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Abstract—There is increasing demand for automated systems
that can fabricate 3D structures. Robotic spatial extrusion
has become an attractive alternative to traditional layer-based
3D printing due to a manipulator’s flexibility to print large,
directionally-dependent structures. However, existing extrusion
planning algorithms require a substantial amount of human
input, do not scale to large instances, and lack theoretical guaran-
tees. In this work, we present a rigorous formalization of robotic
spatial extrusion planning and provide several efficient and
probabilistically complete planning algorithms. The key planning
challenge is, throughout the printing process, satisfying both
stiffness constraints that limit the deformation of the structure
and geometric constraints that ensure the robot does not collide
with the structure. We show that, although these constraints
often conflict with each other, a greedy backward state-space
search guided by a stiffness-aware heuristic is able to successfully
balance both constraints. We empirically compare our methods
on a benchmark of over 40 simulated extrusion problems. Finally,
we apply our approach to 3 real-world extrusion problems.

I. INTRODUCTION

Spatial frame structures are used extensively in architecture
to represent objects that cannot be easily captured by surfaces
or volumetric solids (e.g. the Klein bottle in Figure 1). These
structures are useful due to their high strength-to-weight
ratios [44, 21]. Extrusion-based methods, such as 3D printing,
can effectively fabricate these geometrically and topologically
complex structures. Most existing printing systems deploy a
2.5D strategy where melted materials are accumulated layer
upon layer along a fixed direction. These systems are unable
to print general 3D frame structures due to their inability to
print in arbitrary directions. Robot manipulators have proven
to be viable alternatives for fabricating these structures due
to their additional capabilities afforded by extra degrees-of-
freedom (DOFs) [14, 49, 44, 37]. However, robotic spatial
extrusion has only been applied in limited capacities due to the
planning challenges imposed when fabricating large, irregular
structures. The robot must respect both collision and kine-
matic geometric constraints present in manipulation tasks, and
each partial-structure must respect structural constraints that
ensure feasible construction. In extrusion planning, a stiffness
constraint, which prevents significant structural deformation,
is the primary structural constraint. Existing algorithms both
require strong human guidance to solve these problems [22]
and lack completeness guarantees [47, 20].

Fig. 1. Left: Real-world Klein bottle extrusion (246 elements). Right:
Simulated duck extrusion (909 elements).

We present an algorithmic treatment of extrusion plan-
ning that focuses on its mathematical form, probabilistically
complete algorithms, and algorithms that scale empirically.
We identify a dichotomy between satisfying geometric and
structural constraints; stiffness most significantly impacts de-
cisions at the beginning of construction while collisions most
significantly limit actions towards the end of construction.
In isolation, forward search is most effective for stiffness
constraints but backward search is most effective for geometric
constraints. We provide algorithms that efficiently plan in the
presence of both constraints by globally performing a greedy
backward search, using forward reasoning to bias the search
towards stiff structures. The contributions of this paper are:

1) A formalization of robotic spatial extrusion in the pres-
ence of stiffness and geometric constraints;

2) Efficient and probabilistically complete forward and
backward state-space search algorithms;

3) Prioritization heuristics that guide both stiffness and
geometric decision-making;

4) An investigation of the failure cases of these methods;
5) Validation of our methods both on long-horizon simu-

lated and real-world extrusion problems.



II. RELATED WORK

Most existing work on extrusion planning only addresses
planning for a free-flying end effector. Wu et al. gave an
algorithm for planning without stiffness constraints that con-
siders a fixed discretization of end-effector orientations. It
performs backward peeling [47] and computes a partial-
ordering of elements that respects collision constraints. Then,
it orders elements in a manner that preserves connectivity and
the partial ordering. However, this procedure is incomplete
because it rigidly commits to a single partial ordering. Huang
et al. proposed a constrained graph decomposition algorithm
to guide the extrusion sequence search [20]; however, their al-
gorithm is also incomplete. Gelber et al. presented a complete
forward search algorithm for a 3-axis printer that minimizes
the deformation of a structure [11]. Choreo is the first extrusion
planning system using a robot manipulator [22]. Choreo de-
composes extrusion planning into a sequence planning phase,
where it plans each extrusion, and a transit planning phase,
where it plans motions between each extrusion. Because of
this strict hierarchy, Choreo is incomplete as it is unable to
backtrack in the event that transit planning fails to find a mo-
tion plan. Choreo performs a forward search during sequence
planning, using constraint propagation to prune unsafe end-
effector orientations. To make sequence planning tractable,
Choreo requires a user-generated partial ordering on elements.

