
Robotics: Science and Systems 2020
Corvalis, Oregon, USA, July 12-16, 2020

1

Spatial Action Maps for Mobile Manipulation
Jimmy Wu1, Xingyuan Sun1, Andy Zeng2, Shuran Song3,

Johnny Lee2, Szymon Rusinkiewicz1, Thomas Funkhouser1,2
1Princeton University 2Google 3Columbia University

Abstract—Typical end-to-end formulations for learning robotic
navigation involve predicting a small set of steering command
actions (e.g., step forward, turn left, turn right, etc.) from
images of the current state (e.g., a bird’s-eye view of a SLAM
reconstruction). Instead, we show that it can be advantageous
to learn with dense action representations defined in the same
domain as the state. In this work, we present “spatial action
maps,” in which the set of possible actions is represented by
a pixel map (aligned with the input image of the current
state), where each pixel represents a local navigational endpoint
at the corresponding scene location. Using ConvNets to infer
spatial action maps from state images, action predictions are
thereby spatially anchored on local visual features in the scene,
enabling significantly faster learning of complex behaviors for
mobile manipulation tasks with reinforcement learning. In our
experiments, we task a robot with pushing objects to a goal
location, and find that policies learned with spatial action maps
achieve much better performance than traditional alternatives.

I. INTRODUCTION

The prolific success of deep learning in vision [16, 33, 13,
14] has inspired much recent work on using deep convolutional
networks (ConvNets) for visual navigation and mobile manip-
ulation in robotics. In such an approach, ConvNets are trained
to model a policy that maps from an agent’s observation of the
state (e.g., images) to the probability distribution over actions
(e.g., steering commands) maximizing expected task success.

Most work in this domain has focused on methods to
train the ConvNets: from learning to imitate human con-
trol strategies [22, 4, 11, 24], to discovering more complex
long-term path planning behaviors with reinforcement learn-
ing [20, 47, 7, 29]. Other works have considered the impact
of different state representations: from forward-facing camera
images [22, 26, 4, 24] to top-down bird’s-eye views (BEV)
of the scene generated with Inverse Perspective Mapping
(IPM) [11, 7, 29, 5]. However, there has been very little work
on the impact of different action representations. Almost all
navigation systems based on ConvNets consider only a small
set of (possibly parameterized) egocentric steering commands
(e.g., move forward/backward, strafe left/right, rotate left/right,
etc.) [26, 20, 11, 12, 24, 47, 29, 7].

Representing actions with steering commands (Fig. 2a)
presents several problems for learning complex mobile ma-
nipulation tasks. First, they are myopic, and thus each action
can reach only a small subset of possible endpoints (i.e., ones
at a fixed distance and reachable by unobstructed straight-line
paths). Second, they each invoke only a small change to the
state, and thus a long sequence of actions is required to make
significant change (e.g., navigate through a series of obstacles).
Third, they require a deep Q-network to learn a complex
mapping from a high-dimensional input state representation

Objects

Receptacle

Agent-Centric View

Output: spatial action map

...
Spatial Action Map

Fig. 1. In this work, we propose “spatial action maps” as an action
representation for mobile manipulation tasks. In our setting, the goal is to train
an agent to navigate around an unseen environment, find objects, and push
them into a designated target receptacle. It does so by iteratively predicting
the Q-value of navigating to each location in a spatial action map (red is
higher), and then selecting the best location to go to (marked with ‘x’).

(usually an image) to a low-dimensional set of (possibly pa-
rameterized) action classes, which may require many training
examples.

In this work, we advocate for a new action representation,
“spatial action maps” (Fig. 1). The main idea is to represent
actions as a dense map of navigation endpoints: each action
represents a move to an endpoint, possibly along a non-linear
trajectory, and possibly with a task to perform there (Fig. 2b-
c). The advantages of this action representation are three-fold.
First, the agent is not myopic – it can move to any endpoint
in the spatial action map with a single action [1], enabling
goal-driven behaviors. Second, each action can represent an
arbitrarily complex navigation trajectory – ours follow shortest
paths to endpoints while avoiding obstacles (Fig. 2c). Third, it
simplifies the mapping from states to actions – in our system,
each state is represented by an image of the reconstructed
scene from a bird’s-eye view (in IPM coordinates), and the
action space is represented by an image representing the
expected Q-value of navigating to every endpoint (also in
IPM coordinates). Since the state and action space lie in
the same domain and are pixel-aligned, we can train a fully
convolutional network (FCN) to map between them – an
efficient way to predict values for all possible actions in one
forward pass of a network.

We study this action representation in the context of rein-
forcement learning for mobile manipulation, where an agent
is tasked with exploring an unseen environment containing
obstacles and objects, with the goal of navigating to push all
objects into a designated target zone – i.e., pushing the objects
into a receptacle, like a bulldozer (Fig. 1). At every step, the
only information available to the agent is an overhead image
representing a partial reconstruction of its local environment
(everything it has observed with a forward-facing RGB-D
camera, transformed into an IPM representation and accu-
mulated over time to simulate online SLAM/reconstruction).
The agent feeds the state image into an FCN to produce an
action image, which encodes the Q-value of moving to every
endpoint location along the estimated shortest path trajectory.
It executes the action with highest Q-value and iterates.

The spatial action map representation has the key benefit
that the spatial position of each state-action value prediction
(with respect to the input IPM view) represents a local
milestone (trajectory endpoint) for the agent’s control strategy.
We conjecture that it is easier for convolutional networks to
learn the state-action values of these navigational endpoints (as
opposed to abstract low-level steering commands), since each
prediction is aligned and translationally anchored to the visual
features of the objects and obstacles directly observed in the
input map. This is motivated by gains in performance observed
in other domains – for example, image segmentation [14] has
been shown to benefit from pixel-aligned input and output
representations, while end-to-end robotic manipulation [21,
45, 44, 43] is significantly more sample efficient when using
FCNs to predict state-action values for a dense sampling of
grasps aligned with the visual input. Using spatial action maps,
our experiments show that we are capable of training end-
to-end mobile manipulation policies that generalize to new
environments with fewer than 60k training samples (state-
action pairs). This is orders of magnitude less data than prior
work [20, 47].

