
Robotics: Science and Systems 2020
Corvalis, Oregon, USA, July 12-16, 2020

1

Self-Reconfiguration in Two-Dimensions via
Active Subtraction with Modular Robots

Matthew D. Hall, Anıl Özdemir, and Roderich Groß
Sheffield Robotics, The University of Sheffield, UK

{m.d.hall, a.ozdemir, r.gross}@sheffield.ac.uk

Abstract—Modular robotic systems comprise groups of phys-
ically connected modules which can be reconfigured to create
morphologies that suit an environment or task. One method
of reconfiguration is via subtraction, where extraneous modules
disconnect from an initial configuration, before being removed
by external intervention. In this paper, we consider an approach
to reconfiguration in two dimensions, here termed active sub-
traction, in which unwanted modules traverse a configuration
in order to remove themselves safely, without the need for
external intervention, making it a form of self-reconfiguration.
We present a sequential solution that selects suitable extraneous
modules that then remove themselves, one by one. We also
present a parallel solution that, while being more computationally
demanding, allows multiple modules to move simultaneously.
Both solutions are proven to (i) be correct for any given non-
hollow structure, and (ii) require, in the worst case, quadratic
time proportionally to the number of modules. Simulation studies
demonstrate that both solutions work effectively for specified
and randomly generated desired configurations with hundreds of
modules, and reveal a non-monotonic dependence between the
performance and the percentage of modules to be removed. This
work demonstrates active subtraction as a viable method of self-
reconfiguration, without the need for heuristics or stochasticity,
and suggests its potential for application in real-world systems.

I. INTRODUCTION

Modular robots are groups of robotic units that combine
their abilities and attributes to become a system that is greater
than the sum of its parts. Through the collaboration of these
lesser parts, the whole can complete tasks that would be
challenging for the individual, much like living cells [6] or
a colony of ants [1]. Most conventional robotic systems are
specialized, with limited use cases. This makes development
time-consuming and expensive, as the robots require alter-
ations for each task. It is also more expensive for the end-
user, as they would require a multitude of robots for changing
demand. Through the development of modular systems, these
shortcomings can be negated [20].

For modular systems to become autonomous, it is required
that they are able to self-reconfigure, that is, that they can
change their morphology without intervention from a user.
A number of solutions have been presented for the self-
reconfiguration of modular systems [18, 2]. The majority
of solutions involve adding modules or rearranging them to
form shapes, known as additive self-reconfiguration. Additive
self-reconfiguration has been demonstrated with a number of
modular systems [17, 16, 19, 4], and is at present the most
common form of reconfiguration.

(a) (b)
Fig. 1. Starting from a 4 × 4 solid initial configuration, as in (a),
active subtraction is employed to reconfigure modules to a given desired
configuration, shown in progress in (b). Illustrated using the HyMod platform.

Gilpin et al. [8] developed an alternative approach to re-
configuration, where a desired shape is formed by initiating a
group of modules in a given starting formation, before having
unneeded modules detach themselves. This is known as sub-
tractive reconfiguration, and has been researched considerably
less than additive reconfiguration, despite the promise it holds.
Using the Miche system, Gilpin et al. demonstrate subtractive
reconfiguration in three dimensions. The Miche modules are
small cubes, equipped with magnetic connectors on their six
faces. When initialized in a cubic lattice, the modules are able
to determine whether or not they are required in the final
configuration and disconnect from their neighbors if they are
not. In an effort to minimize the size of the modules, they are
incapable of locomotion, so external actuation is required to
remove the unnecessary modules, in this case by using gravity.
The authors demonstrate the presented concept with 28 Miche
modules, forming a variety of shapes autonomously, such as a
humanoid and a dog shape. Gilpin et al. go on to demonstrate
subtractive reconfiguration with the Robot Pebbles system [9].
The Robot Pebbles are smaller scale robots, inspired by
Miche, but with connectors on only four of the faces, thereby
restricting the lattice to two dimensions. The modules feature
no internal locomotion, instead relying on a vibrating table to
locomote once disconnected from the structure.

Subtractive reconfiguration is also possible with non-
modular robots, as demonstrated by Gauci et al. [7]. In this
work, the authors use a swarm of 725 Kilobots, which are
small-scale mobile robots [15]. The Kilobots are initiated in a
tightly packed group and given a user-defined goal shape. The
robots that are not required in the final configuration remove
themselves through the combination of collision avoidance,

phototaxis, and antiphototaxis. The collision avoidance means
that the robots will not remove themselves from the structure
until there is a clear path ahead, and will not disturb the goal
shape in doing so. The work shows the strategy successfully
yielding certain types of shapes when the correct combination
of phototaxis and antiphototaxis is used.

The motivation behind subtractive reconfiguration comes
from the increased reliability it lends. Typically, modules
require high precision to form connections between them-
selves, unless these connections are already present in the
starting configuration, as is the case in a subtractive approach
(see Figure 1). As discussed by Gauci et al. [7], an initially
connected structure can guarantee that the modules are able to
communicate from initialization. Because of this, information
such as the initial configuration or the control scheme can be
easily passed to all members before reconfiguration begins.