Task and Motion Planning (TAMP) involves planning both
the high-level objectives as well as the low-level robot motions
required to complete a multi-step manipulation task [42, 45,
10]. For extrusion planning, the high-level decisions are the
extrusion sequence, and the low-level motions are the extru-
sion and transit trajectories of the robot. A key challenge of
extrusion planning when compared to typical TAMP problems
is that its planning horizon is often substantially longer.
Solutions to most TAMP benchmarks involves fewer than 50
high-level actions [30], while extrusion problems may require
over 900 extrusions (Figure 1). At the same time, extrusion
planning is less general than TAMP in several ways: 1) there
is a single goal state 2) the robot’s configuration is the only
continuous state variable 3) every solution is an alternating
sequence of movements and extrusions of a known length.
Similar to how specializing to pick-and-place subclasses of
TAMP enables the design of efficient algorithms [28, 15], we
take advantage of these restrictions and structural properties
to develop efficient algorithms that scale to large problems.

Extrusion planning can framed as Multi-Modal Motion
Planning (MMMP) [17, 18], motion planning subject to a
sequence of mode constraints σ on the feasible configuration
space of the robot M(σ) ⊆ Q. Often times, M(σ) might
be a lower-dimensional submanifold of an ambient space
Q. A critical component of MMMP is identifying transition
configurations q ∈ T (σ, σ′) ⊆ (M(σ) ∩ M(σ′)) between
modes σ, σ′, which allow for a discrete mode switch from
σ → σ′. Hauser and Ng-Thow-Hing provide an algorithm for
MMMP that performs a forward state-space search through
the space of modes [18]. They prove that their algorithm is

probabilistically complete [24, 32], namely that it will solve
any robustly feasible [23] MMMP problem with probability
one. However, their algorithm blindly explores the state-space,
which is intractable for the problems we consider.

III. EXTRUSION SEQUENCING

We begin by formulating spatial extrusion planning in
the absence of a robot. A frame structure is an undirected
geometric graph 〈N,E〉 embedded within R3. Let the graph’s
vertices N be called nodes and the graph’s edges be called
elements E ⊆ N2 where m = |E|. Each node n ∈ N is
the connection point for one or more elements at position
pn ∈ R3. Each element e = {n, n′} ∈ E occupies a volume
within R3 corresponding to a cylinder of revolution about the
straight line segment pn → pn′ . A subset of the nodes G ⊆ N
are rigidly fixed to ground and thus experience a reaction force.
Each element e = {n, n′} can either be extruded from n→ n′

or n′ → n. Let directed element ~e = 〈n, n′〉 denote extruding
element e = {n, n′} from n→ n′. We will use the set P ⊆ E
to refer to a set of printed elements, representing a partially-
extruded structure. Let NP = G ∪ {n, n′ | {n, n′} ∈ P} ⊆ N
be the set of nodes spanned by ground nodes G and elements
P . Extrusion planning requires first finding an extrusion se-
quence, an ordering of directed elements ~ψ = [~e1, ..., ~em].
We will use ψ to denote the undirected version of ~ψ. Let
~ψ1:i = [~e1, ..., ~ei] give the first i elements of ~ψ where i ≤ m.

A. Stiffness Constraint

The key structural invariant that must hold throughout
the extrusion process is a stiffness constraint requiring the
maximal nodal deformation to be below a given tolerance.
Each element experiences a self-weight load due to gravity,
which causes the structure to bend. If the displacement is
too large, elements might not successfully connect at the
intended nodes. We approximate uniformly-distributed self-
weight loads by applying half the load at each end of the
element and using the fixed-end beam equation for moment
approximation [12]. The deformation of all the nodes is cal-
culated using finite element analysis of linear frame structures
[35]. For a 3D frame structure, each node has six degrees
of freedom (DOF) (ux, uy, uz, θx, θy, θz), which correspond
to the translational and rotational nodal displacements in the
global coordinate system. Using linear basis functions and
the local-to-global frame transformation, we can derive the
beam equation to link the nodal load to nodal displacement
in the global coordinate system [35] Ke

(
un,un′

)T
= fe.

Then, by concatenating all nodal DOF into a vector u =
(..., ux,n, uy,n, uz,n, θx,n, θy,n, θz,n, ...) for n ∈ N , the system
stiffness matrix K is assembled using:

Kij =

{ ∑
e∼(i,j)Ke(e-dof(i), e-dof(j)) if i ∼ j

0 otherwise
(1)

where i ∼ j indicates that the nodal DOFs i, j ∈ {1, ..., 6|N |}
are connected by an element, e ∼ (i, j) indicates that element
e connects DOFs i, j, and e-dof(i) gives the corresponding



index of the DOF i in the local element system. The sup-
port condition specifies a set of fixed nodal DOF indices
{s1, · · · , s6|G|} ⊂ {1, · · · , 6|N |}. The assembled system
stiffness equation Ku = F is rearranged in the form:(

Kff Kfs

Ksf Kss

)(
uf
0

)
=

(
Ff

Fs

)
(2)

The submatrix Kff is positive definite (PD) if all elements
are transitively connected to a ground node. Then, the nodal
displacement under the structure’s load can be obtained by
solving the following sparse PD linear system: Kffuf =
Ff . Let the procedure STIFF(G,P ) test whether a partially-
extruded structure P with ground nodes G satisfies the given
maximum displacement tolerance.

