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Abstract—State-of-the-art dense mapping approaches cannot
be deployed on Size, Weight, and Power (SWaP) constrained plat-
forms because of their large memory and compute requirements.
In this paper, we present an accurate, and efficient approach to
dense multi-fidelity 3D mapping using Gaussian distributions as
volumetric primitives. The proposed mapping approach supports
both high fidelity dense surface reconstruction and lower fidelity
volumetric environment representation for fundamental robotics
applications. We exploit the inherent working characteristics of
an off-the-shelf depth sensor and approximate the distribution
of approximately planar points using Gaussian distributions.
Explicit modeling of the sensor noise characteristics enable us
to incrementally update the map representation in real-time
with high accuracy. We present the advantages of our proposed
map representation over other well known state-of-the-art rep-
resentations by highlighting its superior performance in terms
of reconstruction accuracy, completeness and map compression
properties via quantitative and qualitative metrics.

I. INTRODUCTION

A Size, Weight, and Power (SWaP) constrained autonomous
system deployed in real-world environments to enable in-
frastructure inspection, exploration, search and rescue, must
solve various challenging problems such as consistent mapping,
safe planning and localization in real-time. Spitzer et al. [23]
describe a semi-autonomous aerial robotic system exploring
unknown environments that performs state-estimation, local
mapping and collision avoidance in real-time at high speeds
using multiple independent map representations. A disjoint
perceptual system increases the memory and computational
burden on a robot thus affecting its accuracy and speed
of performance. In this paper, we present a multi-fidelity
probabilistic mapping strategy using Gaussian distributions
as structure primitives. The hierarchical structure of our
proposed map representation enables the unification of a dis-
joint autonomous system and reduces the computational burden
on a SWaP constrained system.

RGB-D sensors operating in real-world environments observe
3D data along the surfaces of objects in the scene. Object
surfaces can be approximated as locally planar and recon-
structed using planar surface elements. Our proposed mapping
framework uses Gaussian distributions as structure primitives
that capture the local structural relationships in the observed
data and create a continuous representation of the objects
in the scene at required fidelity. We thus exploit the local
regularity and the considerably reduced storage complexity of
Gaussian distributions to represent the mapping as a model
fitting problem.

In this paper, we present a unified hierarchical mapping
framework that generates a highly accurate representation
for dense surface mapping and more succinct representations
at higher hierarchical levels, that can be utilized for pose
estimation [4} 25] and global path planning [3| 26]. Further,
our proposed framework explicitly models the uncertainty of
noisy depth information to enable more accurate and concise
3D reconstruction of the scene observed using Commercially
available Off-The-Shelf (COTS) RGB-D sensors.

We represent a depth camera observations as 3D parametric
uncertain distributions and use them to construct an uncertainty
aware map representation. This map representation is refined
with a stream of sensor measurements to represent accurately
the surfaces of objects in the scene. A Commercial off-the-
shelf (COTS) structured light depth sensor projects a structured
pattern of IR light onto its surroundings and measures the
distance of all the surfaces in its field-of-view. We exploit
the understanding that the ordered data obtained from such
sensors resides along the surfaces in the scene within the
ambient space R3. Our proposed approach replaces the most
computationally expensive part of fitting GMMs, EM [6 24],
with a simpler pixel space search-based “Region Growing”
technique [[19], by constraining each separate component of
a GMM to represent different sections of the surfaces in the
scene. Our main contributions are:

« A novel pixel space search-based surface mapping tech-
nique using Gaussian distributions as surface elements
(Sec. [III-B))

o A probabilistic map update strategy using sensor noise
modeling to compute more accurate correspondences
between sensor observations and the map (Sec.

o A hierarchical multi-fidelity mapping strategy that enables
consistent high fidelity map updates(Sec.

We demonstrate (Sec. that our approach is more memory
efficient in terms of memory than state-of-the-art mapping
techniques while retaining the most information about the map
with high precision and low reconstruction error.

II. RELATED WORK

The choice of map representation used for a perceptual
framework on an autonomous system is driven by the appli-
cation and the computational and memory resources available
on-board. For path planning and 3D navigation, a majority of
mobile robots employ voxel grids [7]] as the map representation.
Voxel grids assume conditional independence of each voxel
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Fig. 1: Left To Right: As a sequence of 3D point cloud data is observed, a Gaussian distribution based consistent map of the world Y@ is
initialized at high fidelity; These Gaussian distributions are combined together using a pixel-space similarity based surface growing algorithm
to generate lower fidelity representations of the world at hierarchical level-1 and level-2. The 30 bound ellipsoids of each Gaussian distribution
are visualized colored by the mean color of the 3D points approximated by each distribution.

from its neighboring voxels that fails to capture the spatial
dependency that the real-world data exhibits. The fidelity at
which the environment can be represented is further limited by
the resolution of the voxel grid. Hornung et al. [9] proposed
an octree based solution to reduce the memory complexity of
voxel grids by adaptively allocating more memory resources
in complex regions of the map.

