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Abstract-The successful application of general reinforcement 
learning algorithms to real-world robotics applications is often 
limited by their high data requirements. We introduce Regu­
larized Hierarchical Policy Optimization (RHPO) to improve 
data-efliciency for domains with multiple dominant tasks and 
ultimately reduce required platform time. To this end, we 
employ compositional inductive biases on multiple levels and 
corresponding mechanisms for sharing off-policy transition data 
across low-level controllers and tasks as well as scheduling of 
tasks. The presented algorithm enables stable and fast learning 
for complex, real-world domains in the parallel multitask and 
sequential transfer case. We show that the investigated types 
of hierarchy enable positive transfer while partially mitigating 
negative interference and evaluate the benefits of additional 
incentives for efficient, compositional task solutions in single task 
domains. Finally, we demonstrate substantial data-efficiency and 
final performance gains over competitive baselines in a week-long, 
physical robot stacking experiment. 

I. INTRODUCTION

Creating real-world systems that learn to achieve many goals 
directly through interaction with their environment is one of the 
long-standing dreams in robotics. Although recent successes 
in deep (reinforcement) learning for computer games (Atari 
[28], StarCraft [55]), Go [44] and other simulated environments 
(e.g. [34]) have demonstrated the potential of these methods 
when large amounts of training data are available, the high cost 
of data acquisition has limited progress for many problems 
involving systems directly acting in the physical world. 

Data efficiency in machine learning generally relies on 
inductive biases or prior knowledge to guide and accelerate the 
learning process. One strategy for injecting prior knowledge that 
is widely and successfully used in robotics learning problems 
is the use of human expert demonstrations to bootstrap the 
learning process. But the perspective of a system with a 
permanent embodiment capable of achieving many goals in 
a persistent environment provides us with a complementary 
opportunity: an efficient learning strategy should allow us to 
share and reuse experience across tasks - such that the system 
does not have to experience or learn the same thing multiple 
times, and such that solutions to simpler tasks can bootstrap 
the learning of harder ones. 

Rather than providing prior knowledge or biases specific to a 
particular task this suggests focusing on more general inductive 
biases that facilitate the sharing and reuse of experience 
and knowledge across tasks while allowing other aspects 
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Fig. 1: Top: Overview of the real robot setup with the Sawyer robot 
performing the Pilel task. Screen pixelated for anonymization. Bottom 
Left: Simulated Sawyer performing the same task. Bottom Middle & 
Right: Respectively Pile2 & Cleanup2 setup with a simulated Jaco 
arm. 

of the domain to be learned [9]. Previous approaches to 
transfer learning have, for example, built on optimizing initial 
parameters [e.g. 13], sharing models and parameters across 
tasks either in the form of policies or value functions [e.g. 
41, 51, 15], data-sharing across tasks [e.g. 38, 5], or through 
the use of task-related auxiliary objectives [23, 57]. Transfer 
between tasks can, however, lead to either constructive or 
destructive transfer for humans [45] as well as for machines 
[35, 53]. That is, jointly learning to solve different tasks can 
provide both benefits and disadvantages for individual tasks, 
depending on their similarity. Finding a mechanism that enables 
transfer where possible but avoids interference is one of the 
long-standing research challenges. 

In this paper, we propose a general reinforcement learning 
architecture that benefits from learning multiple tasks simulta­
neously and is sufficiently data-efficient and reliable to solve 
non-trivial manipulation tasks from scratch directly on robotics 
hardware. We achieve efficiency through three forms of transfer: 
(1) robust off-policy learning allows to effectively share all
generated transition data across tasks and skills; (2) a modular
hierarchical policy architecture allows skills to be directly
reused across tasks; and (3) switching between the execution
of policies for different tasks within a single episode leads to
effective exploration.



The model uses deep neural networks to parameterize state-

conditional Gaussian mixture distributions as agent policies,

similar to Mixture Density Networks [7]. To obtain robust and

versatile low-level behaviors in the multitask setting we shield

the mixture components from information about the task at

hand. Task information is thus only communicated through

the choice of mixture component by the high-level controller,

and the mixture components are trained as domain-dependent

but task-independent skills. To efficiently optimize hierarchical

policies in a multitask setting, we develop robust off-policy

learning schemes enabling us to use all transition data to train

each low-level controller independent of the actually executed

one. We focus on Maximum A-Posteriori Policy Optimization

(MPO) [3] but also consider a variant of Stochastic Value

Gradients (SVG) [20]. For both algorithms we employ trust-

region like constraints at both levels of the hierarchy.