The aforementioned work is only concerned with non-
modular robots, or non-mobile modules which are removed
through external locomotion once disconnected. Employing
lattice-based modular systems with internal locomotion, such
as HyMod [13], M-TRAN [12], SMORES [5] or M-Blocks [14],
it could be possible to actively subtract modules from an
initial starting cube, leaving behind the desired structure. The
problem is particularly challenging in the presence of gravity,
as the redundant modules may have to leave in a particular
order to prevent the current structure from collapsing. This
problem is addressed for the first time in this work.

In this paper, we present a subtractive approach for re-
configurable robotic systems, by which extraneous modules
actively remove themselves from a starting configuration, to
leave behind a given structure. We refer to this approach
as active subtraction. We present two solutions: one where
modules operate purely sequentially, while the other allows
for parallel movement. We prove the correctness and formally
characterize the worst-case performance of both solutions.
Moreover, we conduct simulations with up to hundreds of
modules to evaluate performance over a range of conditions.

The paper is structured as follows. Section II defines the
problem to be solved and outlines the capabilities of the
modules. Section III presents the two solutions. Their validity
and run-time performance are formally analyzed in Section IV.
We then simulate a range of systems in Section V. Section VI
concludes the paper.

II. PROBLEM FORMULATION

Consider a group of modules arranged to fill a two-
dimensional, rectangular space in a vertical plane. The en-
vironment is bounded in one of the four directions by a static
surface, which we refer to as the ground. In the remaining three
directions there exists free space, at least large enough for a
module to move into. By default, the modules must remain
connected to themselves and to the ground, as otherwise,
the structure would collapse due to gravitational forces. The
modules, ground, and all connections are considered to be
infinitely rigid. A number of modules in this initial configura-
tion are required to remove themselves, to leave behind only

Fig. 2. Example of an active module employing adjacent movement to travel
West, followed by corner movement to travel South-West.

modules in a predefined configuration, known as the desired
configuration. As is the case with all existing subtractive
reconfiguration, hollow spaces are not permitted in the desired
configuration, as modules that are to leave the hollow space
behind would not be able to remove themselves [7, 9]. We
nominate a sink location, which is at ground level and adjacent
to the structure. When a module reaches the sink location, we
assume it is automatically removed from the configuration.

The modules in the desired configuration are henceforth
referred to as included modules and are stationary throughout
the reconfiguration. The excess modules that are to be removed
are referred to as excluded modules. The task is considered
complete when all excluded modules have managed to reach
the sink location.

A. Objective

Formally, a robot’s configuration is represented as a graph,
G = (V,E). Each node v ∈ V corresponds to a module with
coordinates (vx, vy) ∈ N × N+. Edges represent connections
between modules; a pair of modules are connected if and only
if their Manhattan distance is 1. Let G′ denote the augmented
configuration that includes the original graph, G, as well as an
additional node, g, representing the ground, connected to all
nodes v where vy = 1. Formally, we have G′ = (V ′, E′) with
V ′ = V ∪ {g} and E′ = E ∪ {{g, v} | v ∈ V and vy = 1}. A
configuration G is referred to as feasible (i.e., non-collapsing)
if the augmented configuration, G′, is a connected graph.

We assume that the modules are initially arranged in a
rectangular configuration G0 = (V0, E0), of width xmax and
height ymax, where V0 = {(x, y) | 1 ≤ x ≤ xmax, 1 ≤ y ≤
ymax}. Let Ginc = (V inc, Einc) denote a desired, feasible,
non-hollow configuration, where V inc ⊆ V0 are the included
modules. For the robot to self-reconfigure from G0 to Ginc,
the excluded modules, V exc = V0 − V inc, must be removed.
For a module to be removed, it has to reach the sink, which
we assume is located at (0,1).

The reconfiguration problem consists of identifying a finite
sequence of configurations G1, G2, . . . , GT such that
• For all k = 1, 2, . . . , T : Gk is feasible;
• For all k = 1, 2, . . . , T : Gk can be reached from Gk−1

via one module executing a valid movement, which is
potentially followed by removing the module if it has
reached the sink;

• GT = Ginc.

B. Module Capabilities

The work presented here uses a model of a robot that, while
having similar attributes to the aforementioned lattice-based
modular systems, implements them in a simplified manner,

akin to the sliding square method of movement [11]. The
possible movements can be separated into two types, adjacent
and diagonal movement, and are expressed in terms of a
module’s Moore neighborhood. Adjacent movement is where
a module traverses by a distance of one unit along only one
axis, that is North (N), East (E), South (S), or West (W).
Whereas, diagonal movement is when the module traverses a
distance of one unit along both axes, that is, North-West (NW),
North-East (NE), South-East (SE), or South-West (SW). Both
movement types are illustrated in Figure 2.

Each module is aware of the state of its connectors, that
is, whether connected or not. It is assumed that connected
modules are able to communicate with one another and can
pass messages through the system, including through the
ground, as is possible with the HyMod surface extension [13].
Through this communication, the modules are able to establish
their relative position and heading within a global co-ordinate
system. For one of the solutions that is presented, at least one
module is capable of computation, and has an internal clock,
which is used for implicit synchronization.

III. SOLUTIONS

We present two solutions for the problem described in
Section II. The first solves the problem while having modules
actively remove themselves one at a time, termed Sequential
Active Subtraction, or SAS. The second builds on the first
but grants the modules parallel movement, greatly reducing
the overall reconfiguration time, which is Parallel Active
Subtraction, or PAS.