Dense Simultaneous Localization and Mapping ap-
proaches [10] generate an accurate 3D reconstruction
of the world by reconstructing the surfaces in the scene.
Schops et al. [21]], Whelan et al. approximate the locally
planar spread of points using small disk like surface elements
(surfels). Izadi et al. [I0] on the other hand, use a Truncated
Signed Distance Field (TSDF) to implicitly represent a surface.
These dense mapping algorithms are extremely computationally
expensive, and have a large memory footprint and therefore
pose a major challenge in deploying on SWaP constrained
robots.

Several approaches have been proposed to reduce the compu-
tational and storage complexity of surface mapping [27} (14} [13].
The former represents large planar regions in the scene using a
parametric planar representation. However, the strong assump-
tion of planarity over large regions fails in complex and outdoor
environments. The latter two approaches represent surfaces
using Gaussian processes. Such non-parametric approaches to
mapping are capable of representing the surface information at
high fidelity. However, they require large amount of data and
fitting GP parameters is computationally complex. Therefore
training a GP to dense point cloud data provided by RGBD
sensors in real-time is challenging. Similar in vein to our
proposed approach, Pizzoli et al. propose a probabilistic
approach to generate depth maps using monocular color
information by explicitly modeling uncertain data. However,
this approach is reliant on availability of texture in the color
information which is often not available in indoor or outdoor
environments.

A novel map representation has been proposed by Magnusson
et al. [[16], Srivastava and Michael [24], Eckart et al. [6] that
use succinct Gaussian Mixture Models (GMMs) to reduce the
memory complexity of map representations while retaining
high fidelity of representation. Normal Distributions Transform
(NDT) maps proposed by Magnusson et al. [16], unlike the
proposed framework, fit Gaussian distributions over each dis-

cretized 3D cell thus leading to lower fidelity of representation
at cell boundaries. Eckart et al. [[6], Srivastava and Michael
[24] present two hierarchical 3D mapping approaches that fit
a consistent GMM over the 3D structure data. However, the
Expectation Maximization routine used in these approaches
requires the information about model complexity a-priori, is
extremely computationally expensive, and, is highly sensitive
to parameter initialization [1T].

III. APPROACH

This section describes our proposed mapping framework.
Instead of employing an expensive EM routine, we use a pixel
space search-based “Region Growing” technique to fit Gaussian
distributions to planar surfaces in the scene thus providing
a more accurate measure of reconstruction accuracy. It also
enables us to achieve orders of magnitude of computational
savings, thus making it feasible to learn accurate Gaussian
distribution based representations of the sensor data in real-
time. Fig. ] illustrates the system overview of our algorithm.

The mapping process can be summarized into the following
steps:

1) Initialize a high resolution surface representation of the

environment (Sec. [[TI-B)

2) Compute a correspondence map that denotes the point-
to-distribution correspondence for each point in a new
depth measurement (Sec [[II-CT])

3) Fuse incrementally observed noisy sensor data into the
global map representation using correspondence map and
Gaussian merging (Sec. [[lI-C)

4) Map refinement using Gaussian splitting and outlier

removal (Sec. [LII-D)
5) Hierarchical map update (Sec. [[lI-E)

A. GAUSSIAN DISTRIBUTION

A Gaussian distribution * @ in a d-dimensional space, defined
in a coordinate frame w, is a probability distribution function
that is parameterized by its mean and covariance:

woj = (ll'j7 2])

A set of points X := {*x¢,“x1,...,%“Xy} can be approxi-
mated with a Gaussian distribution “0; as:

N w Nuw, w,T
o X o Do VXX . T
N T T N iy

¥ (M

;=



Depth Image Pose
_ Y
Sensor Uncertainty l,_,,_ Level-0 <
Model | Model Update
' |
Overlapping Novel Model
Information Update Initialization

I
y Updated Model

Model Refinement

v

Hierarchical Map
Update

y

Active/lnactive
Segmentation

Active Model

Fig. 2: System Overview: The algorithm operates on depth im-
age streams and corresponding sensor poses. As sequential sensor
measurements are observed, an accurate map of the world “@°
is updated with novel and overlapping sensor information. Noisy
Gaussian distributions are removed from the map and the higher
hierarchical levels “©', “©®? are updated using the refined “@°.
The Gaussian distributions outside the FOV of the sensor are labeled
inactive to reduce the computational complexity of updating large
scale maps.

