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Abstract—Untethered small-scale soft robots have promising
applications in minimally invasive surgery, targeted drug deliv-
ery, and bioengineering applications as they can access confined
spaces in the human body. However, due to highly nonlin-
ear soft continuum deformation kinematics, inherent stochastic
variability during fabrication at the small scale, and lack of
accurate models, the conventional control methods cannot be
easily applied. Adaptivity of robot control is additionally crucial
for medical operations, as operation environments show large
variability, and robot materials may degrade or change over time,
which would have deteriorating effects on the robot motion and
task performance. Therefore, we propose using a probabilistic
learning approach for millimeter-scale magnetic walking soft
robots using Bayesian optimization (BO) and Gaussian processes
(GPs). Our approach provides a data-efficient learning scheme
to find controller parameters while optimizing the stride length
performance of the walking soft millirobot robot within a small
number of physical experiments. We demonstrate adaptation to
fabrication variabilities in three different robots and to walking
surfaces with different roughness. We also show an improvement
in the learning performance by transferring the learning results
of one robot to the others as prior information.

Keywords—Soft robotics; gait control; Bayesian optimization;
transfer learning

I. INTRODUCTION

Soft-bodied robots are composed of functional soft materials
exhibiting shape-programmable properties that allow pass-
ive/active structural compliance and large degrees of freedom,
which are hard to achieve using conventional rigid materials
[16]. The research on soft robots is getting more attention
owing to easier access to novel fabrication methods and
functional materials, and potential high-impact medical and
other applications [25]. Biologically inspired soft robots can
be used to study their soft-bodied biological counterparts [[17],
and open new application areas in multi-terrain locomotion
[4], adaptive manipulation |15} 28], and human-assistive wear-
able systems [41]]. Soft robots also enable safe human-robot
physical interaction due to their high compliance and limited
output force, which normally require additional computational
effort in conventional robotic systems [12]]. Small-scale (i.e.,
millimeter) untethered soft robots have further potential usage
in medicine owing to their ability to access to enclosed
small spaces non-invasively [26} [35] and the embodiment of
functionalized materials enabling targeted drug delivery and
bio-sensing [3].

Figure 1. (a) The magneto-elastomer robot is rolled around a jig and
magnetized with |B| = 1.8 T field (red arrow) with a 45° angle with respect
to the y-axis. The unfolded robot maintains a circular magnetization profile
along its body (blue arrows). (b) Photo of the experimental setup with 6
electromagnetic coils and a high-speed camera. (c) Image of the fabricated
and magnetized soft millirobot. (d) Projected planar images showing the four
consecutive states of the robot walking gait: (1) relaxed, (2) front-stance, (3)
double-stance, and (4) back-stance. These images are placed with a separation
on the y-axis for visual clarity, i.e., the robot does not jump in between states
during the experiments. Numbers represent the four states.

Despite their potential, the virtual infinite degrees of free-
dom, the lack of accurate models, fabrication variations, and
non-linear behavior (e.g., hysteresis) render the application
of conventional control methods challenging for soft robots
[32]. So far, constant curvature (CC) models utilizing bending
beam theories have been widely-used to approximately repres-
ent the deformation of continuum robots [42]. Alternatively,
analytical and geometrically exact models have been sugges-
ted for continuum robots that are represented as simplified
rods [29]. Finite element methods (FEM) provide numerical
solutions to soft robot kinematics by utilizing a chain of rigid
elements connected with tunable spring-damper mechanisms
[21]]. These kinematic models allow the implementation of
static and dynamic controllers for continuum robots on a
larger scale [9]. However, these controllers typically depend on
the continuous sensing of body deformations from embedded
sensors and computationally heavy model solutions, which are
conditions that may not be met for untethered soft robots
at the small scales [30]. The dynamic task environment,
complex deformation kinematics, fabrication-dependent per-
formance variations, and actuation/sensing limitations have
further impacts on the soft mobile robots targeting medical



applications, which make adaptive and data-efficient control
methods attractive for these robots [36].