Definition 1. An extrusion sequence ~ψ = [~e1, ~e2, ..., ~em] is
valid if {e ∈ ψ} = E and ∀i ∈ {1, ...,m}. STIFF(G, ~ψ1:i)
and ni ∈ N~ψ1:i−1

where ~ψi = ~ei = 〈ni, n′i〉.

IV. ROBOTIC EXTRUSION

We consider extrusion planning performed by a single
articulated robot manipulator with d DOFs. Let Q ⊂ Rd be
the bounded configuration space of the robot where q ∈ Q is a
robot configuration. The robot executes continuous trajectories
τ : [0, 1] → Q where τ(λ) ∈ Q is the robot’s configuration
at time λ for λ ∈ [0, 1]. The robot must adhere to its joint
limits as well as avoid collisions with itself, the environment,
and the currently printed elements. Let Q : P → Q be a
function that maps a set of printed elements P ⊆ E to the
collision-free configuration space of the robot Q(P ) ⊆ Q.
When no elements have been printed, Q(∅) is the collision-
free configuration space of the robot when only considering
environment collisions, self-collisions, and joint limits. Each
additionally printed element weakly decreases the collision-
free configuration space, i.e.

P ⊆ P ′ =⇒ Q(P ′) ⊆ Q(P ). (3)

To ensure τ can be safely executed given printed elements P ,
∀λ ∈ [0, 1]. τ(λ) ∈ Q(P ). Finally, let fp(q) = xp ∈ R3 and
fo(q) = xo ∈ SO(3) be the forward kinematic equations for
the position and orientation of the end effector when the robot
is at configuration q.

A. Extrusion

The robot extrudes material at the position of its end effector
while executing an extrusion trajectory τe, which prints the
continuous curve l(λ) = fp(τ(λ)). Thus, element ~e = 〈n, n′〉
can be extruded by following a trajectory τ~e if ∀λ ∈ [0, 1]:

||λpn + (1− λ)pn′ − fp(τe(λ))|| = 0. (4)

To prevent the end effector from colliding with the element
while it is being extruded, the orientation of the end effector
xo is constrained be within the hemisphere Xo(~e), the set of
orientations opposite to the direction of pn → pn′ :

Xo(〈n, n′〉) = {xo ∈ SO(3) | (pn′ − pn)
ᵀ
(xo·[0, 0, 1]

ᵀ
) ≤ 0}.

Additionally, we enforce that the end-effector orientation xo
remains constant while extruding the element, ∀λ ∈ [0, 1],
||xo − fo(τ(λ))|| = 0 to prevent the extruded material from
inducing a twisting force. In practice, we also require the
robot to perform retraction motions that move into and out
of contact with the extruded element without extruding any
material. Let ρ ≥ 0 be an end-effector retraction distance
hyperparameter. Then, the retraction position for node n at
end-effector orientation xo is: r(n, xo) = pn+(xo·[0, 0,−ρ]

ᵀ
).

Thus, the end effector moves from r(n, xo)→ pn before
extruding ~e and from pn′ → r(n′, xo) after extruding ~e. We
will treat retraction as a component of an extrusion motion.
See Figure 2 for a visualization of each motion type.

Fig. 2. Transition, retraction, and extrusion motions for two elements.

B. MMMP Formulation

Viewing extrusion planning under this lens of MMMP
is valuable for understanding the geometry of the problem
and its impact on completeness. Extrusion planning has two
mode families, parameterized mode forms. A single transit
mode (denoted as α) governs the robot’s movement while
not extruding [1, 41]. The only active constraint is trivially
that q ∈ Q. Any probabilistically complete motion planner
PLANMOTION, such as a Rapidly-Exploring Random Tree
(RRT) [31, 26], can be used to plan within transit modes.

An extrusion mode σ~e = xo ∈ Xo(~e) governs the robot’s
motion while extruding element ~e = 〈n, n′〉 by starting at point
pn and ending at pn′ . Here, xo is a continuous coparameter
that defines the end-effector orientation constraint. Because of
the position and orientation constraints on the end-effector,
M(σ~e) ⊂ Q is a (d− 5)-dimensional submanifold of the am-
bient space Q. As typical in constrained motion planning, we
enforce that any trajectory τ operating subject to mode σ stays
within an ε-neighborhood of M(σ) [43]. Let δ(q,M(σ)) =
infq′∈M(σ)||q−q′|| be minimum distance from configuration q
to M(σ) and γ(τ,M(σ)) = supλ∈[0,1]δ(τ(λ),M(σ)) be the
maximum distance from trajectory τ to M(σ). We enforce
that the maximum constraint violation γ(τ,M(σ)) is below
a given ε > 0. Any probabilistically complete single-mode



constrained motion planner [43, 2, 25] PLANCONSTRAINED
can be used to plan within extrusion modes. Finally, let
T (α, σ~e) = {q ∈ Q | fp(q) = pn, fo(q) = xo} denote the
set of unidirectional transition configurations from the transit
mode to extrusion mode σ~e, and T (σ~e, α) = {q ∈ Q | fp(q) =
pn′ , fo(q) = xo} denote directed transition configurations
from extrusion mode σ~e to the transit mode.