B. SURFACE MODEL INITIALIZATION

We initialize a Gaussian distribution based representation of
the environment at hierarchical level-O as the first sensor mea-
surement is observed at time ¢ = 0 along with its corresponding
ground truth pose in a coordinate frame w. This representation
is formulated as an ordered set of Gaussian distributions in a
global coordinate frame w, “©{ = {“’08, wgl, ... wO?L}. The
covariance 3; of each “’0? signifies the spread of points that it
is fit on. Depth measurements obtained from COTS structured
light sensors are spread along sub-manifolds (surfaces of the
objects in the scene) in the ambient R? space. A “6? that
best represents a subset of this observed data corresponds to
a planar patch of the spread of points along a surface. The
smallest eigenvalue \; o of 3; represents the variance of points
along the direction with the least data variation i.e., the normal
to the surface that “’0? is fit on. The corresponding eigenvector
u; o represents the direction of this normal. Given an image
Ty of size V x U, we use this understanding to fit the best
Gaussian distributions “’0? to small by x by pixel patches of
Ty that represent planar spread of points.

Assuming pinhole camera geometry, a depth measurement
at pixel location (v, u), Zy(v,u), can be back projected in to

R3 space using inverse projective function

=1IT " (Zo(v, u), v, u) )

Since, this is a linear transformation, the points that are
proximate in the 3D space, are also proximate in pixel space.
We exploit this property of projective pinhole geometry and
implement a version of the “Region Growing” algorithm
proposed by Poppinga et al. [19] that operates in the image
space using uncertain data. The “Region Growing” algorithm
can be described as follows:
In each image patch of size by x by pixels, we

Xo,u

1) Select a random seed pixel (vs,us) and compute the 3D
point X, ,,, = H_l(I(vS,us),vs,us)

2) Search for candidate 3D points x,_ .. in the pixel
neighborhood of x,,_ . that lie within «,, distance of
Xu,,u, and initialize a Gaussian distribution vg? using
this set of points as defined by Eq. [T]

3) For candidate points x,, ,, that are inside «,, distance,
search for its neighbor points x,, ., Wwithin c,, distance,
such that the smallest eigenvalue Ay of the covariance
3, of a Gaussian distribution wB? updated with point
Xoy,up 15 1ess than aa » and the largest eigenvalue is less
than Q,len

4) Continue until all points in the image patch are processed

The mean and covariance of a Gaussian distribution completely
represent sufficient information about the points that it was
fit on. Therefore, for incrementally updating a Gaussian
distribution “’0? with a point “x; we do not need to preserve
the history of points used to fit “’0?:
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For each by x by image patch, we select the Gaussian distribution
that represents the largest planar region in that patch. Thus,
our initial model at hierarchical level-O, w@g, consists of
% X % Gaussian distributions that represent planar patches in
the observed scene. The covariance matrix of each Gaussian
distribution is regularized by adding a small ( 1e — 6 ) value,
to avoid numerical inconsistencies caused by noisy sensor data
and to ensure that each covariance matrix is Positive Semi-
Definite (PSD). Fig [I] provides an example of a model © fit

at multiple hierarchical levels on a set of input scans.

C. INCREMENTAL MODEL UPDATES

As sequential sensor measurements are obtained, we can
refine the current model estimate at the hierarchical level-0,
w@?_l, of the scene using this incoming stream of structure
information. Sequential sensor measurements obtained from a
sensor moving in the world, contain some novel information



about the scene and some redundant information that has
already been observed. However, sensor measurements obtained
from a depth sensor are often noisy and therefore unreliable.
We use the redundant structure data to improve the estimate of
the map that is already observed using a weighted update and fit
new Gaussian distributions to novel information. An additional
uncertainty covariance ;"¢ is added to the Gaussian distribu-
tions to represent the average uncertainty of the points used to
fit each Gaussian distribution, “8% | := {1, Ty, =0, Ny, }.