In the case of uncertainty and lack of a parametric model
that represents the system, data-driven control [13] and re-
inforcement learning [38| [19] provide promising alternatives
over model-based designs in small-scale soft robotic systems.
However, the need for data efficiency, i.e., the ability to learn
from only a few experimental trials, presents a core challenge
for such methods [6]]. Conversely, Bayesian optimization (BO)
[10}134] allows for the maximization of a performance function
using a small number of physical experiments. BO typically
employs Gaussian processes (GPs) [27] as a probabilistic
model of the latent objective function. While no explicit dy-
namics model is needed, GPs allow for incorporating inform-
ation as probabilistic priors, thus reducing data requirements.
There are emerging examples that demonstrate the application
of this approach to optimize the locomotion performance
of robots on different length scales [3l 44, 22]]. Despite its
potential to address the control challenge for untethered soft
robots, there are only a few examples that apply this method
such as in the gait exploration of a tensegrity system [31],
and the optimization of an undulating motion of a microrobot
[40]. So far, a data-efficient procedure that adapts the learned
controllers to different robots and environmental conditions for
untethered small-scale soft robots has not been demonstrated.

In this paper, we propose a learning procedure to find the
controller parameters of magnetically actuated, untethered,
soft millirobots (see Fig. [T) that generate optimum walking
gaits within a small number of physical experiments. We
specifically focus on these types of robots due to their bio-
compatible use of external magnetic actuation that supports
multi-functionality in future medical tasks [14, 23] and the
high-resolution magnetization methods that allow more com-
plex deformation capabilities at the small scale [24, [7]. We
produce three replicas of a previously reported soft millirobot
demonstrating a hand-tuned walking gait aiming for medical
applications [14] and test the repeatability of their results. We
begin with finding the optimum walking gait controllers of our
robots using BO with GPs; initially without any prior inform-
ation about the correlation between the controller parameters
and the robot performance. Later, we explore the controller
parameter space of one robot and present a straightforward
way in the context of BO to transfer prior information from
the first robot to all three robots while finding their optimum
walking gait controllers in a data-efficient fashion. We report
the optimum controllers and walking gait performances in
terms of achieved stride lengths for all three robots and
compare the two learning approaches (i.e., with and without
using prior information). We also transfer this information to
adapt to the changes in the task environment by finding the
controller parameters for walking on rough surfaces.

The organization of this paper is as follows. We describe the
robot design and its walking gaits in Section [lIl and introduce
our learning approach in Section Section presents
the experiments on learning of the optimum gait controllers
without using the prior information, the generation of the prior
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Figure 2. (a) Walking gait control parameters during a single period of a

sample motion (a single period of 1/f = 90 ms for f = 11 Hz is normalized
to 0-1 on the abscissa). The magnetic field B is controlled on the y-z plane and
shown with its y and z components (top) whose magnitude (middle) reaches
Bimaa and orientation (bottom) changes from a1 to a2. Dashed vertical lines
represent the (1) relaxed, (2) front-stance, (3) double-stance, and (4) back-
stance states of the walking gait. (b) The stride length S’ performance of the
previously reported robot (robot r) vs. the performance of three replica robots
using the same controller parameters (roboti 2,3). Each data point for each
robot (robot1 2, 3) represents the mean of 10 experiments and the error bars
show the standard deviation. The performance of robotg and the horizontal
dashed line which represents the model prediction are adapted from [14].

controller information from one robot, and the optimization
of the walking gaits by transferring the learned controllers to
three robots and different locomotion surfaces. We discuss the
experimental results in Section [V| and conclude our work in
Section [VII

II. ROBOT DESIGN AND GAIT DEFINITION

We followed the methods and materials reported in [14]]
and fabricated three magnetic soft millirobots with a 1:1
body mass ratio of Ecoflex 00-10 (Smooth-On Inc.) and
neodymium-iron-boron (NdFeB) magnetic microparticles with
around 5 um diameter (MQP-15-7, Magnequench). We placed
this pre-polymer mixture on a methyl methacrylate plate and
cut the robots out of the cast using a high-resolution laser
cutter (LPKF Protolaser U4) after the polymer is cured. Our
robots had the final dimensions of length L = 3.7 mm, width
w = 1.5 mm, and height &, = 185 um as shown in Fig.
a. We separately folded the robots around a circular jig with
a circumference equal to L and magnetized them within a
magnetic field with a magnitude of 1.8 T and orientation of 45°
measured counterclockwise from the y-axis. Once the robots
are unfolded from the jig, the magnetic particles maintained
their magnetization orientation forming a circular profile along
the longitudinal axis of the robot body (Fig. [T}a). We used
these robots (i.e., robots 1, 2, and 3) with the same nominal
material properties and dimensions for our experiments (see
Fig. [T}c for a sample robot image).