We evaluate the approach on several real and simulated

robotics manipulation tasks and demonstrate that it outperforms

competitive baselines. In particular, it dramatically improves

data efficiency on a challenging real-world robotics manipu-

lation task similar to the one considered in [38]: Our model

learns to stack blocks from scratch on a single Sawyer robot

arm within about a week at which point it demonstrates up to

three times higher performance compared to our baselines. We

further perform a number of careful ablations. These highlight,

among others, the importance of the hierarchical architecture

and the importance of the trust-region like constraints for

the stability of the learning scheme. Finally, to gain a better

understanding of the role of this type of hierarchy in RL, we

compare its benefits in the single task and multitask setting.

We find that it shows clear benefits advantages in the multitask

setting. However, it can fail to improve performance in the

single-task case, where additional incentives are required to

encourage component specialization similar to the multitask

case. These results shed further light on the interaction of

model and domain in RL.

In summary, our contributions are as follows,

• Algorithmic improvements: We propose a new method for

robust and efficient off-policy optimization of hierarchical

policies. Our approach controls the rate of change at both

levels of the hierarchy via trust-region like constraints

thus ensuring stable learning. Furthermore, it can use all

data to train any given low-level component, independent

of the component which generated the transition. This

enables data efficient training with experience replay and

data sharing across tasks.

• Performance improvements: We evaluate our approach

on a range of real and simulated robotic manipulation

domains. The results confirm that the algorithm scales

to complex tasks and significantly reduces interaction

time. Particular benefits arise in more complex task

sets and the low-data regime. When learning to stack

from scratch on the Sawyer robot arm in a week-long

experiment, the approach demonstrates up to three times

better performance for the most complex tasks.

• Investigation of benefits, shortcomings and requirements:

We perform a careful analysis and ablation of our

algorithm and its properties, highlighting in particular, the

impact of individual algorithmic and environment proper-

ties, as well was the overall robustness to hyperparameter

settings.

II. PRELIMINARIES

We consider a multitask reinforcement learning setting with

an agent operating in a Markov Decision Process (MDP)

consisting of the state space S , the action spaceA, the transition

probability p(st+1|st, at) of reaching state st+1 from state

st when executing action at. The actions are drawn from

a probability distribution over actions π(a|s) referred to as

the agent’s policy. Jointly, the transition dynamics and policy

induce the marginal state visitation distribution p(s). The

discount factor γ together with the reward r(s, a) gives rise

to the expected reward, or value, of starting in state s (and

following π thereafter) V π(s) = Eπ[
∑∞

t=0 γ
tr(st, at)|s0 =

s, at ∼ π(·|st), st+1 ∼ p(·|st, at)]. We define multitask

learning over a set of tasks i ∈ I with common agent

embodiment as follows: We assume shared state and action

spaces and shared transition dynamics; tasks only differ in their

reward function ri(s, a). We consider task conditional policies

π(a|s, i) with the overall objective defined as

J(π) = Ei∼I

[

Eπ,p(s0)

[

∞
∑

t=0

γtri (st, at) |st+1 ∼ p(·|st, at)
]]

= Ei∼I

[

Eπ,p(s)

[

Qπ(s, a, i)
]

]

,

where all actions are drawn according to the policy π
conditioned on task i, that is, at ∼ π(·|st, i) and we used

the following definition of the task-conditional state-action

value function (Equation 1).

Qπ(s, a, i) = Eπ

[ ∞
∑

t=0

γtri (st, at) |a0 = a,

s0 = s, at ∼ π(·|st, i), st+1 ∼ p(·|st, at)

]

(1)

III. METHOD

This section introduces Regularized Hierarchical Policy

Optimization (RHPO) which focuses on efficient training

of modular policies by sharing data across tasks. We first

describe the underlying class of mixture policies, followed by

details on the critic-weighted maximum likelihood optimization

objective used to update structured hierarchical policies in a

multitask, off-policy setting. For efficiency in the multitask

case, RHPO extends data-sharing and scheduling mechanisms

from Scheduled Auxiliary Control with randomized scheduling

(SAC-U) [38].





optimization instabilities. Trust-region constraints have been

used in on- and off-policy RL [42, 2]. We adapt the formulation

of [2] to our hierarchical setting, and as the analysis in Section

IV-A shows, it is critical for the success of our algorithm.

Formally, we aim to obtain the solution in Equation 6, where

ǫm defines a bound on the change of the new policy.

Here, we drop constant terms and the negative sign in the

second line (turning min into max), and explicitly insert the

definition πθ(a|s, i) =
∑M

o=1 πL (a|s, o)πH (o|s, i), highlight-

ing that we are marginalizing over the high-level choices in this

fitting step. The update is independent of the specific policy

component from which the action was sampled, enabling joint

updates of all components. This reduces the variance of the

update and also enables efficient off-policy learning.