Given a sensor measurement “'x, ,, at a pixel location (v, u)
in image Z; with Gaussian uncertainty “3;", we check if

this point has already been represented by a distribution in

wOy . If {¥x,,, 4% } has a similarity measure higher

than areont with “8)y = {1, Ty + I + IY then it is
considered to be partially represented by we;{ and therefore,
is classified as non-novel. Points “xy ; that do not lie within
the confidence interval of any of the distributions in “’@?_1
are labeled as novel points. “Bhattacharyya Coefficient” [13]
is used as a measure of overlap or similarity between two
Gaussian distributions.

The novel information obtained in Z; is used to initialize
the new Gaussian distributions @) at hierarchical level-0 that
represent the newly observed surfaces in the scene.

1) CORRESPONDENCE MAP: In order to update the global
map of the world w@?_l with the correct overlapping 3D point
“Xy.u» Wwe must check if the uncertain distribution of “x,, ,,
overlaps with each uncertain distribution in “’@?_1. As the
number of components in “@!_; increases, the search space
for finding the correspondence between a point x, , € Z; and
distribution 8% ' € “@Y_, also increases. To make the search
real-time, we exploit the geometric properties of a Gaussian
distribution and the linearity of pinhole projection. Gaussian
distributions have a infinite support space in 3D. However,
the probability distribution tapers off exponentially farther
away from the mean. Equipotential contours of a Gaussian
distribution can geometrically be represented as ellipsoids in
R? space. The pinhole projection of a 3D ellipsoid is an ellipse
in a 2D image plane [4]. Only the Gaussian distributions
corresponding to ellipses that project at a given pixel location
(v,u) on the image plane are potentially proximate to the
3D point x,,,, and contribute to its likelihood. We implement
a depth buffer in OpenGL to compute projectively correct
point to distribution correspondences as shown in Fig.[3] A 30
ellipsoid corresponding to each Gaussian distribution is used for
projection. Finally, to verify if the projective correspondence
is correct, we check if the uncertain point x,, ,, distribution
overlaps with the corresponding Gaussian distribution wgg that
was projected at the same pixel location.

2) GAUSSIAN DISTRIBUTION UPDATE: If an uncertain
point {“x, ., X", } has been previously partially observed
by a distribution wog, wog can be interpreted as the prior
probability of a 3D point being sampled around “x, ,. We
can therefore compute the posterior probability as a product

Image Plane

Camera Center

3D Gaussian distribution 2D Gaussian Projection

Fig. 3: Illustrative example of projective correspondence. 3o ellipsoids
of 3D Gaussian distributions are projected in the image space that
represent 2D ellipses. The 2D ellipses store the index of the 3D
Gaussian distribution at each projected pixel location. Correspondence
between a point and a Gaussian distribution is computed by querying
the index at the corresponding pixel location.

of two Gaussian distributions [2], given by
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the most likely estimate of the partially observed noisy point.
We can add this point to the current estimate of w0§_1 and
refine its parameters.

If the sensor uncertainty model is perfectly known, the
incremental update defined in Eq. [7] provides an accurate
reconstruction of the structure in the scene with minimal sensor
information.

A ~_Unc
The posterior distribution “X,, ,, := i“’f{v,u, wyy } defines

D. MODEL REFINEMENT

Sensor measurements obtained from RGB-D sensors often
contain spurious depth measurements due to reflective objects
in the scene, noisy particles or just random noise. If a distri-
bution “’92 is fit to such noisy data, the proposed projective
correspondence computation pipeline fails as these components
occlude the true map distributions. However, due to the spurious
nature of such measurements, sequential sensor measurements
do not provide overlapping evidence for the noisy distributions,
weg. The pixel locations where “’02 is projected are rejected as
candidate correspondences by our correspondence refinement
step. If the rendered depth measurements at these pixel locations
are less than the observed depth measurements, the number of
points represented by “8", Ny, is set to Nj, — 1. Distributions
“’92 that do not have sufficient evidence N, < N are eventually
discarded thus eliminating spurious and noisy distributions from
the hierarchical level-0 map “©?.

E. HIERARCHICAL MAPPING

The model reconstruction strategy described in Sec. [[II-B]
is inherently independent for each image patch and therefore,
easily extendible to a hierarchical framework. Similar to the
level-0 pixel space region-growing, we employ a “Region
Growing” approach modified to use Gaussian distributions,
“@, as the primitives instead of points “x. A 3-level hierarchy



is defined in image space by dividing the image into larger
image patches recursively as shown in Fig. @ We divide the
image into image patches of size b; x by at hierarchical level-1

and by X by at hierarchical level-2 such that by > by > bg.