A. Sequential Active Subtraction (SAS)

In this section, we are concerned with creating a pair of
algorithms that allow a leader module to select modules to
be removed from the structure, and for the selected modules
to navigate to the sink location. This will leave behind a set
of connected modules that form a given desired configuration.
All modules execute an identical distributed algorithm based
solely on local knowledge, except for the leader module, the
identity of which can be chosen at initialization1, and which
requires knowledge of the initial and desired configurations.
As all modules are initially connected, the location of each
module can be defined relative to a single point within the sys-
tem, by passing a message and incrementing the relevant value.
The tuple of coordinate values can be used to identify the
modules. The leader module is responsible for choosing and
informing sequential excluded modules to remove themselves,
one at a time. It does so by executing the algorithm presented
in Section III-A1. When an excluded module is notified it is
to be removed, it becomes the active excluded module. The
active excluded module removes itself from the configuration,
by executing the algorithm presented in Section III-A2.

1) Leader Module Algorithm: Algorithm 1, which is ex-
ecuted by the leader module, requires the module to have
knowledge of which modules are excluded (V exc) and which

1The most Westerly included module on the ground can be chosen as the
leader.

Algorithm 1 Leader module (SAS)
Require: V exc and V inc

1: while V exc 6= ∅ do
2: V top ←

{
u ∈ V exc |uy = maxv∈V exc{vy |Fv > 0}

}
3: m← argminv∈V top vx
4: notify m . send signal to activate m
5: V exc ← V exc \ {m} . update the set of excluded

modules
6: wait m . wait for m to reach sink
7: end while

Algorithm 2 Active excluded module (SAS or PAS)
1: SD ← {S, SW, W, NW, N, NE, E, SE}
2: while position 6= sink do
3: for all d ∈ SD do
4: if cell(d) = empty then
5: if d ∈ {N, E, S, W} then . space is adjacent
6: D ← d
7: break . progress to line 16
8: else . space is diagonal
9: if cell(d+ 1) = empty then

10: D ← d
11: break . progress to line 16
12: end if
13: end if
14: end if
15: end for
16: move D . move in direction D
17: SD ← {D − 2, D − 1, D,D + 1, D + 2, D + 3, D +

4, D + 5}
18: end while
19: notify leader

are included (V inc). Assuming that the set of excluded modules
is not empty, the leader chooses one module to be removed.
The leader can infer from V exc and V inc how many inactive
connectors each excluded module has. Let Fv denote the
number of inactive connectors for module v ∈ V exc. For a
module v to be considered for removal, we must have Fv > 0.
The leader module first determines the highest horizontal layer
of the structure that contains at least one excluded module
with Fv > 0. It denotes by V top the set of excluded modules
with Fv > 0 in this layer (line 2). It then chooses from
V top the module furthest West, m, which is also nearest to
the sink (line 3). It informs the chosen module to remove
itself from the configuration (line 4) and updates the set of
excluded modules accordingly (line 5). The leader then waits
for the active excluded module to reach the sink, which it can
be informed of through the structure, or through the ground
(line 6). The process is repeated until V exc is empty. As the
process is sequential, modules cannot possibly collide.

2) Active Excluded Module Algorithm: Once a module
is informed it is the active excluded module, it performs
Algorithm 2. The first step is to determine an order, SD, of

(a)

(b)
Fig. 3. Example of a stalemate when using static prioritization, (a), and
dynamic prioritization avoiding the stalemate, (b).

Fig. 4. Example of a module escaping a dead-end by checking all possible
directions of movement, including opposite to the direction it already traveled.

directions in which to probe the state of neighboring cells in its
Moore neighborhood (given a direction d ∈ SD, let cell(d) be
empty if the corresponding neighbor cell is not occupied). By
defining the sink at position (0, 1), the module has a location
to aim for, which is always either South, West or South-West.
The module therefore first prioritizes a South-bound direction,
continuing in a clockwise order around the directions of the
Moore neighborhood, as shown on line 1. For example, in
Figure 2, the active module first probes whether there is a
neighbor to the South, as there is it proceeds to probe to the
South-West and then West, where it finds a free space.

For non-rectilinear structures, like the one shown in Fig-
ure 3(a), the aforementioned fixed priority sequence may
result in a deadlock. The active module would first move
to the North-East but is then able to move South, which is
the prioritized movement, before moving West as the next
highest prioritized movement. It would then repeat these three
movements indefinitely, not making progress towards the sink.

To avoid such situations, the movement of the active module
is informed by the direction, D, it last traveled. This infor-
mation is used to alter the priority (i.e., set SD) by which
the next direction is decided, shown on line 17. The numeric
alteration consists of steps around the Moore neighborhood
in a clockwise direction. The five Moore neighborhood posi-
tions that do not constitute a ‘backward’ movement, that is,
D−2, D−1, D,D+1, D+2, are given priority over the other
three possible directions, D+ 3, D+ 4, D+ 5, so as to avoid
retreading the same path, where possible. Figure 3(b) shows
this dynamic prioritization resolving the previous stale-mate.

In some situations, such as in Figure 4, a module could
find itself at a dead-end. Movement directions D + 3, D + 4
or D + 5 become relevant and are probed in this sequence.
This act of dynamically prioritizing directions to move means
that the active module can always reach the sink, although not
necessarily by taking the shortest possible path.

