechanism.
Recall that this module extracts ROIs from images in the
original dataset that could not be classified using ASP-based
reasoning, by identifying relevant axioms and relations in the
ASP program. Only pixels in these ROIs were considered
for analysis. CNNs trained using these two datasets were
compared as a function of the amount of training data and
the complexity of the networks. Occlusion is estimated for
each object (i.e., five outputs) and stability is estimated for
the structure (i.e., one output). Experiments were designed to
test the following hypotheses:

H1 Reasoning with commonsense domain knowledge and
the attention mechanism improves the accuracy of deep
networks;

H2 Reasoning with commonsense domain knowledge and
the attention mechanism reduces sample complexity and
time complexity of training deep networks.

H3 The architecture is able to incrementally learn previously
unknown axioms, and use these axioms to improve the
accuracy of decision making.

The main performance measure was the accuracy of the
labels assigned to objects and structures in images. Below,
all claims are statistically significant at the 95% significance
level. As the baseline for comparison, we trained the Lenet
and Alexnet architectures without the commonsense reasoning
and attention mechanism modules, i.e., directly on the RGB-D
input images, and evaluated them on the test dataset.
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Fig. 6: Accuracy of Lenet and Alexnet with and without com-
monsense reasoning and the attention mechanism. The number
of background images were fixed at 100. Our architecture
improves accuracy in comparison with the baselines.

B. Experimental Results

The first set of experiments was designed as follows, with
results summarized in Figure 6:

1) Training datasets of different sizes (100, 200, 1000, and
5000 images) were used to train the Lenet and Alexnet
networks. The remaining images were used to test the
learned models;

2) The datasets after the application of the attention mech-
anism were derived from the original datasets in Step-
1. The selection of images as well as the pixels from
each image was based on the target task and relations
of interest; and

3) The datasets created in Step-2 were used to train and
test the Lenet and Alexnet networks, with the results
plotted as “Lenet(Att)” and “Alexnet(Att)” in Figure 6.
The baseline CNNs used the training dataset without
attention mechanism or commonsense reasoning, with
results plotted as “Lenet” and “Alexnet” in Figure 6.

Figure 6 indicates that integrating commonsense reasoning
with deep learning improves the accuracy of the deep net-
works for the estimation of stability and occlusion. Training
and testing the deep networks with only relevant ROIs of
images that cannot be processed by commonsense reasoning
simplifies the learning process, making it easier to learn an
accurate mapping between inputs and outputs and resulting in
higher accuracy than the baselines for any given number of
training images. The improvement is more pronounced when
the training set is smaller, but there is improvement at all
training dataset sizes considered in our experiments. These
results support hypothesis H1.

Figure 7 shows two examples of the improvement provided
by the attention mechanism. In Figure 7a, both Lenet and
Lenet(Att) were able to recognize the occlusion of the red
cube caused by the green mug, but only the latter, which
uses the attention mechanism and commonsense reasoning,
was able to estimate the instability of the tower. In Figure 7b,
both networks correctly predicted the instability of the tower.
However, only Lenet(Att) was able to identify the occlusion
of the green cube by the yellow can. The classification errors



(a) (b)

Fig. 7: Examples of test images for Lenet and Lenet(Att): (a)
both detected the occlusion of the red cube by the green mug,
but only the latter correctly estimated the tower’s instability;
and (b) both predicted the instability of the tower, but only
Lenet(Att) detected the obstruction of the green cube by the
yellow cylinder.

are most probably because a similar example had not been
observed during training—this is a common limitation of
deep architectures. The attention mechanism eliminates the
analysis of unnecessary parts of images and focuses only on
the relevant parts, resulting in a more targeted network that
provides better classification accuracy. For these experiments,
the CNNs were trained with 1000 images.

The number of different backgrounds (selected randomly)
was fixed at 100 for the experimental results in Figure 6.
The effect of the background on the observed performance
varies depending on the number of training examples. For
instance, we had (on average) one image that used each
background image when the training data had 100 training
samples, and we had 50 images per background for the
training dataset with 5000 training examples. However, in real
scenarios, it is unlikely that we will get a uniform distribution
of backgrounds; other factors such as lighting, viewpoint, and
orientation will be different in different images. To analyze the
effect of different backgrounds, we explored the use of Lenet
and Lenet(Att) with different number of training examples
(100 and 5000) and different number of backgrounds (10, 30,
and 100). As shown in Figure 8, with Lenet and 100 training
samples, accuracy degrades from ≈ 65% for 10 different
background images to ≈ 62% when we have 100 different
background images. The degradation is smaller, i.e., ≈ 1%, for
5000 training examples with number of backgrounds varying
from 10 − 100. For 1000 different backgrounds (not shown
in Figure 8), the drop in accuracy was ≈ 2%. These results
indicate that a baseline (Lenet) network trained with a larger
number of images is less sensitive to variations in background,
and that the inclusion of different backgrounds has a negative
effect on performance for the network. With Lenet(Att), on
the other hand, Figure 8 shows that there is hardly any
change in accuracy regardless of the change in the number of
background images—the attention mechanism minimizes the
effect of variations in the background by focusing attention on
just the relevant ROIs in the image.