Given the map fitted at hierarchical level-0, “’@0, a Gaussian
distribution based “Region Growing” is performed in a image
patch of size by X by, using “Bhattacharyya Coefficient” as a
similarity measure with thresholds on the maximum thickness
of a Gaussian distribution «; » and the largest spread of a
Gaussian distribution o1 jen.

Once all “’@% distributions are computed, the same process is
repeated in a larger image patch of size by X bs with thresholds
o and o en. Finally, every distribution wBi absorbs one
or more distributions @;, which absorbs one or more 0?. Due
to the distributive nature of our image patch splitting, each
distribution in hierarchical level-I — 1 can only have one parent

distribution in hierarchical level-/ that it is encompassed by.

An illustrative example of a hierarchical map learned on a
single depth measurement is shown in Fig. [4]

As the model “’@? is incrementally updated, these updates
are propagated up the hierarchical tree structure at each time
step and therefore the entire hierarchical map is updated with
the most recent information.

Level-2

Level-1

L

Level-0

Fig. 4: Illustrative example of the proposed hierarchical mapping
strategy. Given a depth image Z; at time ¢ our hierarchical approach
splits the image into fine grids and fits a high resolution map * ®9
according to Sec. [[H_TEl on image patches of size bg X bg. Distributions
in this model that lie on a larger image patch of size b; X by are
combined to create Y @; and similarly distributions in Y@} that lie
on an even larger image patch of size ba X b are further combined
to create * @?

IV. IMPLEMENTATION
A. ACTIVE-INACTIVE MAPPING

RGB-D sensors like the Kinect have a limited FOV. As a
stream of sensor measurements is obtained, only a part of the
observed map is currently in the sensor FOV. Therefore, we
can subselect the number of distributions that will be affected
by the current sensor measurement to only the distributions
that lie within the FOV of the sensor. The model at hierarchical
level-2 “©? has a very small number of distributions and can

be used to efficiently check if the individual distributions “6%
lie within the FOV of the sensor. All *®! distributions whose
corresponding @f distribution lies outside the current FOV
of the sensor, are labeled inactive, and the rest of the map is
active.

B. SENSOR UNCERTAINTY MODEL

We use the sensor noise model presented in [20] where
the uncertainty of the depth measurements obtained from an
RGB-D kinect sensor is represented as a Gaussian distribution
along each ray, as

X = Jydiag (), 3,,07) JL (8)
where (o) is the standard deviation of the depth measurement

along the ray at a given pixel coordinate, 3, represents the
pixel quantization error [12]] and Jx is the Jacobian matrix

80 (u—e) it
Jy=10 fy_1 (v—rcy) fy_1 9
0 0 1

The value of o, is computed for each pixel in the sensor
measurement from an empirically fitted model presented
in [17]] for a Kinect RGB-D sensor, where o, is shown to
predominantly vary with the z coordinate of a point x,,

0.0001

0. =0.0012 + 0.0019 (x, — 0.4)* +
VX,

(10)

V. RESULTS

In this section, we demonstrate the ability of our proposed
map representation to be used for robotics applications such as
dense incremental surface reconstruction, map compression and
pose estimation. We evaluate the accuracy and performance of
our proposed mapping strategy on multiple datasets quantita-
tively and qualitatively. First, we demonstrate the correctness
of our incremental mapping strategy on noisy input data.
Second, we compare the metric accuracy of our mapping
approach to various state-of-the-art mapping algorithms with
open source implementations and demonstrate the superior
reconstruction performance with lower memory requirements.
Third, we demonstrate the mapping strategy’s compression
capabilities while incurring marginal increase in reconstruction
error. Fourth, we compare the qualitative performance of our
proposed approach on publicly available real world datasets
in terms of quality and error of reconstruction. Finally, we
demonstrate the applicability of our map representation in
solving robotics relevant problems such as frame-to-frame
pose-estimation. Table [[ lists all the parameters used in all the
following experiments, except in

We only compare the memory footprint utilized by
NDTMalﬂ and OctoMa[ﬂ for storing occupied cells to maintain
a fair comparison of compression capabilities. We use the
following datasets for our evaluations:

1) DI1: ICL-NUIM Living room Dataset [8, 3]

2) D2: Lounge Dataset, D3: Copyroom Dataset, D4:

Stonewall Dataset [29]]

Uhttps://github.com/OrebroUniversity/perception_oru-release
Zhttps://github.com/OctoMap/octomap
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Parameters \ b \ oy cm? \ Ollen €M \ Qleonf \ ap cm \ N
Level-0 8 A1 2.8
Level-1 32 1.0 11.1 0.1 1 40
Level-2 160 2.8 100