Each movement that a direction, d, would imply falls into

Algorithm 3 Leader module (PAS)
Require: ϕ(·), ∆ . Obtained by simulating Algorithms 1, 2

1: s1 ← 0
2: a1 ← ∆1, aj 6=1 ←∞
3: for all i = 2 to |V exc| do
4: si ← max(0, ai−1 + 2−∆i)
5: V sim ← V inc ∪ {u ∈ V exc | aϕ(u) ≥ si}
6: collision ← simulate V sim

7: if collision then
8: si ← si + 1
9: goto line 5

10: end if
11: ai ← si + ∆i

12: end for
13: notify n at sn . send signals to modules at start times

the category of adjacent movement or diagonal movement. For
an adjacent movement it is simply necessary that cell(d) be
empty, and if this is the case then the direction to move, D,
can be set to direction d (line 5). In the case of a diagonal
movement, it is required that an adjacent cell be passed
through to reach the potential location. The next neighboring
cell in the Moore neighborhood is checked (if the previous cell
was empty, it would have already been selected), as shown on
line 9.

Once D has been set, the module moves to the neighboring
cell located in direction D, re-prioritizes the order of directions
in SD and repeats the process. This continues until the module
reaches the sink, at which point it can be considered removed,
and informs the leader accordingly.

B. Parallel Active Subtraction (PAS)

To reduce the time cost of reconfiguration, we present a
version of active subtraction that allows modules to move
in parallel, PAS. It requires at least the leader module to be
capable of conducting simulations. Active modules continue
to use Algorithm 2 (see Section III-A2). PAS only differs
from SAS in the timings of when the excluded modules are
activated. However, it preserves the order in which the modules
arrive at the sink.

Algorithm 3, which is executed by the leader module,
requires the module to simulate Algorithms 1 and 2 to obtain
the order in which the excluded modules reach the sink, ϕ(·),
along with the number of time steps that the ith module
reaching the sink was active, ∆i, where i = 1, 2, . . . , |V exc|.
For example, if excluded module m was the second module to
arrive at the sink and was active for 20 time steps, ϕ(m) = 2
and ∆2 = 20. The start time of the first module, s1, is set
to 0. Its arrival time, a1, is set to ∆1, with all other modules
assigned an arrival time of infinity. Subsequent modules must
arrive at the sink after their predecessor. Moreover, collisions
among active modules must be prevented. We define a colli-
sion as an active module residing within the Moore neighbor-
hood of another active module. Without collisions, interaction
between active modules is avoided, which could otherwise

affect the direction in which they move (see Algorithm 2).
As a consequence, the arrival times of subsequent modules
must differ by at least two. The earliest possible start time
for the module in question is chosen accordingly (line 4). The
leader module then simulates the active subtraction process,
to determine whether the module in question is successfully
removed without any collision (line 6). To lessen the compu-
tational load, it is only necessary to simulate the movement of
modules that have not reached the sink by the time the newly
considered module is deployed (line 5). Excluded modules that
are yet to be assessed are included in the configuration, but
as they have no designated start time, their movement is not
simulated. If a collision occurs, the start time of the module
in question is delayed by one time step and the simulation is
repeated. Once a valid start time has been found, the arrival
time is calculated accordingly (line 11). Once all excluded
modules have been assigned a start time, the leader can begin
the reconfiguration of the system. It initializes a clock and
activates the excluded modules at their corresponding starting
times (line 13). Note that multiple modules may be activated
on the same time step.

IV. MATHEMATICAL ANALYSIS

This section formally analyzes the correctness and run-time
performance of both SAS and PAS.

Lemma 1. If V exc 6= ∅, lines 2 and 3 of Algorithm 1 identify
a module to be removed.

Proof: Consider the set of excluded modules that have
at least one inactive connector, B = {v ∈ V exc |Fv > 0}. If
B = ∅, then every excluded module is surrounded by other
modules. The number of excluded modules is finite, therefore,
the excluded modules would have to be fully encapsulated
by the included modules. However, this is not possible, as
the desired structure (made of the included modules) is non-
hollow. Therefore B 6= ∅. As B is finite, it follows that
there exist modules in B that have maximal height, that is,
V top 6= ∅. From these modules, the algorithm chooses the
most-Westerly one. The choice is unique, as no two modules
have identical coordinates.

Lemma 2. The module chosen by Algorithm 1 can be removed
without the configuration becoming infeasible.

Proof: The included modules form, by assumption, a
feasible configuration. Hence, module m is not required to
support any included module. Let us assume that removing m
would make the configuration infeasible. Consider a vertical
block of u excluded modules, that is surrounded by two empty
cells at coordinates (x, y) to (x, y+u+1). One can show that
u has to be 0:

1) If (x, y+u+1) was removed before (x, y), then (x, y+u)
would have been removed before (x, y) as well.

2) If (x, y) was removed before (x, y+u+1), then (x, y+1)
would have been removed before (x, y + u+ 1).

Hence, u must be 0. As a consequence, any excluded module
is supported (directly or indirectly) from below by either

an included module or the ground, or from above by some
included module.

Lemma 3. If Algorithm 1 chooses a module, m, to be
removed, Algorithm 2 constructs a valid, finite path from m
to the sink.