The walking gait of our robot is composed of four con-
secutive quasi-static states that are inspired by the planar
quadrupedal bounding [1]] and a caterpillar’s inching motion
[39]]. These states are depicted as (1) relaxed, (2) front-stance,
(3) double-stance, and (4) back-stance as shown in Fig. E]-
d. We placed our magnetized robot along the y-axis of the
magnetic coil setup consisting of three orthogonal pairs of



custom-made electromagnets (Fig. [I}b) that generated a 3-
D uniform magnetic field within a 4x4x4 cm® space. We
modulated the magnetic field on the y-z plane that coincided
with the center of the test environment. We controlled four
parameters to generate the walking gait: the maximum mag-
netic field magnitude (B4, ), the frequency of the actuation
cycle (f), and two magnetic field orientation angles («; and
o) measured counterclockwise from the y-axis. The plots in
Fig. 2}a show the change of the control parameters during a
single period of the motion for B,,,, = 10 mT, f = 11 Hz,
a1 = 30° and as = 60°, which are hand-tuned parameters
reported in [14]. At the beginning of a single gait period, the
robot started at a relaxed state for 0 < B < 4 mT. The
robot tilted forward when o = «7 and B increased from
4 mT to B,,ae = 10 mT. While B remained constant at
Bz, the orientation of the magnetic field changed from oy
to aip causing the robot to initially switch to the double-stance
state and then to the back-stance state when o« = «s. Then,
B decreased while keeping the orientation of the magnetic
field constant, and the robot gradually switched back to the
relaxed state. For B < 4 mT, the robot assumed the relaxed
state, and a single period of walking actuation ended when
B = 0 mT. We reset B at the end of every gait cycle
to avoid jerky motion when « changed from a; to as. In
our experiments, the relaxed state was never skipped but its
duration changed according to f. The consecutive images from
a single walking gait period are shown in Fig. [Ttd. We tracked
the robot gait using a high-speed camera (Basler aCa2040-
90uc, 60 frames per second (fps), 1 pixel ~ 27 ym resolution)
that is orthogonally placed to the axis of robot motion (Fig. [T}
b). In every experiment, we calculated the stride length (S) of
the robot by tracking the average distance covered by its center
of mass in 10 consecutive steps.

To test the repeatability of the previously reported results in
[14], we experimented with our fabricated robots using their
suggested controller parameter sets. Fig. 2}b shows the stride
length performances of our robots (robot; » 3) and compares
them with the reported robot (robotr) performance (i.e., we
calculated the stride length of robot i from the values reported
in [14]) for By = 10 mT, oy = 30°, as = 60°, and 2 <
f <20 Hz. Our preliminary results revealed that:

o In this scale, the gait performance showed clear incon-
sistency due to the variability during fabrication and
environmental factors even though the same materials,
methods, controller parameters, and walking surfaces
are used in the fabrication and experimentation of the
millimeter-scale soft robots.

o Unlike the model prediction, the robot performance
showed non-monotonic behavior along with increasing
f, which rendered the design of a model-based gait
controller unreliable.

o In addition to the virtual infinite degrees of freedom
inherited by the soft materials, the controller parameters
existed in a continuous space, making the hand-tuning of
these parameters within physical experiments impractical.

These observations found the goals of our paper in which
we address the necessity for a data-efficient controller learning
system that is robust to the variabilities caused by the material,
fabrication, and the task environment of the miniature scale,
medical-oriented, untethered soft robots.