C. Extrusion Problems

Definition 2. An extrusion problem Π = 〈N,G,E,Q, q0〉 is
defined by a set of nodes N , ground nodes G, elements E,
configuration space Q, and configuration q0 ∈ Q specifying
both the initial and final robot configuration.

Definition 3. For a given error threshold ε > 0, a solution
to an extrusion problem Π is a valid extrusion sequence
~ψ = [~e1, ~e2, ..., ~em] (Definition 1), a sequence of extrusion
mode coparameters ~σ = [σ~e1 , ..., σ~em ], and an alternating
sequence of m + 1 transit and m extrusion trajectories π =
[τt1 , τ~e1 , ..., τtm+1

] such that:
• τt1(0) = τtm+1

(1) = q0
• ∀i ∈ {1, ...,m}.

– τti(1) = τ~ei(0)
– ∀λ ∈ [0, 1]. τti(λ), τ~ei(λ) ∈ Q(ψ1:i−1)
– γ(τ~ei ,M(σ~ei)) < ε

• τ~em(1) = τtm+1
(0)

• ∀λ ∈ [0, 1]. τtm+1(λ) ∈ Q(E).

V. ALGORITHMIC TOOLS

We present state-space search algorithms for solving extru-
sion planning problems. States s = 〈P, q〉 ∈ P(E)×Q consist
of the set of currently printed elements and the current robot
configuration where P(E) denotes the power set of E. The
initial state is s0 = 〈∅, q0〉 and the goal state is s∗ = 〈E, q0〉.
The PROGRESSION algorithm (Section VII) performs a for-
ward search from s0 → s∗, and the REGRESSION algorithm
(Section VII) performs a backward search from the goal state
s∗ → s0. Both PROGRESSION and REGRESSION perform a
greedy best-first search [39] guided by a priority function k(η)
defined over search nodes η. On each iteration, the search node
η in the open list O that minimizes k(η) is expanded.

The key trade off when designing these algorithms is the
impact on satisfying stiffness and geometric constraints when
searching forwards versus backwards. For each constraint
in isolation, it is advantageous to search from the most
constrained state to the least constrained state. At a less
constrained state, the planner has more options and may
prematurely make a decision that limits the legal options
later in the search. In contrast, the forward or backward
branching factor is generally small at the most constrained
state, limiting the availability of poor choices. Additionally, if
the constrainedness either provably or empirically decreases
over time, the pool of options will grow as the difficulty
decreases. Our algorithms leverage this principle, to search
in directions that reduce the presence of dead ends, because
in many extrusion problems, escaping dead ends can require

an enormous amount of backtracking due to the long planning
horizon. We begin by developing common infrastructure for
both the PROGRESSION and REGRESSION algorithms.

A. Sampling Extrusions

The key subroutine within each algorithm is SAMPLE-
EXTRUSION (Algorithm 1), which leverages PLANCON-
STRAINED to sample extrusion plans for an element e. First, it
samples a start node n1 based on the currently printed nodes
NP . This governs the extrusion direction ~e = 〈n1, n2〉. Next, it
samples an extrusion mode coparameter σ~e = xo using SAM-
PLEORIENTATION. This orientation produces the initial end-
effector pose 〈pn1 , xo〉 and final end-effector pose 〈pn2 , xo〉.
Then, we use SAMPLEIK, an inverse kinematics procedure, to
sample robot configurations q1, q2 that are kinematic solutions
for these poses. Finally, we call PLANCONSTRAINED to find
a trajectory from q1 → q2 that satisfies mode constraints σ~e
and does not collide with printed elements P .

Algorithm 1 Extrusion Sampling Algorithm
1: procedure SAMPLEEXTRUSION(e, P ; i)
2: n1 ← sample({n ∈ e | n ∈ NP })
3: {n, n′} ← e
4: n2 ← n′ if n1 = n else n
5: xo ← SAMPLEORIENTATION(n1, n2)
6: q1 ← SAMPLEIK(pn1 , xo); q2 ← SAMPLEIK(pn2 , xo)
7: return PLANCONSTRAINED(q1, q2, xo, P ; i)

B. Deferred Evaluation

Standard state-space searches evaluate all feasible successor
states s′ = 〈P ∪ {e}, q′〉 when expanding a state s = 〈P, q〉.
For extrusion planning, this requires planning both an extru-
sion trajectory τe, where q′ = τe(0), and a transit trajectory τt
from q → q′ for each remaining candidate element e ∈ (E\P ).
In the worst case, the number of successor (i.e. the branching
factor) could be O(|E|). This is exacerbated due to the fact
that SAMPLEEXTRUSION and PLANMOTION are both com-
putationally expensive due to collision-checking. To mitigate
this problem, we adopt a deferred evaluation [19, 38] strategy
by planning extrusion and transit trajectories after popping a
search node off the open list instead of before pushing the node
on the open list. To enable this, search nodes in the open list
are state and element pairs η = 〈s, e〉 where e serves as “action
type” that specifies the next element to be extruded. This
strategy dramatically reduces computation time, particularly
in a greedy search, because it often avoids checking the
feasibility of printing each successor element. Once a feasible
successor s′ is identified, the yet-to-be evaluated successors
are deferred until the greedy search backtracks.