Proof: Let Gs be the graph, where the nodes are the free
faces of any module in the configuration, excluding the focal
module m, and where the edges link any pair of adjacent faces.
As m is the module to be removed, it must have at least one
free face, implying it is adjacent to one or more faces in Gs.
We know that Gs is connected at any time. Each free module
face can only be adjacent to one other face per side, that is,
each node has two edges, meaning Gs is a path graph of finite
length. The sink, s, is located at the ground and adjacent to the
configuration. Thus, s is always at one end of the path graph.
As m is connected to a module whose free face(s) belongs to
Gs and the proposed movement framework allows m to move
along a new direction, that is, an edge (see Algorithm 2), m
always reaches an end of Gs. If the end that is reached is not
s, implying the module was traversing the path in a clockwise
direction around the configuration, it will re-traverse Gs in the
opposite (counter-clockwise) direction. This causes the module
to inevitably reach s.

Theorem 4. By employing Algorithms 1 and 2, all excluded
modules are guaranteed to be removed.

Proof: We prove the theorem by induction. If there are
no excluded modules, nothing is to be shown. We assume that
the theorem is true if there are k ≥ 0 excluded modules. Let
|V exc| = k + 1. According to Lemma 1, the leader module
identifies a module, m, to be removed, and activates this
module. It follows from Lemma 2, that removal of module
m does not cause the configuration to become infeasible. As
stated by Lemma 3, module m traverses a finite path from
its initial position to the sink. As only active modules move,
and as m is the only active module, module m reaches the
sink in finite time. Once the sink is reached, the module is
removed, and deactivated, resulting in a configuration of only
k excluded modules. For this configuration, we have that all
excluded modules are guaranteed to be removed, meaning the
proof is complete.

Theorem 5. Using SAS, the number of time steps required to
reach the desired configuration is bounded by O(|V0|2).

Proof: While executing Algorithm 2, the active excluded
module moves along the perimeter of the remaining structure.
Initially, this may happen in a clockwise direction. Once the
module moves in a counter-clockwise direction around the
structure, however, it keeps doing so until reaching the sink.
The path length along the perimeter is bounded by |V0| + 1,
where V0 is the initial configuration (defined in Section II-A).
Therefore, the module must reach the sink in at most 2|V0|+2
time steps. As at most |V0| modules are to be removed, the
number of time steps to reach the desired configuration is
bounded by 2|V0|2 + 2|V0| = O(|V0|2).

(a) (b) (c)
Fig. 5. Example of a complex shape with a long corridor that excluded
modules must traverse. Dark purple modules are included modules. Light
purple and cream colored modules are inactive and active excluded modules,
respectively.

Theorem 6. PAS guarantees that all excluded modules are
removed, each following the same path as in SAS. The order
in which modules arrive remains the same as in SAS.

Proof: We prove the theorem by induction. If there are
no excluded modules, nothing is to be shown. We assume that
the theorem is true if there are k ≥ 0 excluded modules. Let
|V exc| = k + 1 and the modules be labeled in the order by
which they would arrive at the sink when employing SAS:
1, . . . , k + 1. If module k + 1 was changed to be an included
module, all statements would be true. That is, the k excluded
modules would reach the sink at times a1 < a2 < · · · < ak,
each one following the same path as in SAS. Algorithm 3
determines the arrival times a1 < a2 < · · · < ak independent
from whether module k + 1 is excluded or not. We have
ak+1 = sk+1 + ∆k+1 ≥ max(0, ak + 2 −∆k+1) + ∆k+1 =
max(∆k+1, ak+2) (see line 4 of Algorithm 3). Hence, module
k+1 starts no earlier than at time 0, and the order of arrival is
preserved. If ak+1 = ak + 1, one module would reside within
the Moore neighborhood of the other, resulting in a collision.
Hence, ak+1 = max(∆k+1, ak +2) would be the earliest pos-
sible arrival time. The leader module emulates the movements
of modules 1 to k + 1 to check for possible collisions. We
know that any possible collisions among modules 1 to k have
already been resolved. If a collision involving module k + 1
occurs, sk+1 (and hence ak+1) is incremented and the process
repeated (see line 8 of Algorithm 3). As ak+1 = ak+2+∆k+1

could not result in any collision, the number of iterations is
bounded. In each iteration, at most ∆k+1 + maxj≤k ∆j steps
have to be simulated: If module k+1 reaches the sink without
any collision, arrival times a1 < a2 < · · · < ak < ak+1 have
been determined. Moreover, as no collision remains, none of
the other excluded modules (1 to k) will ever reside within
the Moore neighborhood of module k + 1. In other words,
module k + 1 follows exactly the same individual path as for
SAS The movements of module k+ 1 can hence not render a
configuration infeasible, meaning the proof is complete.

Theorem 7. Using SAS or PAS, in the worst-case, the number
of time steps required to reach the desired configuration is
Θ(|V0|2).