III. LEARNING APPROACH

We aim to optimize the walking gait controller parameters
to maximize the stride length S of the robot. Therefore, we
define the reward function as

S:0 - R, (1)

which maps the parameter set 6 = [Byqz, f, @1, a2] to scalar
reward values (i.e., the experimental stride length performance
of a robot). According to the definition of the reward function,
we formulate the parameter learning as the (global) optimiza-
tion problem

0* = argmax S(6), 2)

0o

where © denotes the complete search space, 6 is the parameter
set, and S(6) is the experimentally observed stride length
performance of the robot for a given 6.

We define the range of the controller parameters based on
the findings in [14] and the physical limitations of our mag-
netic actuation setup. Accordingly, B, 1S defined between
5 mT and 12 mT, and the walking frequency, f, ranges from
fmin = 0.5 Hz t0 frae = 20 Hz. We limit o; and oo
to [10,50]° and [40,80]° respectively and select values that
satisfy ap > o to generate the walking gait in Fig. [TFd. We
use a step size of 1 mT for B, 1° for each «, and a variable
step size of 0.25 Hz for f < 2 Hz and 2 Hz for f > 2 Hz,
which yield a total number of 203520 possible parameter sets
in O©.

A. Gaussian Processes (GPs)

The magnetic soft millirobots in our paper did not have
an accurate kinematic or dynamics model (see Fig. [2}b).
Therefore, it is necessary to approximate the reward func-
tion based on the data collected from physical experiments
rather than numerical analysis. However, the physical data
has inherent uncertainty due to the noise in the measurements
and the variations during the experiments. To include these
uncertainties in the model, overcome the sparsity in the data,
and make probabilistic predictions at unobserved locations,
we model the reward function S(#) using GPs following the
previous study in [40]:

S(0) ~ GP(u(0), k(0,0")). 3)

However, as S(f) can only be measured with noise, we define
S as

where n; is zero-mean Gaussian noise with variance o2 for
each measurement 1.

A GP is a non-parametric model defined by its prior mean
() and the covariance function cov(S(6), S(6")) = k(6,0"),



where k is the kernel. During one run of BO, the GP model is
sequentially updated with S(6) observed from experiments.
We define one “learning run” as a run of BO until the
desired stopping criterion is matched (e.g., a fixed number
of experiments is reached).

From the experimental data D = {6;, S(6;)}Y,, the stride
length of the robot for an unobserved 6 can be predicted using
the posterior mean and variance as follows.

fipost(0) = pu(0) + kT (0) Ky, (5)
020st(0) = k(0,0) — kT (0)K~'k(6), (6)
Spost(0) | D ~ N(tipost(0), 0ppst (6), (7

where k(0), y € RN with k(6;) = k(6,6;), yi = S(6;) —
w(9;), and K € RV*N with K; ; = k(0;,0;) + 6; j02, where
8;.j is the Kronecker delta and o2 is the noise in the collected
data set.

We select the squared exponential as the kernel function in
the GPs, which is for the 1D case:

ksg(0,6") = ofexp(—(0 — 0)?/212), 8)

where [, is the length scale that defines the rate of variation
in the modeled function for each dimension of the parameter
space. Long length scales are used to model slowly-varying
functions and short length scales are used to model quickly-
varying functions. The signal variance JJ% describes the width
of distribution, e.g., high cr]% means higher uncertainty in the
predictions of the unobserved 6.

Hyperparameters of the GPs can be listed as the noise in the
collected data a,%, length scale /. for each dimension of the
parameter space R%, and signal variance a%. To determine
the value of a,%, we use the maximum variance found in the
experimental results shown in Fig. 2}b. We set the length
scale [. to one-fourth of the total range of each corresponding
parameter. We also set the signal variance O'J% to half of the
body length of the robot so that the highest possible reward
value (i.e., L = 3.7 mm) remained inside the 95% confidence
interval of the prior.

B. Bayesian Optimization (BO)

We use BO to select the parameter set 0,,.,; to be tested in
the next step of the learning run using the acquisition function
Qgeq(0).