Our main contribution in this work is the spatial action map
representation for mobile manipulation. We investigate its use
with a variety of action primitives (take a short step, follow
the straight-line path, follow the shortest path) and state input
channels (partial scene reconstructions, shortest path distances
from the agent, shortest path distances to the receptacle). In
simulation environments, we conduct ablation studies and find
that our proposed state and action representations give better
performance and learning efficiency compared to alternative
representations. We show that our policies also work in real
environments. Supplemental materials, including code, simu-
lation environments, and videos of our robot in action, are
available at https://spatial-action-maps.cs.princeton.edu.

II. RELATED WORK

Navigation. There has been significant recent work on training
agents to navigate virtual environments using first-person
visuomotor control [15, 19, 27, 2, 37, 38, 39, 28]. In a typical
setup, the agent iteratively receives first-person observations
as input (e.g., images with color, depth, normals, semantic

(c) Spatial action map
(shortest paths)

(b) Spatial action map
(straight-line paths)(a) Steering commands

Fig. 2. Action representations. (a) shows all trajectories (green) available
in a discrete set of steering commands. The other images show example
trajectories available in spatial action maps (every pixel is a potential trajectory
endpoint). We consider two variants: (b) where the agent follows a straight-
line path to the selected target endpoint (denoted by ’x’), and (c) where it
follows an estimated shortest path (our method).

segmentations, etc.), from which it builds a persistent state
(e.g., a map), and selects one of many possible actions as
output (e.g., move, rotate, strafe, etc.) until it completes a task
(e.g., navigate to a given location, find a particular type of
object, etc.). These works focus almost exclusively on how to
best train neural networks for the task, for example using deep
reinforcement learning [19, 47, 6], supervised [34, 12] and
self-supervised learning [25], or predicting the future [9]. They
do not study how different parameterizations of network out-
puts (actions) affect the learning performance – i.e., the inputs
are always in one domain (e.g., images, GPS coordinates, etc.)
and the outputs are in another (e.g., move forward, rotate right,
interact, etc.). In contrast, we investigate the advantages of
dense predictions using spatial action maps, where the inputs
and outputs are represented in the same spatial domain.

Mobile Manipulation. While many navigation works assume
a static environment, other works also consider environments
with movable objects [32, 35, 18]. In these works, the agent
navigates to a goal location by pushing aside movable obsta-
cles that are in the way. For example, Stilman and Kuffner [31]
propose the task of Navigation Among Movable Obstacles,
where the agent navigates in an environment that contains
both static structures (e.g., walls and columns) and movable
obstacles. While these methods do not assume a static envi-
ronment, the task is similar – the agent only needs to navigate
to the goal location. In contrast, in our task, the agent must
come up with a navigational plan that will push all objects in
the environment to the goal location, which is a much more
complex problem.

Another line of work studies navigation for object manip-
ulation [10, 23, 42, 17]. These tasks (e.g., picking and rear-
rangement of objects) are similar to ours, but the robot-object
interactions considered in these tasks (e.g., grasping) are often
more predictable and happen over short time horizons, which
makes it possible to apply simple heuristic-based algorithms
to separately handle navigation and interaction. In contrast,
our setup requires long time-horizon robot-object interactions,
which are less predictable and more difficult to plan.

Dense Action Representations. Our work is inspired by
recent work on dense affordance prediction for bin picking.
For example, the multi-affordance picking strategy of Zeng

https://spatial-action-maps.cs.princeton.edu

Robot RGB-D Camera

Receptacle

Objects

...

Fully Convolutional
Q-Network

Spatial Action Map
(Q-Values)

Low

Local MapsGlobal Maps

O
ve

rh
ea

d
M

ap
Sh

or
te

st
 P

at
h

fr
om

 A
ge

nt
Sh

or
te

st
 P

at
h

to
 R

ec
ep

ta
cl

e

LearningEnvironment

HighObstacle

Fig. 3. Overview. We train in a simulation environment, where we mimic online SLAM/reconstruction as the agent moves around. This is implemented
via a virtual forward-facing RGB-D camera mounted on the robot. The robot incrementally builds up a global overhead map of the room, as well as an
occupancy map used to compute single-source shortest path distances. Locally oriented and aligned crops of these maps are used to train our fully convolutional
Q-network, which produces a dense, pixel-aligned spatial action map (Q-value map). Note that the robot position channel (see Fig. 4) is omitted for clarity.

et al. [45] selects grasps by predicting a score for every pixel
of an overhead view of a bin. Similar approaches are used to
predict affordances for grasping or suction in [44, 46, 30, 41].
However, these systems are trained in the more constrained
setting of bin picking or assembly, where supervision is
available for grasp success, and where motion trajectories to
achieve selected grasps can be assumed to be viable and of
equal cost. In our work, we apply dense prediction to a more
challenging scenario, where different actions have different
costs (and some may not even be viable), and where long-term
planning is required to perform complex action sequences.

III. METHODS

In this paper, we propose a new dense action representation
in which each pixel of a bird’s-eye view image corresponds
to the atomic action of navigating along the shortest path to
the associated location in the scene.

To investigate this action representation, we consider a
navigate-and-push setting in which an agent must explore an
unseen environment, locate objects, and push them into a
designated target “receptacle” (Fig. 3). This task may be seen
as an abstraction of real-world tasks such as bulldozing debris
or sweeping trash, and is sufficiently complex that it would be
difficult to implement an effective hand-coded policy or learn
a policy with traditional action representations.