C. Heuristic Tiebreakers

Because search nodes are state and element pairs, the prior-
ity function k(s, e) can take the next element e into considera-
tion. We propose priority function k(〈P, q〉, e) = 〈r(P ), h(e)〉
that first orders search nodes by the number of remaining
elements r(P ) = |E \ P | and lexicographically breaks ties



using a heuristic function h(e) defined on each individual
element e. By prioritizing search nodes where few elements
remain to be planned, the search greedily explores the state-
space in a depth-first manner. Because all successor states s′

of state s have the same number of remaining elements r, the
heuristic tiebreaker decides the order in which successors are
considered. This local ordering can have strong global effects
on the sequence of partially-extruded structures considered.
We consider four implementations of h(e): (1) Random, (2)
EuclideanDist and GraphDist, and (3) StiffPlan.

1) Random Heuristic: The Random tiebreaker is a baseline
where ties are broken arbitrarily. It orders elements by assign-
ing each a value sampled uniformly at random h(e) ∼ U(0, 1).

2) Distance Heuristics: The EuclideanDist and GraphDist
heuristics prioritize elements that are close to ground, each
according to a particular geodesic. The EuclideanDist heuristic
computes the Euclidean distance from the midpoint of ele-
ment e = {n, n′} to the ground plane. When the ground
plane is the xy-plane, this is simply the z-coordinate of the
element’s midpoint he(e) = (pn + pn′)/2 · [0, 0, 1]

ᵀ. The
GraphDist heuristic computes the minimum graph distance
from any ground node n ∈ G to the midpoint of element
e within the weighted frame geometric graph 〈N,G〉, where
the weight of edge e = {n, n′} is the Euclidean distance
||pn − pn′ ||. We precompute these distances upfront once by
calling Dijkstra’s algorithm starting from the set of ground
nodes G. Intuitively, both of these heuristics guide the search
through structures where the element load force has a short
transfer path to ground because these structures are often stiff.
Additionally, these heuristics improve the sample complexity
of SAMPLEORIENTATION because they often ensure end-
effector orientations opposite to the z-axis remain feasible.

3) Stiffness Heuristic: The StiffPlan heuristic solves for a
valid extrusion sequence ~ψ, ignoring the robot, and uses the
index j of each element e in the sequence (~ψ[j] = e) as its
value hs(e) = j. Intuitively, because ~ψ is known to be stiff,
it attempts to adhere to ~ψ as closely as possible subject to
the additional robot constraints. We compute a valid extrusion
sequence ~ψ using a greedy forward search that is equivalent to
PROGRESSION in Algorithm 2 if all robot planning is skipped.
We use the EuclideanDist heuristic he (Section V-C2) as the
tiebreaker for this search. See the extended manuscript1 for
the full PLANSTIFFNESS pseudocode.

The EuclideanDist, GraphDist, and StiffPlan heuristics each
perform a forward computation from ground to produce their
values. As we will see in Section VII-B, moving in a forward
direction proves to be advantageous for satisfying the stiffness
constraint. Finally, these heuristics can be seen as applying
“soft” partial-ordering constraints that steer the search but do
not limit completeness. This is in contrast to the hard partial-
ordering constraints in prior work [47, 20, 22] (Section II).

D. Persistence
The procedures SAMPLEEXTRUSION and PLANMOTION

use sampling-based algorithms and thus are are unable to

1The extended version of this manuscript: https://arxiv.org/abs/2002.02360.

prove infeasibility. As a result, both procedures must be reat-
tempted indefinitely and with an increasing number of samples
i. In order to ensure that PROGRESSION and REGRESSION
are probabilistically complete, they both are persistent [9]
searches, meaning that they repeatedly expand each search
node in a round-robin fashion. Let i ≥ 0 denote the number
of times a search node has been expanded. We implement
persistence by simply using the pair 〈i, k(s, e)〉 as the key for
search nodes in the open list O. This ensures that the search
node with the fewest attempts is always expanded first. After a
search node is expanded, it is re-added to the search queue O
with priority i+ 1. This search node will not be re-expanded
until all other nodes in O have been expanded i times.