θk+1 = argmin
θ

Es∼D,i∼I

[

KL
(

qk(·|s, i)‖πθ(·|s, i)
)

]

= argmax
θ

Es∼D,i∼I

[

Eπθk

[

exp(Q̂(s,a,i)/η)

log

M
∑

o=1

πL
θ (a|s, o)πH

θ (o|s, i)
]

]

,

s.t. Es∼D,i∼I

[

KL(πH
θk
(o|s, i)‖πH

θ (o|s, i))+

1

M

M
∑

o=1

KL(πL
θk
(a|s, o)‖πL

θ (a|s, o))

]

< ǫm

(6)

Different approaches can be used to control convergence for

both the high-level categorical choices and the action choices to

change slowly throughout learning. The average KL constraint

in Equation (6) is similar in nature to an upper bound on the

computationally intractable KL divergence between the two

mixture distributions and has been determined experimentally

to perform better in practice than simple bounds. In practice,

in order to control the change of the high level and low

level policies independently we decouple the constraints to be

able to set different ǫ for the means (ǫµ), covariances (ǫΣ)

and the categorical distribution (ǫα) in case of a mixture

of Gaussian policy. To solve Equation (6), we first employ

Lagrangian relaxation to make it amenable to gradient based

optimization and then perform a fixed number of gradient

descent steps (using Adam [25]); a detailed overview can be

found in Algorithm 1 as well as with further information in

the Appendix A2.

Policy Evaluation: For data-efficient off-policy learning

of Q̂ we experience sharing across tasks and switching between

tasks within one episode for improved exploration by adapting

the initial state distribution of each task based on other tasks

[38].

Formally, we assume access to a replay buffer containing

data gathered from all tasks. For each trajectory snippet τ =
{(s0, a0, R0), . . . , (sL, aL, RL)} we record the rewards for all

tasks Rt = [ri1(st, at), . . . , ri|I|(st, at)] as a vector in the

buffer. Using this data we define the retrace objective for

Algorithm 1 RHPO - Asynchronous Learner

Input: Nsteps number of update steps, NtargetUpdate update

steps between target update, Ns number of action samples

per state, KL regularization parameters ǫ, initial parameters

for π, η and φ
initialize N = 0

while k ≤ Nsteps do

for k in [0...NtargetUpdate] do

sample a batch of trajectories τ from replay buffer B
sample Ns actions from πθk to estimate expectations

below

// compute mean gradients over batch for policy,

Lagrangian multipliers and Q-function

δπ ← −∇θ

∑

st∈τ

∑Ns

j=1[exp
(

Q(st,aj ,i)
η

)

log πθ(aj |st, i)] following Eq. 6

δη ← ∇ηg(η) = ∇ηηǫ+ η
∑

st∈τ log
1
Ns

∑Ns

j=1[

exp
(

Q(st,aj ,i)
η

)

] following Eq. 5

δQ ← ∇φ

∑

i∼I

∑

(st,at)∈τ

(

Q̂φ(st, at, i)−Qret
)2

with Qret following Eq. 7

// apply gradient updates

πθk+1
= optimizer_update(π, δπ),

η = optimizer_update(η, δη)

Q̂φ = optimizer_update(Q̂φ, δQ)

k = k + 1
end for

// update target networks

π′ = π, Q′ = Q
end while

learning Q̂, parameterized via φ, following [31, 38] as

min
φ

L(φ) =
∑

i∼I

Eτ∼D

[

(

ri(st, at)+

γQret(st+1, at+1, i)− Q̂φ(st, at, i))
2
]

,

(7)

where Qret is the L-step retrace target [31], see the Appendix

B2 for details.

IV. EXPERIMENTS

In the following sections, we investigate the effects of

training hierarchical policies in single and multitask domains. In

particular, we demonstrate that RHPO can provide compelling

benefits for multitask learning in real and simulated robotic

manipulation tasks and significantly reduce platform interaction

time. For the final experiment, a stacking task on a physical

Sawyer robot arm, RHPO achieves a dramatic performance

improvement after a week of training compared to several

strong baselines. We further investigate RHPO in a sequential

transfer setting and find that when pre-trained skills (i.e. low-

level components) are available RHPO can provide additional

improvements in data efficiency.

Finally, we perform a number of ablations to emphasize

the importance of trust-region constraints for the high-level

controller and to understand the relative role of hierarchy
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V. RELATED WORK

Transfer learning, in particular in the multitask context, has

long been part of machine learning (ML) for data-limited

domains [9, 53, 35, 50]. Commonly, it is not straightforward to

train a single model jointly across different tasks as the solutions

to tasks might not only interfere positively but also negatively

[56]. Preventing this type of forgetting or negative transfer

presents a challenge for biological [45] as well as artificial

systems [14]. In the context of ML, a common scheme is

the reduction of representational overlap [14, 41, 56]. Bishop

[7] utilize neural networks to parametrize mixture models

for representing multi-modal distributions thus mitigating

shortcomings of non-hierarchical approaches. Rosenstein et al.