Our agent is an Anki Vector, a low-cost mobile tracked
robot approximately 10 cm in length, augmented with a 3D-
printed bulldozer-like end-effector (Fig. 1). The objects to be
pushed are 4.4 cm cubic blocks, and the receptacle is located
in the top right corner of a 1 m by 0.5 m “room” with random
partitions and obstacles. For ease of prototyping, we include
fiducial markers on the robot and the objects, and track them
with an overhead camera. Our setting though, is intended
to represent what would be possible with onboard sensing
and SLAM. Therefore, the only information made available
to the agent is a simulation of what would be observed via
an onboard forward-facing RGB-D camera with a 90◦ field
of view, integrated over time with online mapping – i.e., our

agents do not have access to ground truth global state. This
means that the agent must learn to act with partial or outdated
information and actively seek out unexplored parts of the
environment.

Our agents are trained in a PyBullet simulation [8], where
state observations are generated by rendering camera views
of the environment. We then execute learned policies in the
real world, where the fiducial markers are used to update the
state of the simulator (e.g., robot and object poses). Simulation
enables us to train our agents over a wider range of envi-
ronments than would be possible with physical robots, while
sim-to-real mirroring enables us to evaluate the robustness and
generalization of our policies to real-world dynamics.

In the following subsections, we provide details about our
training setup and describe how the appropriate action rep-
resentation proves crucial to improving the sample efficiency
and generalizability of our policies.

A. Reinforcement Learning (DQN) Formulation

We formulate the navigate-and-push problem as a Markov
decision process: given state st at time t, the agent chooses
to execute an action at according to a policy π(st), then
transitions to a new state st+1 and receives a reward rt. The
goal of reinforcement learning is to find an optimal policy
π∗ that selects actions maximizing total expected rewards
Q(st, at) =

∑∞
i=t γ

i−tri, i.e., a γ-discounted sum over an
infinite horizon of future returns from time t to ∞.

In this work, we investigate off-policy Q-learning [20] to
train a greedy policy π(st) that chooses actions by maximizing
a parameterized Q-function argmaxat Qθ(st, at) (i.e., state-
action value function), where θ denotes the weights of our
neural network (whose architecture we describe in Sec. III-D).
We train our agents using the double DQN learning objec-
tive [36]. Formally, at each training iteration i, our objective
is to minimize:

Li = |rt+γQθ−i (st+1, argmax
at+1

Qθi(st+1, at+1))−Qθi(st, at)|

(a) Overhead map (b) Robot position (c) Shortest path
from agent

(d) Shortest path
to receptacle

Fig. 4. Input channels. From left to right, the pixel-aligned channels are all
in the robot’s local coordinate frame and correspond to (a) the observation,
which is an overhead image of the reconstructed environment, (b) encoded
robot position in local coordinates, which is always in the center of the image,
(c) shortest path distance from the agent to each location in the image, and
(d) shortest path distance to the receptacle from each location in the image.
The receptacle is in the corner of the room, near the top left of these images.
Color added for visualization only, green/yellow corresponds to higher values.

where (st, at, rt, st+1) is a transition uniformly sampled from
the replay buffer. Target network parameters θ− are held
fixed between individual updates. More training details are
presented in Sec. III-D.

B. State Representation

Within our formulation, we represent the agent’s observation
of the state st as a visual 4-channel image from a local bird’s-
eye view that is spatially aligned and oriented with respect
to the robot’s local coordinate frame (such that the robot is
positioned in the center of each image and looking along
the y axis). This is similar to inverse perspective mapping
(IPM), commonly used in autonomous driving [11, 7, 29, 5].
Each channel encodes useful information related to the en-
vironment [3] (visualized in Fig. 4) including: (1) a local
observation of the robot’s surroundings in the form of an
overhead map, (2) a binary mask with a circle whose diameter
and position encode the robot’s respective size and location in
the robot’s coordinate frame, (3) an image where each pixel
holds the shortest path distance from the agent to the corre-
sponding location, and (4) an image where each pixel holds
the shortest path distance to the receptacle from that location.
The shortest path distances in the third and fourth channels
are computed using an occupancy map generated only from
local observations of obstacles (which are accumulated over
time – see next paragraph) and normalized so that they contain
relative values rather than absolute. All unobserved regions are
treated as free space when computing shortest path distances.
This reflects a realistic setting in which a robot has access
to nothing but its own visual observations, GPS coordinates,
local mapping, and task-related goal coordinates.

Online mapping. Online SLAM/reconstruction is a com-
mon component of any real mobile robot system. In our
experiments, this is implemented in the simulation using
images from a forward-facing RGB-D camera mounted on
the robot. The camera captures a new image at the end of
every transition. Using camera intrinsics and robot poses,
depth data is projected into a 3D point cloud, then fused
with previous views to generate and update a global map of
the environment. At the beginning of each episode in a new
environment, this global map is initially blank. As the robot
moves around in the environment, the global map fills in as

(a) Environment (b) Occupancy map (c) Action trajectories

Fig. 5. Action space. In our action space, which is spatially aligned with the
local state representation, every pixel represents a move to the corresponding
navigational endpoint along the shortest path trajectory. The robot is located
in the left of the environment (a) and in the center of local maps (b) and (c).
Shortest path trajectories (c) are estimated using an occupancy map (b) built
up with online mapping. Note that the action space is pixelwise dense, but
we only show a subset of paths in (c) for clarity.

it accumulates more partial views over time. This restriction
encourages the agent to learn a policy that can explore unseen
areas in order to effectively complete the task. Specifically,
the robot gradually reconstructs two global maps as it moves
around: (1) a global overhead map, which encodes objects and
obstacles, and (2) a global occupancy map, used for shortest
path computations in our high-level motion primitives as well
as our state representations and partial rewards. The agent
makes no prior assumptions about the layout of obstacles in
the environment.

C. Action Representation

Our actions are represented by an image (i.e., action map,
illustrated in Fig. 2) identically sized and spatially aligned
with the input state representation. Each pixel in this action
map corresponds to a navigational endpoint in local robot
Cartesian coordinates. At each time step, the agent selects a
pixel location in the action map – and therefore in the observed
environment – of where it intends to move to. Specifically,
the selected location in the image indicates where the robot’s
forward-facing end effector should be located at after the
action has been completed. The agent then uses a movement
primitive to execute the move.