VI. PROGRESSION

Algorithm 2 Progression Algorithm
1: procedure PROGRESSION(N,G,E,Q, q0;h)
2: O = [〈0, 〈|E|, h(e)〉, 〈∅, q0〉, e, [ ]〉 for e ∈ E if e ∩G 6= ∅]
3: while True do
4: i, 〈r, 〉, 〈P, q〉, e, π ← pop(O)
5: P ′ ← P ∪ {e}
6: if not STIFF(G,P ′) then
7: continue . No successors
8: τe ← None
9: if FORWARDCHECK(E,G, P ′; i) then . Optional

10: τe ← SAMPLEEXTRUSION(e, P ; i) . Extrusion
11: if τe 6= None then
12: τt ← PLANMOTION(q, τe(0), P ; i) . Transit
13: if τt 6= None then
14: π′ ← π + [τt, τe]
15: if P ′ = E then . All printed
16: τt ← PLANMOTION(τe(1), q0, E; i)
17: if τt 6= None then
18: return π′ + [τt] . Solution

s′ ← 〈P ′, τe(1)〉
19: for e′ ∈ (E \ P ′) do
20: push(O, 〈0, 〈r − 1, h(e′)〉, s′, e′, π′〉)
21: push(O, 〈i+ 1, 〈r, h(e)〉, 〈P, q〉, e, π〉) . Persistence

Algorithm 2 displays the pseudocode for PROGRESSION.
Let π be the currently planned trajectories for a search node.
After popping a state 〈P, q〉 and next element e from the open
list O, PROGRESSION first checks whether the new structure
P ′ = P ∪ {e} is stiff, taking advantage of the computational
cheapness of STIFF. If not, the search node can be pruned
altogether. Otherwise, SAMPLEEXTRUSION samples an ex-
trusion trajectory τe for element e. The initial configuration
τe(0) then becomes the goal for a transit motion that is found
using PLANMOTION. If P ′ = E, then the structure is fully
printed, and all that remains is for the robot to return to q0.
Otherwise, all remaining elements e′ ∈ (E \ P ′) are added to
O as successor search nodes. Finally, search node 〈P, q〉, e is
re-added to O with sampling timeout i+ 1 to be re-expanded
in the future (Section V-D). In the extended manuscript1, we
prove PROGRESSION is probabilistically complete.

PROGRESSION is geometrically sensitive to the extrusion
sequence ψ. By equation 3, when elements are added to P =
{e ∈ ψ}, the collision-free configuration space Q(P ) weakly

https://arxiv.org/abs/2002.02360


Fig. 3. Left: The first state where PROGRESSION-EuclideanDist backtracks
(black elements are unprinted). Right: REGRESSION-EuclideanDist finds a
solution without backtracking. In our structural figures, elements are colored
by their index in a planned extrusion sequence. Purple elements are printed
first, red elements are printed last, and black elements have yet to be printed.

decreases, causing SAMPLEEXTRUSION and PLANMOTION to
become more constrained. In the worst case, P may prevent
some of the unprinted elements E \ P from admitting any
safe extrusions. For example, Figure 3 demonstrates that
PROGRESSION becomes trapped in a dead end near the end of
the horizon because it printed the left tail of the Klein bottle
(Figure 1) before the black diagonal element.

A. Forward Checking for Dead-End Detection

In order to help PROGRESSION avoid making poor geomet-
ric decisions, we developed a forward-checking (look ahead)
Algorithm [16, 6] that is able to detect dead ends earlier in
the search. Intuitively, the robot must extrude every element in
the structure eventually. If there is ever an element that cannot
be extruded given the partially-extruded structure P , then this
state is a dead end. Thus, FORWARDCHECK eagerly evaluates
the viability of many successors. However, this acts oppositely
to deferred evaluation (Section V-B), and thus achieves better
dead-end detection at the expense of worse computational
overhead. As a compromise, we plan extrusion trajectories
for only the elements e that can currently can be printed given
P , (i.e. e ∩ NP 6= ∅). Intuitively, these elements are close in
proximity to the printed structure and thus are most likely to
be affected by a proposed geometric decision.

Algorithm 3 displays the pseudocode for FORWARDCHECK.
It maintain a global cache of extrusion trajectories in order
to reuse previously computed trajectories if possible. Because
FORWARDCHECK invokes SAMPLEEXTRUSION, it cannot
prove that a search node is a dead end. Thus, FORWARD-
CHECK also uses the increasing sampling timeout i to search
for longer extrusion trajectories. Figure 4 demonstrates an
instance where FORWARDCHECK detects, and thus avoids, a
dead end early in the search. The element with the pink sphere
is the candidate element e to be printed. However, printing e
prevents the diagonal black element from being printable. As
a result, the search defers expanding e at this time.

FORWARDCHECK performs a one-step look ahead to detect
dead ends. However, it might the case that while each element

Fig. 4. Left: the first state where PROGRESSION-GraphDist backtracks (black
elements are unprinted). Right: FORWARDCHECK detects that printing the
element indicated by the pink sphere prevents the diagonal black element
from being safely extrudable.

Algorithm 3 Forward Checking Algorithm
1: procedure FORWARDCHECK(E,G, P ; i)
2: cache ← {e : [ ] for e ∈ E} . Global cache
3: for e ∈ (E \ P ) do
4: if e ∩NP = ∅ then . Printable
5: continue
6: if any(SAFE(τe, P ) for τe ∈ cache[e]) then
7: continue . Reuse existing
8: τe ← SAMPLEEXTRUSION(e, P ; i) . Extrusion
9: if τe = None then

10: return False
11: cache[e]← cache[e] + [τe]

12: return True

can be printed individually, a pair of elements together cannot
be printed. If so, FORWARDCHECK will not be able to detect
the dead end until much later in the search, such shown in
Figure 5. Here, extruding any black element prevents at least
one other nearby element from being safely printable. An arc-
consistency look ahead that considers pairs [40] could detect
these cases at the expense of even greater expansion overhead.