Onert = argmax geq(6) )
6O

In this work, we choose the expected improvement (EI) as
the acquisition function a.q(#) due to its better performance
compared to its alternatives as demonstrated in [40]. EI
seeks the parameter set for the next step where the expected
improvement in reward function is the highest compared to
the previously collected data:

Qacq(0) = E[max(0, (S(0) — S(67) - €))],

Qacq(0) = (u(0) = 5(0%) = )P(Z) + 0 (0)¢(2),

(10)
Y

where S(6*) is the highest reward function value collected
so far, ® and ¢ are the Gaussian cumulative density and
probability density functions, respectively [2]. The term Z is
described as Z = Z(0) = (u(0) —S(0*) —&)/o(0), with p(0)
and o(6) computed from Eq. (5) and Eq. (6). In Eq. (L1), the
two terms define the exploitation and the exploration weights
of the BO respectively. The balance between these two terms
is controlled by the hyperparameter £ . As & gets higher, BO
focuses more on exploration and seeks the next parameter set
in regions with high prediction uncertainty. Conversely, BO
focuses more on exploitation and selects the next parameter
set within a close range to already explored regions. We choose
& = 0.1 to balance the exploration and exploitation weights.

C. Transfer of the Prior Mean

In addition to the kernel (see Section [[II-A), the prior
mean £(f) must be chosen at the beginning of a BO run.
Often, 1 = 0 is the default choice for an uninformed prior.
For the millirobot learning problem herein, we suggest and
investigate the transfer of information from previous learning
runs by setting the prior mean to the posterior mean of a
previously trained GP model, such as from a different robot.
In this way, we can approximately transfer the topology of the
target function between robots, which is reasonable as long
as the differences between the robots and the environment
do not significantly alter the function shape. In this work,
we adopt and compare both approaches of an uninformed
prior (4(8) = 0) in Section and the transfer of the
posterior mean from robot 1’s previous run to all three robots

in Section [V-Bl

IV. EXPERIMENTS

We modulated the currents running through the electromag-
netic coils and the resulting magnetic field by controlling six
motor driver units (SyRen25) using an Arduino microcon-
troller running at 1.2 kHz. We regularly calibrated the mag-
netic actuation matrix inside the workspace, i.e., the mapping
between the applied electric current and the generated mag-
netic field, to maintain reliable and repeatable experiments.
The learning process ran on a PC that additionally handled
image processing and hardware communication tasks. One
step of the learning run involved five steps:

1) BO selected a new parameter set 6 that maximized the
acquisition function based on the GP model,

2) The microcontroller regulated the magnetic field based
on the selected # and initiated the physical experiment,

3) The camera recorded the robot motion and measured the
average stride length performance S,

4) The learning system updated the GP model using the
newly collected data from the experiment,

5) The robot returned to its initial position for the next step.

A. Optimization of The Walking Gait without the Prior

To test our controller learning approach without prior in-
formation, i.e., u(f) = 0, we experimented with all three
robots in the same environmental conditions and limited the



@

w
»n

é Robot 1 4 —e— LRI -4-LR2 A~ LR3

o 231 s A

515 - ’

=

=

o 0.5 1

N=

=

705 . T T T x
(b) 0 3 10 15 20

~35

E Robot 2 - —o—- LRl -4-LR2 A~ LR3

= 2.5 4 ?

Ty

£ 1.5 -

=

2

o 0.5

2

=

A -0.5 T T r r
(c) 0 5 10 15 20

~35

E | Robot3 LRI -+ LR2 . LR3

= 2.5 4

©“

£ 1.5 4

=

=

o 0.5

=1

&

©»n-0.5 T T T T

0 5 10 15 20
Steps

Figure 3. The learning of the controller parameters without utilizing the

prior information within 20 physical experiments in 3 independent learning
runs (shown as LR.3) for (a) robot 1, (b) robot 2, and (c) robot 3.

number of steps for each learning run to 20 experiments.
We initialized the BO with the best controller parameter set
reported in [[14]. We performed three independent learning
runs (i.e., 60 experiments in total) for every robot with the
same initial state, whose results are shown in Fig. E Each
data point represents the robot’s stride length performance S
resulting from a different controller parameter set chosen by
the BO at a given step of a learning run. As BO actively chose
sample locations (e.g., to explore unknown regions described
in Section [I), the variation in these data points was the
desired behavior of the explorative learning algorithm. See
Supplementary Video 1| for the gait performances of four
different controller parameter sets for robot 1.