We experiment with two types of movement primitives: one
that moves in a straight line towards the selected location, and
one that follows the shortest path to the selected location.
The straight line primitive simply turns the robot to face
the selected location, and then moves forward until it has
reached the location. The shortest path primitive (well-suited
for environments with obstacles) uses the global occupancy
map introduced in Sec. III-B to compute and follow the
shortest path to the desired target location (Fig. 5). For both,
it is possible for the robot to collide with previously unseen
obstacles, in which case a penalty (see Sec. III-D) is incurred
by the agent. Our experiments in Sec. IV-A compare this
representation to discrete action alternatives (e.g., steering
commands) commonly used in the literature. Note that in
empty environments without obstacles, these two movement
primitives are equivalent.

D. Network Architecture and Training Details

We model our parameterized Q-function Qθ with a fully
convolutional neural network (FCN), using a ResNet-18 [13]

(a) SmallEmpty (b) SmallColumns (c) LargeColumns (d) LargeDivider
Fig. 6. Environments. We tested in four types of environments, each with a receptacle in the top right corner (red), randomized arrangements of objects
(yellow blocks), and randomized placements of obstacles (gray) of increasing difficulty (left to right).

backbone for all experiments. The FCN takes as input the 4-
channel image state representation (described in Sec. III-B)
and outputs a state-action value map (described in Sec. III-C).
We removed the AvgPool and fully connected layers at the
end of the ResNet-18, and replaced them with 3 convolutional
layers interleaved with bilinear upsampling layers. The added
convolutional layers use 1x1 kernels, and the upsampling
layers use a scale factor of 2. This gives us an output that is the
same size as the input. We also removed all BatchNorm layers
from our networks, which provided more training stability with
small batch sizes. To ensure that the FCN has an adequate
receptive field, we designed our observation crop size (96 by
96) such that the receptive field of each network output covers
over a quarter of the input image area, and thus always covers
the center of the image in which the robot is located.

Rewards. Our reward structure for reinforcement learning
(computed after each transition) consists of three components:
(1) a positive reward of +1 for each object that ends up in the
receptacle (objects in the receptacle are removed thereafter),
(2) partial rewards and penalties based on whether each object
was moved closer to or further away from the receptacle
(proportional to the signed change in distance computed
using either Euclidean distances or shortest path distances –
comparison in Sec. IV-A), and (3) small penalties of -0.25 for
undesirable behaviors (collisions or nonmovement).

Training details. During training, our agent interacts with
the environment and stores data from each transition et =
(st, at, rt, st+1) in an experience replay buffer of size 10,000.
At each time step, we uniformly at random sample a batch of
experiences from the experience replay buffer, and train our
neural network with smooth L1 loss (i.e., Huber loss). We pass
gradients through only the single pixel in the input state that
corresponds to the selected action for a transition [45, 43]. We
clip gradients such that they have magnitude at most 10. We
train with batch size 32 and use stochastic gradient descent
(SGD) with learning rate 0.01, momentum 0.9, and weight
decay 0.0001. To account for varying distances traveled for
different steps, we apply a discount factor λ = 0.990.25·dist

with an exponent that is proportional to the distance traveled
during that step.

In our experiments, we train for 60,000 transitions, which
typically corresponds to several hundred episodes. Each
episode runs until either all objects in the environment have

been pushed into the target receptacle, or the robot has not
pushed any objects into the receptacle for 100 steps. Our
policies are trained from scratch, without any image-based
pretraining [40]. The target network is updated every 1,000
steps. Training takes about 9 hours on a single NVIDIA Titan
Xp GPU.

Exploration. Before training the network, we run a random
policy for 1,000 steps to fill the replay buffer with some initial
experience. Our exploration strategy is ε-greedy with initial
ε = 1, annealed over training to 0.01 after 6,000 transitions.

IV. EXPERIMENTS

To test the proposed ideas, we run a series of experiments in
both simulation and real-world environments. We first describe
the simulation experiments, which are used to investigate
trade-offs of different algorithms, and then we test our best
algorithm on the physical robot.

Task. In every experiment, the robot is initialized with a
random pose within a 3D environment enclosed by walls.
Within the environment, there is a set of cubic objects scattered
randomly throughout free space and a 15 cm by 15 cm square
receptacle in the top right corner, which serves as the target
destination for the objects. The robot’s task is to execute a
sequence of actions that pushes all of the objects into the
receptacle. Objects are removed from the environment after
they enter the receptacle.

Environments. We ran experiments with four virtual environ-
ments of increasing difficulty (Fig. 6). The first (SmallEmpty)
is a small rectangular environment (1 m by 0.5 m) containing
10 randomly placed objects. The second (SmallColumns)
adds a random number (1 to 3) of square (10 cm by 10 cm)
fixed obstacles (like “columns”) placed randomly. The third
(LargeColumns) is a larger version (1 m by 1 m) with more
columns (1 to 8) and more objects (20). The fourth (LargeDi-
vider) replaces the columns with a single large divider that is
fixed at a randomly chosen y coordinate and spans 80% of the
x dimension – this last environment requires the robot to plan
how to get from one side of the divider to the other by going
through the narrow open gap, and thus is the most difficult.

Evaluation metrics. We evaluate each model by running the
trained agent for 20 episodes in the environment it was trained
on. Since the environments are randomly generated every
episode, for each model, we set the random seed so that the

0 20 40 60 80 100 120
Distance (m)

0

2

4

6

8

10

12

14

16

18

20
Nu

m
 B

lo
ck

s
Ours
Ours, no sp movement
Ours, fixed step size
Steering commands

Fig. 7. Number of objects pushed into the receptacle as a function of robot
travel distance. These curves show evaluation of experiments that were trained
with the LargeDivider environment (shown are means with shaded bars for
standard deviations). Our method (blue) is slightly better than its ablation
variants with more restricted actions (orange and green), and significantly
better than the baseline method trained using steering commands (red).