TABLE I: Table of parameters

A. Comparison Metrics

The quantitative evaluation of our proposed 3D mapping
approach is performed using the following metrics:

1) Reconstruction Error: Gaussian distributions are gener-
ative models. We can therefore sample 3D points from
each Gaussian distribution in “©! at hierarchical level-1,
within 30 confidence bounds to reconstruct a global 3D
point cloud of the environment. The reconstruction error
is then computed as the mean distance of each 3D point
in the sampled point cloud to its closest surface in the
ground truth mesh of the environment. For OctoMap,
reconstruction error is defined as the distance of each
occupied voxel center to the closest surface in the true
mesh.

2) Precision of Reconstruction: Precision is defined as the
fraction of sampled points whose distance to the ground
truth mesh is less than oy  for our proposed approach.
For NDTMap and OctoMap precision is defined as the
fraction of points whose distance to the ground truth
mesh is less than the resolution of the map.

3) Recall of Reconstruction: Recall of the reconstruction
is computed by sampling 3D points uniformly over the
ground truth mesh and querying whether the points are
observed by the 3D reconstructed map. For our proposed
approach and NDTMap, a point is defined as observed if
it lies inside the 30 bounds of any Gaussian distribution
in the map. For OctoMap, a point is defined as observed
if it lies inside an observed voxel of the map.

4) Memory Consumption: The memory consumption of a
representation is defined in MB as the required storage
space for each map representation at the end of a dataset.

B. Accuracy of Representation

In this section, we demonstrate the accuracy of our incre-
mental mapping strategy on perfect and noisy sensor data
in D1 dataset. We compare the performance of Gaussian
distributions fitted over individual sensor scans, to distributions
fitted incrementally over perfect sensor data to distributions
fitted incrementally over noisy sensor data. Table [[I| shows that
the proposed incremental strategy has low reconstruction error
of the input information obtained from every scan. Further,
actively incorporating the noise model of the sensor enables
the framework to fit a more compressed representation over
noisy data thus reducing the memory requirement of the map
representation while increasing the precision of reconstruction
over time.

Map Type | Error(m) | Precision | Recall | Size (MB)
Perfect input data

Individual | 0.0019 | 0.890 | 0.997 | 0.913

Incremental | 0.0006 | 0.987 | 0.996 | 0.0372
Noisy input data

Incremental | 0.0031 | 0.790 | 0.985 | 0.2604

Conﬁ\;‘)ei;:ated ‘ 0.0017 ‘ 0.939 ‘ 0.992 ‘ 0.041

TABLE II: Quantitative performance comparison of “®9 fit to on
Dataset D1 with and without noise modeling. Incrementally updating
the map reduces the reconstruction error and has lower storage
complexity that fitting distributions over individual scan.

Approach | Error (m) | Precision | Recall | Size (MB)
Proposed 0.0019 0.890 0.985 0.128
NDTMap 0.0042 0.691 0.653 0.731
OctoMap 0.0236 0.251 0.636 0.5901

TABLE III: Quantitative comparison of state-of-the-art mapping
approaches with the proposed approach on noisy dataset D1. OctoMap
and NDTMap are being fit at 5 cm resolution and for the proposed
approach a2 x» =5 cm.

C. Surface Reconstruction Accuracy

We evaluate the surface reconstruction accuracy of our
approach and compare it to state-of-the-art algorithms, Oc-
toMap [9] and NDTMap [1]], on the entire dataset D1 with
added Gaussian noise to each sensor measurement according
to a sensor model described in Sec. [[V-B] We also compare
the memory footprint of these representations and demonstrate
the superior compression and representation capability of the
proposed method. The fitted model represents the environment
with high accuracy by representing input points as uncertain
distributions. Table [[II| shows that given current sensor pose
estimates the proposed approach can represent the scene with
higher precision, reconstruction accuracy and lower memory
footprint than OctoMap and NDTMap.

D. Map Compression

In this section, we demonstrate the capability of the proposed
mapping strategy to obtain a magnitude of compression of
input data with minor loss of reconstruction accuracy. Table
demonstrates that in structured environments, reducing the
required surface reconstruction accuracy from 1 mm to 10 cm,
reduces the memory requirement of the map by an order of
magnitude while still achieving mean reconstruction error less
than 1 cm.