We chose the optimum controller parameter sets (6*) from
these learning runs and repeated the walking gait five times to
collect statistical information about the stride length perform-
ances. The rows designated with “no prior” in Table [[] shows
the values for #* and the resulting S for each robot. It can
be seen that the walking gait performances of the robots were
significantly improved compared to the robot reported in [14].
Also, the standard deviation within these repeated experiments
agreed with the previously reported values, highlighting the
repeatability and reliability of our experimental platform. In
this optimization approach, we achieved 86.6%, 94.7%, and
60.5% increase in S for robots 1 to 3 respectively (i.e.,
compared to the S of the previous robot shown in the last row
of Table [[). The difference between the optimum controller
parameter values in Table [I| demonstrates the influence of the
fabrication variabilities on the robot design and performance.

Separate from the optimum stride length performance of
each robot, we evaluated the overall performance of the
learning runs based on the achieved stride length average
of all of the tested controller parameters. This performance
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Figure 4.  Approximation of the stride length performance as a function

of four control parameters using GPs. The upper row shows S projected
on B-f plane for @1 = 30° and as = 60°, and the lower row shows S
projected on the aj-a2 plane for B = 10 mT and f = 2 Hz. (a,c) Initial
approximation of S applying the 9 hand-tuned controller parameters reported
in on robot 1 in our experiments. Each green cross mark represents 10
trials for the chosen parameter set. (b,d) The final probabilistic approximation
of S after running the prior information generation step. Experiments with
the parameters selected by our BO are represented with yellow cross marks.

metric Prrp shows the overall quality of the learning run’s
parameter selection in terms of the average of all the S and
the standard deviation in 60 experiments (i.e., avg(.S) + std).
In these experiments, the learning run for robot 1 yielded
Prr, =1.07 £ 0.80 mm, Prr, = 1.21 £+ 0.88 mm for robot
2, and Prr, = 0.75 £ 0.64 mm for robot 3. Even though
there were multiple individual #s within these runs (e.g., the
optimums reported in Table [[) that outperformed the previous
study, the large standard deviation shows that the BO selected
parameters that generated a wide range of performances.

B. Optimization of The Walking Gait with the Prior

1) Generation of the Prior Information: To generate useful
prior information, we constructed the posterior mean fipos:(6)
for robot 1 using the BO and GP described in Section
Initially, we adopted nine different controller parameters from

and collected the stride length information from repeated
experiments in our setup. Fig. Bla and @}c show the two-
dimensional projection of the approximation of S function
generated by the GP model (utilizing the same hyperpara-
meters in Section based on these experiments. After
the initial approximation, we used the BO to select new
parameter sets from the unexplored parts of the 4-D search
space and collected the experimental stride length performance
information. We explored 123 different parameter sets in total
by selectively isolating the search space dimensions. Initially,
we fixed a; = 30° and as = 60° and explored 18 different
parameter values for B,,,, and f. Then, we fixed B4, = 10
mT and f = 2 Hz and explored 38 values for «; and
ag. We performed 17 additional tests for «; and ao for
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Figure 5. The learning of the controller parameters by utilizing the prior
information presented in Section within 20 physical experiments in 3
independent learning runs for (a) robot 1, (b) robot 2, (c) robot 3.

Bparz = 10 mT and f = 8 Hz. Finally, we explored the
complete search space for four parameters with 50 more tests.
For all of these tests, we stopped the exploration when the
BO converged in the sense of repetitively selecting similar
0s. Fig. [4] shows the two-dimensional projections of the GP-
based probabilistic approximation of the performance function
before (Fig. @fa,c) and after (Fig. f}b,d) all of the physical
experiments dictated by our BO. These results show that our
BO approach revealed parts of the parameter space that were
not effectively explored using the hand-tuning in [14]]. We used
this posterior information of robot 1 and transferred it to all
robots (i.e., robots 1, 2, and 3) as prior information of the
stride length function approximation in the remaining part of
the optimization experiments.