TABLE I
EFFECT OF ACTION REPRESENTATION

Environment Ours No shortest path Fixed Steering
movement step size commands

SmEmpty 9.91 ± 0.11 n/a 9.75 ± 0.20 1.38 ± 0.20
SmColumns 9.18 ± 0.14 7.88 ± 0.70 9.05 ± 0.38 0.82 ± 0.33
LgColumns 18.29 ± 0.45 14.70 ± 1.52 17.52 ± 0.82 1.20 ± 0.64
LgDivider 18.23 ± 0.92 15.66 ± 1.44 15.56 ± 2.01 4.14 ± 2.21

(Number of objects pushed into the receptacle per episode)

exact same set of generated environments are presented to
each model, including the initial robot pose, object poses, and
obstacle placements. For all experiments, we do 5 training
runs with the same setup and report the mean and standard
deviation across the 5 runs. Trained agents are evaluated using
an ε-greedy policy with ε = 0.01.

We use two evaluation metrics. The first simply measures
the number of objects that have been pushed into the receptacle
at the end of an episode (Tab. I). The second plots the number
of objects successfully pushed into the receptacle as a function
of how far the robot has moved (Fig. 7). Additionally, we
compare training sample efficiency by plotting objects per
episode on the training environments, as a function of training
steps (Fig. 8). Higher numbers are better.

A. Simulation Experiments

Comparison to baseline. Our first set of experiments is
designed to evaluate how spatial action maps compare to more
traditional action representations. To investigate this question,
we ran experiments with an 18-dimensional steering com-
mands action space, with actions representing taking a 25 cm
step forward in one of 18 possible turn directions. We created a
modified (baseline) version of our system by replacing the last
layer of our network with a fully connected layer that outputs
the predicted Q-value for each of the 18 actions. We also added
two additional channels to the state representation to encode
the relative position of every pixel location. This modified

0k 10k 20k 30k 40k 50k 60k
Training Steps

0

2

4

6

8

10

12

14

16

18

20

Nu
m

 B
lo

ck
s

Ours
Steering commands

Fig. 8. Training curves for the LargeDivider environment. Our agent trained
with spatial action maps (blue) is significantly more sample efficient compared
to the baseline that uses steering commands (red).

network mimics the DQN architectures and actions typical of
other navigation algorithms [15, 19, 27, 2, 37, 38, 39, 28], and
yet is the same as ours in all other aspects.

Results are shown in Tab. I. We find that the steering
commands baseline (right) is unable to learn effectively in
any of the four environments. We conjecture the reasons are
two-fold. First, the baseline network must learn a mapping
from observations to discrete actions, which may be harder
than the dense prediction enabled by spatial action maps.
Second, the baseline agent can only reap rewards by executing
a long sequence of short steps, and so it is difficult for the
algorithm to achieve any reward at all in the early phases
of training (Fig. 8). In contrast, our method uses higher-level
actions (that go directly to the selected location), and thus can
discover rewards with fewer actions. This results in a policy
that performs the task more completely and more efficiently
(Fig. 7).

Effect of shortest path movement primitive. To test the
hypothesis that using a shortest path movement primitive helps
our algorithm learn more efficiently, we ran experiments with
a small modification to our system: the robot moves in a
straight line to the selected target location (rather than along
the shortest path). The results of this experiment (“No shortest
path movement” in Tab. I, and orange curve in Fig. 7) show a
degradation in performance, particularly when there are more
obstacles. Even though the shortest paths are computed with
potentially inaccurate occupancy maps, it still seems to be
advantageous to use them when navigating around obstacles.

Effect of fixed step size. To test the hypothesis that movement
primitives with longer trajectories help our algorithm learn
more efficiently, we ran experiments with a different modifi-
cation to our system: the length of any trajectory is fixed at
25 cm (the same step size as the steering commands baseline).
The Q-network makes dense predictions as usual, but at each
iteration, the agent steps a fixed distance in the direction of
the position with the highest Q-value. The result of this variant
(“Fixed step size” in Tab. I and green curve in Fig. 7) shows
that taking shorter steps indeed degrades performance. Even

though it would be possible for the agent to take many small
steps to achieve the same trajectory as a single long one, we
find that it learns more quickly with longer trajectories. We
conjecture that this could be due a less direct mapping from
visual features to actions, as well as inconsistencies in Q-
values predicted from different perspectives, causing the agent
to waver between different endpoint targets as it takes many
small steps.

Effect of shortest path input channels. In addition to the
overhead image, our system gives the agent three additional
input image channels: (1) an image with a circle indicating
the robot position, (2) an image with shortest path distances
from the agent’s position, and (3) an image with shortest path
distances to the receptacle. To test whether the latter two of
these channels are useful, we ran ablation studies for each
of them. The results (Tab. II) show that the channels provide
little benefit in the environments with smaller obstacles, but
help the system train more effectively in the most challenging
environment (LargeDivider). We conjecture that providing the
shortest path distances can help the agent prioritize target
locations with objects that can be reached more easily (without
having to go around large obstacles).

Effect of shortest path partial rewards. We train our agents
with signed partial rewards given for pushing objects closer
to or further away from the receptacle. We hypothesize that
in environments with obstacles, it is important to give partial
rewards based on changes in shortest path distance rather
than Euclidean distance from the receptacle. We verify by
running ablations that use Euclidean distance rather than
shortest path distance, as shown in Tab. III. We observe that
agents trained with Euclidean distance partial rewards indeed
perform worse, particularly for the LargeDivider environment,
where true shortest path distances to the receptacle can be
much larger than Euclidean distances. We believe that giving
partial rewards based on shortest path distances provides a
better training signal to the agent. While Euclidean distances
indicate whether an object is close to the receptacle, shortest
path distances additionally factor in the need to push the
object around the obstacles to get to the target receptacle. For
completeness, we also show the performance when no partial
rewards are given.