Fig. 5. Left: the first state where FORWARDCHECK-GraphDist backtracks
(black elements are unprinted). Right: REGRESSION-EuclideanDist finds a
solution without backtracking.

VII. REGRESSION

REGRESSION performs a backward search from the goal
state to the initial state [36, 46, 34, 13]. In many planning
domains, the goal conditions are under-specified, and as a



result, there are many goal states. Because of this, the ini-
tial branching factor can be quite large. Furthermore, some
goal states might not be reachable from s0, creating more
opportunities for dead-end branches [3]. Because extrusion
planning has a single goal state s∗, these problems are avoided.
Algorithm 4 displays the pseudocode for REGRESSION. The
key differences from PROGRESSION in Algorithm 2 are that
we negate −h(e) in order to expand elements in the reverse
order, the final extrusion configuration τe(1) is the start of
each transit motion planning problem, and trajectories [τe, τt]
are prepended to plan π. In the extended manuscript1, we prove
REGRESSION is probabilistically complete.

Algorithm 4 Regression Algorithm
1: procedure REGRESSION(N,G,E,Q, q0;h)
2: O = [〈0, 〈|E|,−h(e)〉, 〈E, q0〉, e, [ ]〉 for e ∈ E]
3: while True do
4: i, 〈r, 〉, 〈P, q〉, e, π ← pop(O)
5: P ′ ← P \ {e}
6: if not STIFF(G,P ′) then
7: continue . No successors
8: τe ← SAMPLEEXTRUSION(e, P ′; i) . Extrusion
9: if τe 6= None then

10: τt ← PLANMOTION(τe(1), q, P ; i) . Transit
11: if τt 6= None then
12: π′ ← [τe, τt] + π
13: if P ′ = ∅ then . All printed
14: τt ← PLANMOTION(q0, τe(0); ∅, i)
15: if τt 6= None then
16: return [τt] + π′ . Solution

s′ ← 〈P ′, τe(0)〉
17: for e′ ∈ P ′ do
18: push(O, 〈0, 〈r − 1,−h(e′)〉, s′, e′, π′〉)
19: push(O, 〈i+ 1, 〈r,−h(e)〉, 〈P, q〉, e, π〉) . Persistence

A. Geometric Constraints

REGRESSION can be seen as deconstructing the structure by
sequentially removing elements. From equation 3, removing
an element weakly increases the collision-free configuration
space Q(P ). Thus, the robot is the most geometrically con-
strained at the beginning of the search, limiting which elements
can be initially extruded. As a result, REGRESSION’s options
with respect to geometry increase as the search advances,
preventing it from being trapped in a geometric dead end. To
motivate using backward search to efficiently satisfy geometric
constraints, we analyze a simplified geometry-only version of
the extrusion problem that both omits stiffness and transit
constraints as well as assumes a given set of possible extrusion
trajectories T . Given these simplifications, extrusion planning
simply requires identifying a totally-ordered subset of T that
extrudes each element exactly once. We consider a modi-
fied version of REGRESSION in Algorithm 4 for extrusion-
only problems. Trivially, for all inputs, let STIFF(G,P ) =
True and PLANMOTION(q, q′, P ; i) = [q, q′]. Additionally,
SAMPLEEXTRUSION(e, P ; i) = sample({τe ∈ T | SAFE(τe, P )})
arbitrarily selects a safe trajectory τe ∈ T for element e
if one exists. Otherwise, sample returns None. Under these

conditions, REGRESSION will solve feasible problem instances
in polynomial time (see the extended manuscript1).

B. Stiffness Constraints

Although REGRESSION makes geometric planning easier, it
increases the difficulty of satisfying the stiffness constraint. At
the beginning of the backward search, there are many elements
that can be removed without violating the stiffness constraint.
However, later in the backward search (closer to the structure’s
supports), there are fewer opportunities for supporting the
structure, making the search more likely to arrive at a dead end
caused by stiffness. Figure 6 image 1) shows the remaining-
to-be-printed structure at the first dead end encountered by
REGRESSION-Stiffness. As can be seen, arbitrarily removing
elements sparcifies the structure and reduces its structural
integrity. To combat this, we use the heuristic tiebreakers in
Section V-C to bias the search to remain stiff.