2) Transfer of Learning Between Different Robots: Similar
to the experiments in Section [[V-A] we performed three
independent learning runs each consisting of 20 experiments
for every robot. Unlike the previous learning approach, the
GP model in every learning run started with the prior mean
set to the posterior mean information of robot 1 that was
generated in Section [V-BI] Fig. [5] shows the walking gait
performance results of three robots in these learning runs. The
optimum controller parameter sets (6*) and the resulting stride
length performances S from these learning runs are reported
in Table [ on the rows designated with “prior”. Compared
to the robot in [14], we achieved optimized walking gaits
with an increased performance of 70.7%, 73.9%, and 113.3%
for robot 1 to 3 respectively. See Supplementary Video 2 for
a comparison of the walking gaits of three robots with the
optimum of the parameters found in the experiments.

The utilization of the transferred prior information can
be seen as a clear improvement in the overall learning run
performance Prr. In these experiments, the learning runs for

Table 1
SELECTED GAIT CONTROLLER PARAMETERS

Controller Parameters
Robot Type Bmaz I a1 | az Stride length S
(mT) | Hz) | (°) | (©) | (mm) (avg =+ std)
Robot 1 no Prlor 9 10 21 61 2.25 + 0.17
prior 12 8 20 | 65 2.68 £ 0.34
Robot 2 |_1© Prlor 11 8 27 65 3.06 £+ 0.38
prior 9 10 32 73 273 + 0.24
Robot 3 no Prlor 10 10 19 80 2.52 + 0.27
prior 12 18 10 | 80 3.35 £+ 0.08
| Robotin[@ [ 10 [ 11 [30] 60 [ 1.57+0.38

robot 1 yielded Prr, = 1.45 £ 043 mm, Prr, = 1.56
+ 0.42 mm for robot 2, and Prr, = 1.43 £ 0.70 mm
for robot 3. The improved averages compared to the results
in Section [IV-A] show that once the prior information is
transferred, the BO selected parameters that yielded better
performing stride lengths in the same number of limited
physical experiments. Likewise, the lower deviation in the
averages implies that the performance range of the selected
parameters was consistent.

C. Adaptation to Different Surfaces

Similar to the variances during the fabrication, the changes
in the task environment also have a significant impact on
the untethered soft small-scale robots. To demonstrate the
adaptation capability of our learning approach to different
surfaces, we experimented with robot 1 on a surface coated
with 60-grit sandpaper (Klingspor, KL.385-JF), which had a
higher roughness compared to the plexiglass surface used
in our previous experiments (Fig. [6la). The surface profile
examination in Fig. [6}b and [6}c (Keyence VK-X260K) shows
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Figure 6. Adaptation to different surface roughnesses. (a) Colored images

showing the robot walking on different surfaces: smooth plexiglass (left) and
rough sandpaper (right). (b) Profilometer analysis showing the roughness
difference between two surfaces. (c) Linear profiling along the scan line
axis marked with dashed lines in (b) reveals the average height difference
between surfaces (note the two orders-of-magnitude difference). (d) The
average stride length performances of robot 1 on the rough surface using
the parameters optimized for the smooth surface (left) vs. parameters using
the prior information for the rough surface (right).


https://utkuculha.com/wp-content/uploads/2020/06/RSS_Supplementary_Video2.mp4

Table II
GAIT CONTROLLER PARAMETERS FOR DIFFERENT SURFACES

Controller Parameters
Surface | Bax f al | a2 Stride length S
(mT) | (Hz) | (°) | (®) | (mm) (avg =+ std)
smooth 12 8 20 | 65 2.68 £+ 0.34
rough 11 2 10 | 76 1.15 £ 0.15