E. Real World Datasets

The objective of using these datasets is to demonstrate the
performance of our pipeline on real-world datasets where the
provided ground truth poses are noisy and a correct sensor
model is not available. D2, D3 and D4 datasets are captured
using a hand-held sensor and sensor poses are estimated as
described by Zhou and Koltun [29]. In order to compare the



ag,x (m) | ag,en (M) | Brror (m) | Precision | Recall | Size (MB)

0.01 0.05 0.0008 0.969 0.989 0.314
0.001 0.05 0.0006 0.987 0.989 0.349
0.1 0.1 0.0029 0.877 0.985 0.075
0.01 0.1 0.0016 0.934 0.985 0.195
0.001 0.1 0.0009 0.966 0.989 0.143
0.1 0.2 0.0098 0.701 0.970 0.020
0.01 0.2 0.0034 0.883 0.982 0.0308
0.001 0.2 0.0033 0.930 0.989 0.084

TABLE IV: Quantitative comparison of various performance metrics
as different map resolutions. Increasing the thickness and length
thresholds dramatically reduce the memory footprint of the proposed
algorithm with small increase in reconstruction error.
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Fig. 5: Qualitative comparison of the model reconstructed by our
approach at high resolutions on dataset D4: Left: Mesh provided
by [29]; Right: proposed reconstruction with agx = 0.1 cm.
The zoomed in view shows that the Level-0 model is able to
retain minute texture details in the scene and create a high quality
scene reconstruction using succinct Gaussian distributions as surface
primitives.

performance of OctoMap and NDTMap with the proposed
hierarchical approach, we vary the voxel grid size for these
map representations and compare the trade-off between memory
consumption and reconstruction error of the representations
at various configurations. However, since our approach does
not use 3D voxels to change the resolution, we compare the
performance of our approach at all three hierarchical levels with
OctoMap and NDTMap at multiple resolutions. Table [VI] and
Table |V| demonstrate that for D2 and D3 datasets, the proposed
hierarchical map representation outperforms NDTMap and
OctoMap in both compactness of the representation and the
accuracy of reconstruction at all three hierarchical levels.
Even with noisy pose estimates and unknown sensor noise
model the proposed algorithm creates a qualitatively accurate
representation of the environment and is orders of magnitude
more memory efficient than NDTMap and OctoMap on these
datasets. NDTMap fits volumetric distributions to fixed sized
voxels, while OctoMap represents the world as voxels. Our
approach on the other hand, can more accurately capture the
spread of the structure data along planar regions and shown in
Fig.[7} Therefore, we can achieve very high compression values
while retaining high reconstruction accuracy. The proposed map
refinement step eliminates the spurious distributions learnt
on noisy sensor observations. Therefore, our approach as
a low reconstruction error and a small standard deviation,
whereas NDTMap has a large amount of noise incorporated
in the final map representation as shown in Fig. [6] These
figures show that our approach achieves the best trade-off
between memory consumption and reconstruction accuracy

and is capable of reconstructing the world with high accuracy.
We also qualitatively compare a level-0 model reconstruction
of D4 dataset at og , = 0.1 cm in Fig. E} The level-0 model
retains minute details in the scene but requires a magnitude
more memory than the level-2 model.
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Fig. 6: Quantitative comparison of the memory vs accuracy trade-off
of state-of-the-art mapping approaches with the proposed approach on
D2 (left) and D3 (right) datasets. Our proposed approach has orders
of magnitude lower reconstruction error than NDTMap and OctoMap
at a fixed map storage complexity.

Approach | Resolution Error (cm) Size (MB) Time(sec)
0.01 3.39 £8.01 22.8664 0.73 £0.08
NDTMap 0.05 3.67 £ 20.67 2.1333 0.28 £ 0.02
0.1 9.14 £+ 37.09 0.4732 0.14 £ 0.01
0.5 42.73 £ 97.83 0.0188 0.03
0.01 1.92 4+ 1.85 43.3226 0.35£0.12
OctoMap 0.05 3.29 £2.83 1.0096 0.02
0.1 4.99 4+ 5.46 0.2104 0.01
0.5 14.96 £ 20.59 0.0066 0.01
Level 0 0.07 +£1.00 2.3918
Proposed Level 1 1.14+1.39 0.2433 0.06 + 0.01
Level 2 1.46 +1.99 0.0379

TABLE V: Quantitative comparison of memory vs accuracy trade-off
of state-of-the-art mapping approaches with the proposed approach
on D2 dataset.