[40] demonstrate the benefits of hierarchical classification

models to limit the impact of negative transfer.

Hierarchical approaches have a long history in the reinforce-

ment learning literature [e.g. 48, 11]. Prior work commonly

benefits from combining hierarchy with additional inductive

biases such as [54, 33, 32, 58] which employ different rewards

for different levels of the hierarchy rather than optimizing a

single objective for the entire model as we do. Other works

have shown the additional benefits for the stability of training

and data-efficiency when sequences of high-level actions are

given as guidance during optimization in a hierarchical setting

[43, 4, 52]. Instead of introducing additional training signals,

we directly investigate the benefits of compositional hierarchy

as provided structure for transfer between tasks.

Hierarchical models for probabilistic trajectory modelling

have been used for the discovery of behavior abstractions as

part of an end-to-end reinforcement learning paradigm [e.g.

51, 22, 52, 15] where the models act as learned inductive

biases that induce the sharing of behavior across tasks. In a

vein similar to the presented algorithm, [e.g 21, 52] share a low-

level controller across tasks but modulate the low-level behavior

via a continuous embedding rather than picking from a small

number of mixture components. In related work [19, 16] learn

hierarchical policies with continuous latent variables optimizing

the entropy regularized objective.

Similar to our work, the options framework [48, 36] supports

behavior hierarchies, where the higher level chooses from a

discrete set of sub-policies or “options” which commonly are

run until a termination criterion is satisfied. The framework

focuses on the notion of temporal abstraction. A number of

works have proposed practical and scalable algorithms for

learning option policies with reinforcement learning [e.g. 6, 59,

46, 39, 17] or criteria for option induction [e.g. 17, 18]. Rather

than the additional inductive bias of temporal abstraction, we

focus on the investigation of composition as type of hierarchy in

the context of single and multitask learning while demonstrating

the strength of hierarchical composition to lie in domains with

strong variation in the objectives - such as in multitask domains.

We additionally introduce a hierarchical extension of SVG [20],

to investigate similarities to work on the option critic [6].

With the use of KL regularization to different ends in RL,

work related to RHPO focuses on contextual bandits [10]. The

algorithm builds on a 2-step EM like procedure to optimize

linearly parametrized mixture policies. However, their algorithm

has been used only with low dimensional policy representations,

and in contextual bandit and other very short horizon settings.

Our approach is designed to be applicable to full RL problems

in complex domains with long horizons and with high-capacity

function approximators such as neural networks. This requires

robust estimation of value function approximations, off-policy

correction, and additional regularization for stable learning.

VI. DISCUSSION

We introduce RHPO, a novel algorithm for robust training of

hierarchical policies in multitask settings. RHPO consistently

outperforms competitive baselines which either handle tasks

independently or implicitly share experience by reusing data

across tasks. Especially for complex tasks or in a low data

regime, as encountered in robotics applications, we strongly

reduce the number of environment interactions and improve

final performance as well as learning robustness and sensitivity

to hyper-parameters. Our results show that the algorithm scales

to complex, real-world domains and provides an important step

towards the deployment of RL algorithms on robotic systems.

Algorithmically, our method highlights the importance of

trust-region-like regularization for stable optimization of hier-

archical policies. Furthermore, our update rules in combination

with mixture policies and hindsight reward assignments enable

training for any task and skill independent of the data source.

This enables efficient learning of the hierarchical policies in an

off-policy setting, which is important for data efficient learning.

Conceptually, our results demonstrate that hierarchical poli-

cies can be an effective way of sharing skills or behavior

components across tasks, both in multitask (Sections IV-A-

IV-B) as well as in transfer settings (Section IV-C) and

partially mitigate negative interference between tasks in the

parallel multitask learning scenario. Furthermore, we find

that their benefits are complementary to off-policy sharing

of transition data across tasks (e.g. SAC-X [38], HER [5]).

Valuable directions for future work include the direct extension

to multilevel hierarchies and the identification of basis sets

of behaviours which perform well on wide ranges of possible

tasks given a known domain.

We believe that especially in domains with consistent agent

embodiment and high costs for data generation learning tasks

jointly and information sharing is imperative. Our results

suggest that a system that is exposed to a rich set of tasks or

experiences and has appropriate means for reusing knowledge

can learn to solve non-trivial problems directly from interaction

with its environment. RHPO combines several ideas that we

believe will be important: sharing data across tasks and skills

across tasks with compositional policy representations, robust

optimization, and efficient off-policy learning. Although we

have found this particular combination of components to be

very effective we believe it is just one instance of – and step

towards – a spectrum of efficient learning architectures that

will unlock further applications of RL both in simulation and,

more importantly, on physical hardware.
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