Proof: According to Theorem 5, the number of time steps
required to reach the desired configuration is O(|V0|2). In other
words, the time grows at most quadratically with the number of
modules in the initial configuration. This result equally applies
to PAS. What remains to be shown is that quadratic growth
is indeed possible, that is, the number of time steps required

Fig. 6. Example of a user-defined U-shape being formed through SAS in
simulation. Shown at time steps 0, 16, 26 and 39.

to reach the desired configuration may be Ω(|V0|2). Consider
the initial configuration shown in Figure 5(a). It comprises
two horizontal blocks of included modules. Although each
block contains 7 modules in Figure 5, in a more generalized
configuration, each block contains V exc

0

2 modules, where V exc
0

can be arbitrarily large. To obtain a lower bound for the num-
ber of time steps required to reach the desired configuration,
we assume that the excluded modules in the upper block
have already removed themselves from the structure, as shown
in Figure 5(b). Any excluded module from the lower block
will fully explore the upper corridor, as it cannot determine
using local knowledge alone that this is a dead-end, seen in
Figure 5(c). To prevent collisions, subsequent modules need
to be sufficiently separated in time. Formally, the times at
which any pair of subsequent modules arrive at the sink have
to differ by |V exc

0 |. The |V
exc
0 |
2 excluded modules in the lower

block hence need at least
(|V exc

0 |
2 − 1

)
|V exc

0 | = Ω(|V exc
0 |2)

time steps to be removed. In this example V0 = 4 + 2|V exc
0 |,

as such the time steps required corresponds to Ω(|V0|2).

V. SIMULATION STUDIES

In this section, we present a number of simulation studies,
demonstrating the capabilities of SAS and PAS. We implement
the algorithms in a combination of Python and Fortran. The
implementation allows the user to input a desired configuration
(see Section V-A) or generate random configurations (see
Section V-B), as well as graphically illustrating the paths of
the excluded modules, if required.

The performance of a simulation trial is quantified by the
number of movements required for all excluded modules to be
removed, referred to as time steps. To account for structures
of different sizes, we present normalized values, that is, we
divide the time steps by the number of excluded modules in
the initial configuration. A simulation is considered successful
if all excluded modules are removed, without the configuration
becoming infeasible at any moment in time.

A. User-Defined Configurations

In this section, a range of user-defined desired configura-
tions are investigated.

Figure 6 shows how SAS subtracts excluded modules to
reconfigure from a 4 × 4 starting square to a simple U-shape,
similar to the one considered by Gauci et al. [7]. Such a shape
could be useful for collecting tasks or grasping tasks, once it
has been formed. When employing SAS, the reconfiguration
takes 39 time steps. The same simulation in PAS takes only
17 time steps, a reduction of 57%.

In the works on Miche and Pebbles by Gilpin et al. [8, 9], a
humanoid structure is formed. As shown in Figure 7(a) this is

(a) (b)
Fig. 7. A humanoid shape configuration that is impossible to form due to
the enclosed module indicated, (a), and a feasible rotated version of the same
shape, (b).

(a)

(b)
Fig. 8. Example of (a) SAS, and (b) PAS, being used to form a large
humanoid structure from a 20×20 grid. Shown at time steps (a) 0, 4000 and
8563, and (b) 13, 400 and 644.

not a feasible configuration in our problem formulation (which
involves vertical 2-D structures and a ground), because the
indicated module is enclosed by included modules and the
ground. One possible solution is to rotate the configuration to
a feasible one, shown in Figure 7(b). This reconfiguration from
a 5 × 5 starting square takes 100 time steps using SAS, and
can be seen animated in the supplementary material provided,
along with animations of the other simulations presented
here [10]. PAS takes only 40 time steps, a reduction of 60%.

Another solution, shown in Figure 8(a), could be to increase
the size of the initial configuration and have one side of
the desired configuration slightly removed from the ground.
Here the initial configuration is set to 20×20 modules. It
takes SAS 8563 time steps to reach this configuration. The
same 20×20 humanoid shape was also simulated using PAS.
From Figure 8(b) one can see the benefits of multiple modules
moving at once. PAS takes only 777 time steps, a reduction
of 91%.

B. Randomly Generated Configurations

This section presents studies where the desired configu-
rations are randomly generated, making it possible to sys-
tematically characterize the performance under a wide range
of conditions. We consider initial configurations of different
sizes. Moreover, we consider desired configurations of differ-
ent density. Density, ρ, is defined here as the percentage of
modules within the initial configuration that are retained in
the desired configuration, that is, the percentage of included
modules. Formally, ρ = |V inc|

|V exc∪V inc| × 100%.
To generate a configuration, an initial included ‘seed’ mod-

ule is first positioned on the ground. All neighbors of the

Fig. 9. Example of a randomly generated configuration, of size 10×10 and
inclusion density of 40%.

10 20 30 40 50 60 70
density of included modules, (%)

2

5

10

20

50

tim
e

st
ep

s (
no

rm
al

ize
d)

SAS
PAS

Fig. 10. Box-plots of the normalized time taken by excluded modules to
remove themselves, leaving behind desired configurations of various densities.
Initial configurations of 10×10 (shown with hatched boxes) and 20×20
(normal boxes). Desired configurations were generated randomly (80 samples
per box). Line plots of the median best-case sequential time for each scenario
are overlaid for the SAS simulations. Time steps are normalized by the number
of excluded modules and shown on a logarithmic scale.

seed module are checked to see whether they are not yet
included, and are within the confines of the environment. From
the potential neighbor locations, one is chosen at random
to become a new included module. Once multiple included
modules are selected, the next module to add a neighbor to
is also randomly selected, and its neighbors assessed. This
repeats until a configuration of given size is created, and guar-
antees that the configuration will be connected. However, this
method does not ensure that no hollow spaces exist, so further
checks must be performed to remove any infeasible desired
configurations. Figure 9 shows an example of a randomly
generated 10×10 configuration at 40% density.