Approach | Resolution Error (cm) Size (MB) Time (sec)
0.01 1.82 +8.35 3.69 0.74 £ 0.06
0.05 4.6 £+ 20.56 0.29 0.15+0.01
NDTMap 0.1 8.44 + 30.01 0.07 | 0.08%0.01
0.5 31.16 + 57.60 0.01 0.02
0.01 1.03 £1.97 5.71 0.05 + 0.01
OctoMap 0.05 2.61 £5.51 1.45 0.01
0.1 4.87 £8.97 0.03 0.01
0.5 20.86 4 19.04 0.002 0.01
Level 0 0.52 +0.08 1.55
Proposed Level 1 094+14 0.07 0.05 £ 0.02
Level 2 1.214+1.93 0.01

TABLE VI: Quantitative comparison of state-of-the-art mapping
approaches with proposed approach on D3 dataset using reconstruction
accuracy and memory footprint metrics.

F. Run Time Analysis

As seen in Fig [8] our mapping framework operates at an av-
erage frequency of 16 Hz over all the datasets. Correspondence
computation is an essential step of our map update framework
which is performed every time a new sensor measurement is
observed. As the number of distributions in the scene increase,
the time taken to render this index image as described in
Sec. [II-CT] also increases. However, as shown in Fig. [9] only
a small subset of Level-O Gaussian distributions are active.



Fig. 7: Qualitative comparison of mapping approaches on Dataset D2. Left to right: Mesh estimated from [29]); proposed reconstruction
framework; OctoMap, NDTMap. Unlike, OctoMap and NDTMap our map representation does not make assumptions about the distribution of
the structure points and fits volumetric planar primitives to the data. Further, due to the explicit incorporation of sensor uncertainty in the
representation, the proposed representation looks less cluttered and more structured than NDTMap and OctoMap while achieving orders of

magnitude higher compression than either of those representations.

Using the active-inactive segmentation over Level-2 regions,
we maintain a roughly constant number of active Level-O0
distributions for correspondence computation and therefore, the
proposed algorithm is real-time viable on a desktop grade CPU.
The map updates can be further parallelized on a GPU due to
the independent nature of our map representation, enabling the
proposed algorithm to run at sensor rates (30 Hz for a COTS
Kinect sensor).

= Model Init
0.08 = Model Update
B mm Correspondence Map
= Active/Inactive Segmentation
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Fig. 8: Execution time comparison for the various subcomponents
of the proposed Hierarchical GMM mapping algorithm on an i7
laptop grade CPU on datasets, D1, D2, and D3. Execution time for
correspondence computation, that is a part of the model update step,
scales with the number of Gaussian distributions. However, segmenting
components as active/inactive keeps the execution time constant.
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Fig. 9: Progression of the number of total, active and inactive Gaussian
distributions at Level-0, Level-1 and Level-2 with time over dataset
D1. Level-2 has orders of magnitude less distributions and therefore,
can be efficiently used to sub-select Level-O distributions that are
within the sensor FOV.

G. Map Application: Pose Estimation

To demonstrate the usefulness of our map representation,
we perform a simple frame-to-model registration. A point-
to-closest planar distribution alignment process similar to

the approach proposed by [22]] is implemented. We use the
incremental estimate of our level-1 hierarchical map, “’@tl at
each time step for normal computation, as it smoothens out
the frame-to-model alignment cost function. Fig [I0] shows a
comparison between the estimated trajectory using our frame-
to-model pose estimation with the ground truth trajectory. The
global translation RMSE observed over a trajectory of length
37.15 m is 0.011 m and angular RMSE is 0.27° on the dataset
Dl1.
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Fig. 10: Gaussian distributions provide a smooth cost function for
accurate convergence of an ICP-like pose estimation algorithm. On
dataset D1, a model-to-frame Point-to-Distribution tracking approach
accumulates a global error of only 0.011 m over a trajectory of length
37.15 m.

VI. DISCUSSION

We present an incremental, high fidelity and memory efficient
surface mapping framework by exploiting prior understanding
of the data acquisition process of a depth sensor. Our main
contribution in this work is to show that by constraining the
Gaussian distributions to model only surfaces, we are able to
create a very accurate and succinct representation of the world.
Further, by explicitly incorporating the noise characteristics of
the sensor, we are able to create a map that best represents all
the sensor observations with a low model complexity.

Future steps will involve extending this formulation to a real-
time SLAM system by performing frame-to-model tracking
and model-to-model pose refinements as hinted in Sec. [V-G]
We also intend to extend the formulation for very large scale
mapping in real time on mobile robotic platforms.
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