that two surfaces had significant differences between their
roughness Sq (root mean square height): sandpaper S, =
85.01 pym compared to plexiglass surface S, = 0.38 pm.
Fig.[6}c shows that the terrain of the rough surface had features
almost three times taller than the height of our robot.
Initially, we used the optimum control parameters of robot
1 in Section on the rough surface and observed that the
walking gait performance dropped from .S = 2.68 £+ 0.34 mm
to S = 0.93 £+ 0.26 mm. Then, we optimized the robot on the
rough surface using our learning approach utilizing the prior
mean information generated in Section [[V-BT] Within a single
learning run of 20 experiments, we found a parameter set that
increased the stride length performance to S = 1.15 + 0.15
mm, yielding a 24.7% optimization (Fig. @d). The optimum
walking gait controller parameter sets for both surfaces are
reported in Table [l These results show that the learning
system adapted the controller parameters for the new terrain
features to maintain a successful walking gait. During the
optimization process, we observed that the robot typically got
stuck inside the cavities that were larger than its height. To
overcome this problem, BO optimized the parameters such
that the robot moved slower with the lower f, and the tilted
back and forward with larger as and smaller o to release
its “legs” from the cavities. See |[Supplementary Video 3| for a
comparison between walking gaits on two surfaces.

V. DISCUSSIONS

When the stride length performance results in Table [
are compared, it can be seen that some of the controller
parameters selected without the prior information outper-
formed the parameters selected with the prior information.
Regardless of the prior information, as BO is a probabilistic
optimization algorithm and promotes some exploration, these
results were expected. Nonetheless, all of these optimized
parameters significantly outperformed the hand-tuned values
in [14], highlighting one of the major contributions of our
work. As a second contribution, we showed that transferring
the posterior mean of one robot as the prior mean for the
learning experiments of other robots lead to benefits in terms
of improved average performance of learning runs Prp as
shown in Fig.[/| For robot 1, the average in the Py increased
by 35.5%, 29.3% for robot 2, and 91% for robot 3. We
note, however, that even though our method showed positive
influence for the considered robot cases, further investigation
on the most appropriate means of transfer for the considered
problem is interesting future work.

Our results can reveal design guidelines to improve the
kinematic models of the small-scale robots while utilizing the
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Figure 7. Improvement in the controller learning procedure represented

with the overall stride length average Pr,r and its standard deviation from
the learning runs with and without using prior information. The dashed line
(Spest) refers to the best stride length performance of the robot in [[14].

constant curvature (CC) approximations [42], analytical mod-
els [29], and FEM methods [21]. Additionally, recent studies
suggesting fabrication methods with higher magnetization res-
olution on a smaller scale [43}[18]] may address the fabrication
variability problem owing to their automated procedures. How-
ever, especially for robots designed for non-invasive medical
operations, the interaction with the dynamic task environment
may still have degrading effects on the robot’s soft body and
change its performance unpredictably. In the absence of an
adaptive online controller with a high-bandwidth feedback
system, a data-efficient controller learning system may adapt
the previously optimum controller parameters to the changes
in the robot. For example, such an adaptive learning system
may be applied for endoscopic soft robots within or outside
the gastrointestinal (GI) tract [37, [11] using a small number
of trials. Contributing to this idea, our paper demonstrated the
data-efficient learning of controller parameters and adaptation
to different task environments without depending on the robot
models whose results are shown in Table [

In our experiments, we noticed that the duty factor of
the double-stance state reduced with the increased actuation
frequencies, which is commonly observed in legged loco-
motion in nature [[1]. The highest stride length performances
for all three robots were lower than the body-length (i.e.,
L = 3.7 mm) of the robot, which also suggests that robots
were following the walking gait state sequence by avoiding
ballistic flight as in running. However, our approach can be
extended to investigate the switch between dynamic gaits and
the change of controller parameters accordingly.

In this paper, we focused on finding the optimal walking gait
parameters inside this © using only physical experiments with
BO and GPs. The systematic comparison of our experimental
approach to alternative methods supported with simulations
such as intelligent trial and error [8], evolution algorithms [20]],
or policy gradients [33] is also an interesting future work.

VI. CONCLUSIONS

The results in this paper show the potential of a control
learning system that can learn the new robot parameters
quickly, and adapt to variabilities in the absence of a model-
based control for soft robots. Our experimental results suggest
that the boundaries for the parameter search space may be
widened further to explore richer behaviors in future studies.
This study can be further extended to involve the design
parameters, such as the magnetic particle density in our robots,
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and guide the task-oriented design strategies for medical-
oriented robots. Our long term vision is to build a com-
pletely autonomous system that can actuate, track, evaluate,
and optimize a complex soft robot with minimum human
involvement.
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