1) Influence of Density of Included Modules: We study
the performance of SAS and PAS for different densities of
included modules, from 10% to 70%, in steps of 10%. Two
initial configurations are considered: 10×10 and 20×20. For
each combination of density and initial configuration size, the
same 80 randomly generated desired configurations are used
for both approaches.

Figure 10 shows the effect the density has on the number
of time steps it takes the modules to remove themselves from
the structure. It also shows a line plot of the median best-
case sequential time for the same generated configurations.
The best-case sequential time is a theoretical lower bound for
a given configuration, which is acquired by determining the
shortest possible route that each excluded module could take to
reach the sink, via empty cells or those occupied by excluded
modules, while still circumnavigating the included modules.

Fig. 11. Box-plots of the normalized time taken by excluded modules
to remove themselves from configurations of various sizes. The desired
configurations were generated randomly with density 60% (80 samples per
box). Time steps normalized by the number of excluded modules.

2) Influence of Configuration Size: We study how the
performance of SAS and PAS scale with the configuration
size, considering 5×5, 10×10, 15×15, 20×20, and 25×25.
For each case, the inclusion density is 60%. The same 80
randomly generated desired configurations are used for both
approaches. The results are shown in Figure 11.

C. Discussion of Results

In every case simulated, both user-defined and randomly
generated, all excluded modules were able to reach the sink
and left behind only the desired configuration, suggesting that
the algorithms performed as intended.

In Figure 10, the performance of SAS over varying density
exhibits an interesting behavior, where it can be observed to
rise to a point and fall again. We hypothesize that this is
due to the configurations that can be generated rather than
SAS itself. Desired configurations of low density may have
less chance of containing overhangs and dead-ends, geometry
that is time-consuming to circumnavigate. As the density then
increases, so does the likelihood of creating more complex
geometry. However, once it becomes very high, areas that
featured complex geometry are more likely to be filled again.
The non-monotonic behavior is also observed in the analysis
of the best-case sequential times. When considering the best-
case routes, the excluded modules must still go around the
included modules.
PAS far outperforms SAS in terms of time steps taken for

the same configurations, requiring the data to be shown on a
logarithmic scale in order to be fully assessed. Moreover, the
(normalized) reconfiguration time for PAS does not increase
with configuration size; in fact, the larger configuration yields
the best performance for densities up to 50% (see Figure 10).

In Figure 11 the change in performance attributed to con-
figuration size can be clearly observed. When using SAS,
the normalized time that excluded modules take to reach
the sink increases with configuration size, though sub-linear,
while the theory predicts a linear growth (or quadratic, if not
normalized). However, when using PAS, the normalized time
remained reasonably consistent. Although each module still
individually traveled a further distance in a larger configura-
tion, this also allowed for more modules to move in parallel,

almost negating the effects of the increased travel distance.
This is corroborated by the increased performance of PAS
when simulating the configurations in Figures 7(b) and 8.
These findings are promising, given that our theory predicted
a linear growth (i.e., quadratic growth, if not normalized) in
the worst-case scenario.

The trade-off between computational cost and performance
means that both SAS and PAS have potential use cases. SAS
is able to run on simple hardware at the expense of reconfig-
uration speed, yet is still able to reconfigure large structures.
Moreover, the relatively small increase in performance that
comes with using PAS over SAS in smaller systems may
not justify the need for more capable modules. Whereas,
for larger scale systems the improvement may be sizeable
enough to negate the cost of complex modules. Where PAS
proves computationally too demanding for a leader module,
the computations could also be off-loaded to an external
computer.

VI. CONCLUSION

In this paper we presented a subtraction approach by
which extraneous modules actively remove themselves from
a starting configuration, to leave behind a given structure. We
refer to this approach as active subtraction. We presented two
solutions, one with purely sequential, the other with parallel
movement. We formally proved the correctness and charac-
terized the worst-case performance of either solution. We
conducted simulations that validated the solutions in a wider
range of conditions, exploring the effect that varying the sizes
and compositions of initial and desired configurations had on
the time required for the modules to remove themselves.

In the future, we intend to deploy the algorithms on real-
world systems, such as HyMod, exploiting its locomotion and
in-place rotation capabilities. To achieve this, considerations
of the realistic rigidity of the system will be simulated.
A shortcoming of subtractive reconfiguration is that desired
structures cannot contain hollow structures. However, by alter-
ing the algorithms here to allow modules to exchange places,
it may be possible to produce shapes with hollow spaces. It
is also planned to extend the algorithms to three dimensions.
Furthermore, inspired by the concept from Casal et al. [3],
reconfiguration between arbitrary structures may be possible
using the presented solutions. By reversing the steps produced
by the algorithms, and using the initial configuration as an
intermediate structure, complete self-reconfiguration in finite
time could be achieved, without heuristics or stochasticity.

ACKNOWLEDGMENTS

M. D. Hall acknowledges support by the Engineering and
Physical Sciences Research Council (EPSRC) through the
EPSRC Doctoral Training Partnership National Productivity
Scholarship.

REFERENCES

[1] Eric Bonabeau, Marco Dorigo, and Guy Théraulaz.
Swarm Intelligence: From Natural to Artificial Systems.
Oxford University Press, 1999.

[2] Alberto Brunete, Avinash Ranganath, Sergio Segovia,
Javier Perez de Frutos, Miguel Hernando, and Ernesto
Gambao. Current trends in reconfigurable modular robots
design. International Journal of Advanced Robotic Sys-
tems, 14(3):1–21, 2017.