Effect of removing all shortest path components. Here
we remove all shortest path components of our system,
specifically (1) shortest path movement primitive, (2) shortest
path channels, and (3) shortest path partial rewards. We
replace them with their straight-line variants: (1) straight-
line movement, (2) channel containing Euclidean distance to
receptacle, and (3) Euclidean distance partial rewards. The
results are shown in Tab. IV. Indeed we see that for the
SmallEmpty environment, there is no significant difference
because there are no obstacles present. However, in more
difficult environments (LargeDivider), we see that our method
is much better at handling the obstacles. The difference can
be seen clearly in the example trajectories visualized in Fig. 9.

TABLE II
EFFECT OF SHORTEST PATH INPUT CHANNELS

Environment Ours No shortest path No shortest path
from agent to receptacle

SmallEmpty 9.91 ± 0.11 9.82 ± 0.21 n/a
SmallColumns 9.18 ± 0.14 9.18 ± 0.32 9.20 ± 0.22
LargeColumns 18.29 ± 0.45 18.40 ± 0.88 18.88 ± 0.49
LargeDivider 18.23 ± 0.92 16.87 ± 1.97 16.71 ± 1.49

TABLE III
EFFECT OF SHORTEST PATH PARTIAL REWARDS

Environment Ours No shortest path No partial
in partial rewards rewards

SmallEmpty 9.91 ± 0.11 n/a 8.87 ± 1.61
SmallColumns 9.18 ± 0.14 9.13 ± 0.28 9.02 ± 0.66
LargeColumns 18.29 ± 0.45 17.89 ± 0.97 13.95 ± 3.19
LargeDivider 18.23 ± 0.92 16.87 ± 1.97 12.02 ± 1.08

TABLE IV
EFFECT OF REMOVING ALL SHORTEST PATH COMPONENTS

Environment Ours Ours Steering Steering
no shortest path no shortest path

SmEmpty 9.91 ± 0.11 9.82 ± 0.10 1.38 ± 0.20 1.23 ± 0.69
SmColumns 9.18 ± 0.14 8.05 ± 0.29 0.82 ± 0.33 0.72 ± 0.44
LgColumns 18.29 ± 0.45 15.63 ± 1.17 1.20 ± 0.64 0.33 ± 0.20
LgDivider 18.23 ± 0.92 10.06 ± 0.89 4.14 ± 2.21 0.26 ± 0.12

Our method pushes objects efficiently along shortest paths
trajectories through free space (left). In contrast, the ablative
version without shortest path components (middle) is less
adept at navigating around obstacles and continually pushes
objects up against the divider.

We similarly run the same ablations for the steering com-
mands baseline. Specifically, we remove the shortest path
channels and shortest path partial rewards, and replace them
with straight-line variants. We find that while the baseline
has some ability to handle obstacles when given shortest path
channels and shortest path partial rewards, the performance
on environments with obstacles can be dramatically worse
without these shortest path components (Tab. IV).

B. Real-World Experiments

We conduct experiments on the physical Anki Vector robots
by replicating the SmallEmpty simulation environment on a
tabletop. Our setup can be seen in Fig. 10. We mount a camera
over the tabletop, and affix fiducial markers to the robot and
the objects, as well as the corners of the room. Using the
overhead camera, we obtain real-time millimeter-level pose
estimates of the robots and objects, which we then map into
our simulation environment.

In this way, we enable our simulation environment to mirror
the real-world environment. This means we can test our
policies, which were trained in simulation, directly in the real-
world setup. Given a state representation rendered by the sim-
ulation, our trained policy outputs a high-level action, which
is executed on the physical robot by a low-level controller.
Overall, we find that trained agent behavior in the real-world
environment is qualitatively similar to the simulation, but not

(a) Ours (b) Ours w/o shortest path components (c) Steering commands
Fig. 9. Episode trajectories. In these runs on the LargeDivider environment, our method (a) follows a trajectory (blue line) that clears all objects efficiently.
If we disable all shortest path components (b), it pushes objects straight towards the receptacle, and the ones in the bottom half get piled up against the divider.
If we use the baseline action representation based on steering commands (c), the agent never learns to navigate effectively in this difficult environment.

quite as efficient due to differences in physical dynamics. We
tested our best model on the SmallEmpty environment, and
averaged across 5 test episodes, the real robot is able to push
8.4 out of 10 objects into the receptacle within 15 minutes, and
all 10 within 30 minutes. We show videos of our robot execut-
ing policies (that were learned in simulation) in the real-world
environment at https://spatial-action-maps.cs.princeton.edu.

Looking at the videos, it is interesting to observe the
emergent behaviors learned by the robot. Perhaps the most
common is to first push objects up against the walls, and then
later “sweep” multiple objects together along a wall with a
single long trajectory ending at the receptacle (note the long
paths along the walls in Fig. 9). This behavior is depicted
in Fig. 10, where a sequence of actions from one episode is
shown in time-lapse as the robot pushes two objects at once
(four near the end). Other emergent behaviors include retrying,
where the the robot makes multiple attempts to nudge objects
towards the receptacle after initial failure.

C. Limitations

Limitations of our setting and experiments. Because of
our sim-to-real setup, our results are limited by the accuracy
of our simulations (including the measurement accuracy of
physical properties in our setup), the quality and robustness
of our motion primitive implementations, and our assumptions
of perfect localization and mapping. The first two of these are
inherent to any system that is trained in simulation, and could
be addressed by fine-tuning the learned model in the physical
setup. How uncertainty in state and observations should be
incorporated into planning is an active research topic, particu-
larly for deep reinforcement learning, and is orthogonal to our
investigation into action space representations.

Limitations of spatial action maps. One inherent limitation
of spatial action maps is the use of high-level motion prim-
itives, which assume that lower-level control can be handled
separately. Concretely, we output a destination that the agent
should attempt to reach, and possibly what it should attempt
to do once it gets there, and rely on a motion primitive to
make that happen. Other action representations, in contrast,
may integrate learning of long-range planning and low-level
control end-to-end.