The second set of experiments was designed as follows,
with results summarized in Figure 9:
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Fig. 8: Effect of changing the number of backgrounds on
the accuracy of the Lenet and Lenet(Att) networks for 100
and 5000 training images. Without the attention mechanism
and commonsense reasoning, increasing the number of back-
grounds reduces the classification accuracy.
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Fig. 9: Accuracy of Lenet and Alexnet with and without
the attention mechanism and commonsense reasoning. The
number of background images was fixed at 100. Any desired
accuracy is achieved with a smaller training set.

1) The Lenet network was trained with training datasets
containing between 100− 1000 images, in step-sizes of
100. Separate datasets were created for testing;

2) The datasets after applying the attention mechanism
were derived from the original datasets from Step-1. The
selection of images as well as the pixels from each image
was based on the target task, and the axioms and spatial
relations of interest; and

3) The datasets created in Step-2 were used to train and
test a deep network, and the results are plotted as
“Lenet(Att)” and “Alexnet(Att)” in Figure 9. The base-
line CNN network used the training dataset without the
commonsense reasoning or attention mechanism.

Figure 9 shows that using the attention mechanism and



Axiom type Precision Recall
Unknown
(normal) 98% 100%

Unknown
(default) 78% 62%

TABLE I: Precision and recall for previously unknown axioms
(normal, default) using decision tree induction.

reasoning with commonsense knowledge helps achieve any
desired level of accuracy with much fewer training examples.
The purple dashed (horizontal) line in Figure 9 indicates
that the baseline Lenet needs ≈ 1000 images to reach an
accuracy of 77%, whereas Lenet(Att) reduces this number to
≈ 600. A similar difference is observed between Alexnet and
Alexnet(Att) for ≈ 80% accuracy—see the dark green dash-
dotted (horizontal) line in Figure 9. In other words, the use
of commonsense knowledge helps train deep networks with
fewer examples, reducing both the computational and storage
requirements. These results support hypothesis H2.

The third set of experiments was designed as follows, with
results summarized in Table I:

1) Ten sets of 50 labeled images were created, as described
in Section IV-A;

2) The axiom learning algorithm was trained with each set
three times, using thresholds of 95% and 70% at the leaf
nodes of the decision trees—see Section III-B;

3) The precision and recall for the unknown axioms, e.g.,
Statements 4(a), 4(b), and 5, but excluding defaults (i.e.,
with threshold of 0.95), are summarized as “unknown
(normal)” in Table I;

4) The precision and recall for the unknown default state-
ments, e.g., Statement 3, (i.e., with threshold of 70%)
are summarized as “unknown (default)” in Table I;

Table I demonstrates the ability to learn previously unknown
axioms. Errors are predominantly variants of the target axioms
that are not in the most generic form, i.e., they have irrelevant
literals but are not actually wrong. The lower precision and
recall with defaults is understandable because it is challenging
to distinguish between defaults and their exceptions. Although
we do not describe it here, reasoning with commonsense
knowledge and decision trees also provides (at least partial)
explanations for the decisions made by the architecture.

Finally, we ran experiments in which the robot computed
minimal plans to pickup and clear particular objects. We
observed that the number of plans computed when the learned
axioms are included in the ASP program are much smaller than
when the axioms are not included—this makes sense because
the learned axioms are constraints that eliminate possible paths
in the transition diagram. For instance, the goal in one set of
experiments was to clear the large red box partially hidden
behind the blue, green and white boxes, and the duck in
Figure 10. With all the axioms the robot found three plans, all
of which were correct. However, with some axioms missing,
the robot found as many as 64 plans, many of which were
incorrect. A plan was considered to be correct if executing

Fig. 10: Illustrative image used for planning experiments with
and without the learned axioms.

it (in simulation) resulted in the corresponding goal being
achieved. All these results support hypothesis H3.

V. DISCUSSION AND CONCLUSIONS

Deep network architectures and algorithms represent the
state of the art for many tasks in robotics and AI. How-
ever, they require large training datasets and considerable
computational resources, and make it difficult to understand
their operation. The architecture described in this paper draws
inspiration from research in cognitive systems to address these
limitations. It integrates the principles of non-monotonic logi-
cal reasoning with commonsense knowledge, and decision tree
induction of knowledge, with deep learning. The underlying
intuition is that commonsense knowledge is available in almost
every application domain—in fact, some such knowledge is
often necessary to optimize the parameters of deep networks.
Our architecture, on the other hand, explores a sophisticated
approach for fully exploiting this knowledge. Reasoning with
domain knowledge simplifies learning—the robot only needs
to learn about aspects of the domain not already encoded
by the existing knowledge. A more accurate mapping is thus
learned between the desired inputs and outputs using a smaller
set of labeled examples. We have experimentally validated our
intuition in the context of estimating the occlusion of objects
and the stability of object structures in simulated images. Our
architecture improves accuracy, and reduces storage and com-
putation requirements, especially when large labeled training
datasets are not readily available.

The work described here opens up multiple directions for
future research. First, we will explore the interplay between
reasoning and learning to better understand the operation of
deep network models. We have already shown in other work
that the use of relational logical structures makes it easier to
explain the decisions, the underlying knowledge and beliefs,
and the experiences that informed these beliefs [32]. Second,
we will expand the learning capabilities of our architecture.
Although we have only discussed the learning of state con-
straints in this paper, we have (in other work) explored the use
of relational reinforcement learning and limited human feed-
back for learning different types of domain knowledge [31].
Furthermore, we will explore the use of this architecture on
robots assisting humans in more complex domains.
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