[3] Arancha Casal and Mark H Yim. Self-reconfiguration
planning for a class of modular robots. In Sensor Fusion
and Decentralized Control in Robotic Systems II, volume
3839, pages 246–257. International Society for Optics
and Photonics, SPIE, 1999.

[4] Anders Lyhne Christensen, Rehan O’Grady, and Marco
Dorigo. SWARMORPH-script: a language for arbitrary
morphology generation in self-assembling robots. Swarm
Intelligence, 2(2-4):143–165, 2008.

[5] Jay Davey, Ngai Kwok, and Mark Yim. Emulating self-
reconfigurable robots-design of the SMORES system.
In Proc. 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4464–4469.
IEEE, 2012.

[6] Toshio Fukuda and Seiya Nakagawa. Dynamically
reconfigurable robotic system. In Proc. 1988 IEEE
International Conference on Robotics and Automation
(ICRA), pages 1581–1586. IEEE, 1988.

[7] Melvin Gauci, Radhika Nagpal, and Michael Rubenstein.
Programmable self-disassembly for shape formation in
large-scale robot collectives. In Proc. 13th International
Symposium on Distributed Autonomous Robotic Systems
(DARS), pages 573–596. Springer, 2016.

[8] Kyle Gilpin, Keith Kotay, Daniela Rus, and Iuliu
Vasilescu. Miche: Modular shape formation by self-
disassembly. The International Journal of Robotics
Research, 27(3-4):345–372, 2008.

[9] Kyle Gilpin, Ara Knaian, and Daniela Rus. Robot Peb-
bles: One centimeter modules for programmable matter
through self-disassembly. In Proc. 2010 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 2485–2492. IEEE, 2010.

[10] Matthew D. Hall, Anıl Özdemir, and Roderich Groß.
Self-reconfiguration in two-dimensions via
active subtraction with modular robots (supplementary
video material), 2020. URL http://doi.org/10.15131/shef.
data.12420326.

[11] Kazuo Hosokawa, Teruo Fujii, Hayato Kaetsu, Hajime
Asama, Yoji Kuroda, and Isao Endo. Self-organizing
collective robots with morphogenesis in a vertical plane.
JSME International Journal on Mechanical Systems,
Machine Elements and Manufacturing (Series C), 42(1):
195–202, 1999.

[12] Satoshi Murata, Eiichi Yoshida, Akiya Kamimura,
Haruhisa Kurokawa, Kohji Tomita, and Shigeru Kokaji.
M-TRAN: Self-reconfigurable modular robotic system.
IEEE/ASME Transactions on Mechatronics, 7(4):431–
441, 2002.

[13] Christopher Parrott, Tony J Dodd, and Roderich Groß.
HyMod: A 3-DOF hybrid mobile and self-reconfigurable
modular robot and its extensions. In Proc. 13th Inter-

national Symposium on Distributed Autonomous Robotic
Systems (DARS), pages 401–414. Springer, 2016.

[14] John W Romanishin, Kyle Gilpin, and Daniela Rus.
M-Blocks: Momentum-driven, magnetic modular robots.
In Proc. 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4288–4295.
IEEE, 2013.

[15] Michael Rubenstein, Christian Ahler, and Radhika Nag-
pal. Kilobot: A low cost scalable robot system for
collective behaviors. In Proc. 2012 IEEE International
Conference on Robotics and Automation (ICRA), pages
3293–3298. IEEE, 2012.

[16] Alexander Sproewitz, Philippe Laprade, Stéphane
Bonardi, Mikaël Mayer, Rico Moeckel, Pierre-André
Mudry, and Auke Jan Ijspeert. Roombots—towards
decentralized reconfiguration with self-reconfiguring
modular robotic metamodules. In Proc. 2010 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), pages 1126–1132. IEEE, 2010.

[17] Kasper Støy and Radhika Nagpal. Self-reconfiguration
using directed growth. In Proc. 7th International Sym-
posium on Distributed Autonomous Robotic Systems
(DARS), pages 1–10. Springer, 2004.

[18] Kasper Støy, David Brandt, and David J. Christensen.
Self-Reconfigurable Robots: An Introduction. The MIT
Press, 2010.

[19] Pierre Thalamy, Benoit Piranda, and Julien Bourgeois.
Distributed self-reconfiguration using a deterministic au-
tonomous scaffolding structure. In Proc. 18th Interna-
tional Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), pages 140–148. IFAAMAS, 2019.

[20] Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus,
Mark Moll, Hod Lipson, Eric Klavins, and Gregory S
Chirikjian. Modular self-reconfigurable robot systems.
IEEE Robotics and Automation Magazine, 14(1):43–52,
2007.

http://doi.org/10.15131/shef.data.12420326
http://doi.org/10.15131/shef.data.12420326

	Introduction
	Problem Formulation
	Objective
	Module Capabilities

	Solutions
	Sequential Active Subtraction (SAS)
	Leader Module Algorithm
	Active Excluded Module Algorithm

	Parallel Active Subtraction (PAS)

	Mathematical Analysis
	Simulation Studies
	User-Defined Configurations
	Randomly Generated Configurations
	Influence of Density of Included Modules
	Influence of Configuration Size

	Discussion of Results

	Conclusion