Another potential limitation of spatial action maps is that
they are only able to represent actions composed of navigating

Fig. 10. Emergent behaviors. An Anki Vector robot executes a policy
learned in simulation. It first pushes objects towards the wall, then uses the
wall as a guide to simultaneously push several objects until they are all in the
receptacle.

to a spatial location and performing a discrete action there.
While this can be extended to higher dimensional settings (e.g.,
navigation in 2.5D multi-floor buildings) by using a set of
2D images or 3D grids, there may be tasks which are not
compatible with this action representation.

V. CONCLUSION

In this work, we propose “spatial action maps” as a new
action representation for mobile manipulation. We study how
best to use them in our experimental setting, and show that
policies utilizing spatial action maps can be trained much more
efficiently than with traditional action representations. We also
demonstrate that our agents trained in simulation can transfer
directly to a real-world environment without further fine-
tuning. This work represents one step in a broader investigation
of possible action representations, in one application domain.
In future work, it would be interesting to study other related
action spaces (e.g., ones that mix navigation and manipulation)
and other application domains (e.g., autonomous driving).

ACKNOWLEDGMENTS

The authors would like to thank Naveen Verma, Naomi
Leonard, Anirudha Majumdar, Stefan Welker, and Yen-Chen
Lin for fruitful technical discussions, as well as Julian Salazar
for hardware support. This work was supported in part by the
Princeton School of Engineering, as well as the National Sci-
ence Foundation under IIS-1617236, IIS-1815070, and DGE-
1656466.

https://spatial-action-maps.cs.princeton.edu

REFERENCES

[1] Christopher Amato, George D Konidaris, and Leslie P.
Kaelbling. Planning with macro-actions in decentralized
pomdps. In International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2014.

[2] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark
Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould, and
Anton van den Hengel. Vision-and-language navigation:
Interpreting visually-grounded navigation instructions in
real environments. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 3674–3683, 2018.

[3] Shehroze Bhatti, Alban Desmaison, Ondrej Miksik, Nan-
tas Nardelli, N Siddharth, and Philip HS Torr. Playing
doom with slam-augmented deep reinforcement learning.
arXiv preprint arXiv:1612.00380, 2016.

[4] Mariusz Bojarski, Davide Del Testa, Daniel
Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D Jackel, Mathew Monfort, Urs
Muller, Jiakai Zhang, et al. End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316,
2016.

[5] Tom Bruls, Horia Porav, Lars Kunze, and Paul Newman.
The right (angled) perspective: Improving the under-
standing of road scenes using boosted inverse perspective
mapping. In 2019 IEEE Intelligent Vehicles Symposium
(IV), pages 302–309. IEEE, 2019.

[6] Tao Chen, Saurabh Gupta, and Abhinav Gupta. Learning
exploration policies for navigation. In International
Conference on Learning Representations, 2019.

[7] Xi Chen, Ali Ghadirzadeh, John Folkesson, Mårten
Björkman, and Patric Jensfelt. Deep reinforcement learn-
ing to acquire navigation skills for wheel-legged robots in
complex environments. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 3110–3116. IEEE, 2018.

[8] Erwin Coumans and Yunfei Bai. Pybullet, a python
module for physics simulation for games, robotics and
machine learning. GitHub repository, 2016.

[9] Alexey Dosovitskiy and Vladlen Koltun. Learning to act
by predicting the future. In International Conference on
Learning Representations (ICLR), 2017.

[10] Yasuhiro Fuchikawa, Takeshi Nishida, Shuichi Kurogi,
Takashi Kondo, Fujio Ohkawa, Toshinori Suehiro, Ya-
suhiro Watanabe, Yoshinori Kawamura, Masayuki Obata,
Hidekazu Miyagawa, et al. Development of a vision
system for an outdoor service robot to collect trash on
streets. In Computer Graphics and Imaging, pages 100–
105. Citeseer, 2005.

[11] Wei Gao, David Hsu, Wee Sun Lee, Shengmei Shen,
and Karthikk Subramanian. Intention-net: Integrating
planning and deep learning for goal-directed autonomous
navigation. In Conference on Robot Learning, 2017.

[12] Saurabh Gupta, James Davidson, Sergey Levine, Rahul
Sukthankar, and Jitendra Malik. Cognitive mapping and
planning for visual navigation. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 2616–
2625, 2017.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[14] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick. Mask r-cnn. In IEEE international conference
on computer vision, pages 2961–2969, 2017.

[15] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli Van-
derBilt, Luca Weihs, Alvaro Herrasti, Daniel Gordon,
Yuke Zhu, Abhinav Gupta, and Ali Farhadi. Ai2-thor: An
interactive 3d environment for visual ai. arXiv preprint
arXiv:1712.05474v3, 2019.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[17] Peter Lehner, Sebastian Brunner, Andreas Dömel, Hein-
rich Gmeiner, Sebastian Riedel, Bernhard Vodermayer,
and Armin Wedler. Mobile manipulation for planetary
exploration. In 2018 IEEE Aerospace Conference, pages
1–11. IEEE, 2018.

[18] Martin Levihn, Jonathan Scholz, and Mike Stilman.
Hierarchical decision theoretic planning for navigation
among movable obstacles. In Algorithmic Foundations
of Robotics X, pages 19–35. Springer, 2013.

[19] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Ope-
nAI Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments.
In Advances in neural information processing systems,
pages 6379–6390, 2017.

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529, 2015.

[21] Douglas Morrison, Peter Corke, and Jürgen Leitner.
Closing the loop for robotic grasping: A real-time, gen-
erative grasp synthesis approach. In Robotics: Science
and Systems (RSS), 2018.

[22] Urs Muller, Jan Ben, Eric Cosatto, Beat Flepp, and
Yann L Cun. Off-road obstacle avoidance through end-
to-end learning. In Advances in neural information
processing systems, pages 739–746, 2006.