To understand the impact of these tiebreakers, we experi-
mented on the extrusion problems in Section VIII, comparing
the success rate of the PROGRESSION and REGRESSION
algorithms when only the stiffness constraint is active (i.e.
ignoring the robot). For PROGRESSION, this is equivalent to
PLANSTIFFNESS in Section V-C3. We performed 6 trials per
algorithm, heuristic, and problem. Each trial had a 5 minute
timeout. Figure 7 displays the success rate of each algorithm.
PROGRESSION was able to find an extrusion sequence for
all problems, regardless of the heuristic. REGRESSION failed
around 40% of the time when randomly breaking ties. How-
ever, REGRESSION was able to solve all problems when using
the StiffPlan heuristic; although, this is not surprising given
that StiffPlan explicitly uses a stiff plan. The EuclideanDist
and GraphDist heuristics perform quite well but still have
failure cases, such as in Figure 6. There, both heuristics
prioritize removing the top of the structure, which is designed
to provide tensile forces to hold the cantilevered elements [33],
causing the red vertices to deform significantly.

VIII. RESULTS

We experimented on 41 extrusion problems with up to 909
elements (the duck problem in Figure 1). See the extended
manuscript1, for a picture of each problem. We experimented
using all combinations of our 3 algorithms (PROGRESSION,
FORWARDCHECK, and REGRESSION) and 4 heuristics (Ran-
dom, EuclideanDist, GraphDist, and StiffPlan). We performed
4 trials per algorithm, heuristic, and problem, each with a 1
hour timeout. We used PyBullet [4, 5] for collision checking,
forward kinematics, and rendering. Because each element
can only be in one pose, we preprocess the structure by
computing a single, static axis-aligned bounding box (AABB)
bounding volume hierarchy (BVH) [8, 27] for use during
broadphase collision detection with each robot link. We imple-
mented PLANMOTION using RRT-Connect [29], SAMPLEIK
using IKFast, an analytical inverse kinematics solver [7], and
PLANCONSTRAINED using Randomized Gradient Descent
(RGD)[48, 43]. See https://github.com/caelan/pb-construction
for implementations of our algorithms.

https://github.com/caelan/pb-construction


Fig. 6. From left to right: 1) the unassigned substructure at the first state where REGRESSION-Random backtracks. 2) the first state where REGRESSION-
EuclideanDist backtracks. The element deflection is colored from white to pink. The five most deformed nodes are red and their translational displacements
are annotated in meters 3) the first state where REGRESSION-GraphDist backtracks 4) REGRESSION-StiffPlan finds a solution without backtracking.

Fig. 7. Left: the success rate of each algorithm (except FORWARDCHECK) and heuristic pair subject to only the stiffness constraint. Center: the success rate
of each algorithm and heuristic pair. Right: the average runtime in seconds of each algorithm and heuristic pair with a timeout of 1 hour (3600 seconds).

Figure 7 displays the success rate (Center) and the average
runtime (Right) for each algorithm. We assign a runtime of 1
hour for trials that failed to find a solution. The EuclideanDist,
GraphDist, and StiffPlan heuristics outperform Random, re-
gardless of the algorithm. The improved performance for both
PROGRESSION and REGRESSION indicates that the heuristics
provide both stiffness and geometric guidance. FORWARD-
CHECK is able to solve more problems than PROGRESSION,
indicating that it is able to avoid some dead ends. However,
ultimately REGRESSION performed the best in terms of both
success rate and runtime. The best performing heuristic was
StiffPlan followed closely by the EuclideanDist. Our best-
performing algorithms are able to solve around 92% of the
problems and have an average runtime of about 15 minutes.
Figure 8 (Right) displays the runtime of each trial per problem
size when each algorithm uses the EuclideanDist heuristic. Al-
though FORWARDCHECK is able to solve more problems than
PROGRESSION, it comes at the expense of longer runtimes.

We experimented on two extrusion problems considered by
Choreo [22]. Choreo solves the “3D Voronoi” and “Topopt
beam (small)” problems in 4025 and 3599 seconds whereas
REGRESSION-EuclideanDist solves the problems in 742 and
2032 seconds. Our planner outperforms Choreo despite the fact
that Choreo had access to additional, human-specified infor-
mation (Section II). We validated our approach on three real-
world extrusion problems. See https://youtu.be/RsBzc7bEdQg
for a video of our robot extruding each structure. The largest

Fig. 8. The runtime of each algorithm when using the EuclideanDist
heuristic. The x-axis ticks denote the distribution of problem sizes.

of the three is the Klein bottle (Figure 1), which took about
10 minutes to plan for and 6 hours to print.

IX. CONCLUSION

We investigated 3D extrusion planning using a robot ma-
nipulator. Here, structural constraints are often at odds with
geometric constraints. Our algorithmic insight was to use
backward search to plan geometrically feasible trajectories
and to use forward reasoning as a heuristic that guides the
search through structurally-sound states. Future work involves
extending our approach to general-purpose construction tasks.

https://youtu.be/RsBzc7bEdQg
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nipulation planning algorithms. In Workshop on Algo-
rithmic Foundations of Robotics (WAFR), 1994. URL
http://dl.acm.org/citation.cfm?id=215085.

[2] Dmitry Berenson, Siddhartha Srinivasa, and James
Kuffner. Task space regions: A framework for pose-
constrained manipulation planning. The International
Journal of Robotics Research, 30(12):1435–1460, 2011.
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