[23] Takeshi Nishida, Yuji Takemura, Yasuhiro Fuchikawa,
Shuichi Kurogi, Shuji Ito, Masayuki Obata, Norio Hirat-
suka, Hidekazu Miyagawa, Yasuhiro Watanabe, Fumitaka
Koga, et al. Development of outdoor service robots. In
2006 SICE-ICASE International Joint Conference, pages
2052–2057. IEEE, 2006.

[24] Mark Pfeiffer, Michael Schaeuble, Juan Nieto, Roland
Siegwart, and Cesar Cadena. From perception to de-
cision: A data-driven approach to end-to-end motion
planning for autonomous ground robots. In 2017 IEEE
International Conference on Robotics and Automation

(ICRA), pages 1527–1533. IEEE, 2017.
[25] William Qi, Ravi Teja Mullapudi, Saurabh Gupta, and

Deva Ramanan. Learning to move with affordance maps.
In International Conference on Learning Representa-
tions, 2020.

[26] Stéphane Ross, Narek Melik-Barkhudarov, Kumar Shau-
rya Shankar, Andreas Wendel, Debadeepta Dey, J An-
drew Bagnell, and Martial Hebert. Learning monocular
reactive uav control in cluttered natural environments.
In 2013 IEEE international conference on robotics and
automation, pages 1765–1772. IEEE, 2013.

[27] Manolis Savva, Angel X Chang, Alexey Dosovitskiy,
Thomas Funkhouser, and Vladlen Koltun. Minos: Mul-
timodal indoor simulator for navigation in complex en-
vironments. arXiv preprint arXiv:1712.03931, 2017.

[28] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub,
Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A
platform for embodied ai research. In IEEE International
Conference on Computer Vision, pages 9339–9347, 2019.

[29] Pararth Shah, Marek Fiser, Aleksandra Faust, J Chase
Kew, and Dilek Hakkani-Tur. Follownet: Robot
navigation by following natural language directions
with deep reinforcement learning. arXiv preprint
arXiv:1805.06150, 2018.

[30] Shuran Song, Andy Zeng, Johnny Lee, and Thomas
Funkhouser. Grasping in the wild: Learning 6dof closed-
loop grasping from low-cost demonstrations. arXiv
preprint arXiv:1912.04344, 2020.

[31] Mike Stilman and James J Kuffner. Navigation among
movable obstacles: Real-time reasoning in complex envi-
ronments. International Journal of Humanoid Robotics,
2(04):479–503, 2005.

[32] Mike Stilman, Jan-Ullrich Schamburek, James Kuffner,
and Tamim Asfour. Manipulation planning among mov-
able obstacles. In IEEE international conference on
robotics and automation, pages 3327–3332. IEEE, 2007.

[33] Christian Szegedy, Alexander Toshev, and Dumitru Er-
han. Deep neural networks for object detection. In Ad-
vances in neural information processing systems, pages
2553–2561, 2013.

[34] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and
Pieter Abbeel. Value iteration networks. In Advances
in Neural Information Processing Systems, pages 2154–
2162, 2016.

[35] Jur Van Den Berg, Mike Stilman, James Kuffner, Ming
Lin, and Dinesh Manocha. Path planning among movable
obstacles: a probabilistically complete approach. In
Algorithmic Foundation of Robotics VIII, pages 599–614.
Springer, 2009.

[36] Hado Van Hasselt, Arthur Guez, and David Silver. Deep
reinforcement learning with double q-learning. In Thir-
tieth AAAI conference on artificial intelligence, 2016.

[37] Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian.
Building generalizable agents with a realistic and rich 3d
environment. arXiv preprint arXiv:1801.02209, 2018.

[38] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax,
Jitendra Malik, and Silvio Savarese. Gibson env: Real-
world perception for embodied agents. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages
9068–9079, 2018.

[39] Claudia Yan, Dipendra Misra, Andrew Bennnett, Aaron
Walsman, Yonatan Bisk, and Yoav Artzi. Chalet: Cor-
nell house agent learning environment. arXiv preprint
arXiv:1801.07357, 2018.

[40] Lin Yen-Chen, Shuran Zeng, Andy Song, Phillip Isola,
and Tsung-Yi Lin. Learning to see before learning
to act: Visual pre-training for manipulation. In IEEE
International Conference on Robotics and Automation
(ICRA), 2020.

[41] Kevin Zakka, Andy Zeng, Johnny Lee, and Shuran Song.
Form2fit: Learning shape priors for generalizable assem-
bly from disassembly. In IEEE International Conference
on Robotics and Automation (ICRA), 2020.

[42] Brayan S Zapata-Impata, Vikrant Shah, Hanumant Singh,
and Robert Platt. Autotrans: an autonomous open world
transportation system. arXiv preprint arXiv:1810.03400,
2018.

[43] Andy Zeng. Learning Visual Affordances for Robotic
Manipulation. PhD thesis, Princeton University, 2019.

[44] Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee,
Alberto Rodriguez, and Thomas Funkhouser. Learn-
ing synergies between pushing and grasping with self-
supervised deep reinforcement learning. In 2018
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4238–4245. IEEE, 2018.

[45] Andy Zeng, Shuran Song, Kuan-Ting Yu, Elliott Donlon,
Francois R Hogan, Maria Bauza, Daolin Ma, Orion
Taylor, Melody Liu, Eudald Romo, et al. Robotic
pick-and-place of novel objects in clutter with multi-
affordance grasping and cross-domain image matching.
In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 1–8. IEEE, 2018.

[46] Andy Zeng, Shuran Song, Johnny Lee, Alberto Ro-
driguez, and Thomas Funkhouser. Tossingbot: Learning
to throw arbitrary objects with residual physics. In
Robotics: Science and Systems (RSS), 2019.

[47] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim,
Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-
driven visual navigation in indoor scenes using deep
reinforcement learning. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages
3357–3364. IEEE, 2017.

	Introduction
	Related Work
	Methods
	Reinforcement Learning (DQN) Formulation
	State Representation
	Action Representation
	Network Architecture and Training Details

	Experiments
	Simulation Experiments
	Real-World Experiments
	Limitations

	Conclusion

