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Abstract—The theoretical unification of Nonlinear Model
Predictive Control (NMPC) with Control Lyapunov Functions
(CLFs) provides a framework for achieving optimal control
performance while ensuring stability guarantees. In this paper
we present the first real-time realization of a unified NMPC and
CLF controller on a robotic system with limited computational
resources. These limitations motivate a set of approaches for
efficiently incorporating CLF stability constraints into a general
NMPC formulation. We evaluate the performance of the proposed
methods compared to baseline CLF and NMPC controllers with
a robotic Segway platform both in simulation and on hardware.
The addition of a prediction horizon provides a performance
advantage over CLF based controllers, which operate optimally
point-wise in time. Moreover, the explicitly imposed stability
constraints remove the need for difficult cost function and
parameter tuning required by NMPC. Therefore the unified
controller improves the performance of each isolated controller
and simplifies the overall design process.

I. INTRODUCTION

Deploying autonomous and versatile robots into the real
world comes with the challenge of ever increasing complexity
in sensing, decision making, and actuation. One difficulty in
designing controllers for such complex systems lies in the need
to simultaneously meet a large set of design requirements.
Achieving stable and safe behavior is often in conflict with
performance objectives, and finding the right balance between
these requirements can be a challenging task.

A disjoint, hierarchical approach is typically taken in this
context. High-level trajectories are planned to satisfy per-
formance objectives via computationally intensive nonlinear
optimization, and local feedback controllers are separately
designed to ensure stability. The goal of this paper is to directly
integrate these two components by constructing controllers
that simultaneously optimize performance along a horizon and
satisfy local stability constraints in a computationally efficient
manner. In particular, we seek to unify guarantee-based meth-
ods of nonlinear control with the optimization-based view
in model predictive control. To this end, we combine the
guarantees endowed by Control Lyapunov Functions (CLFs)
[4, 44] with the optimal performance of Nonlinear Model
Predictive Control (NMPC) [6, 29, 40].

Lyapunov methods are a powerful tool for certifying stabil-
ity properties of nonlinear systems [21]. The use of Control
Lyapunov Functions to synthesize stabilizing controllers for
robotic platforms has become increasingly popular [11, 26,
36], often via quadratic programs (QPs) [2, 1]. Despite the
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Fig. 1. Left: Segway model for simulation and control design. Right: Physical
Segway system in outdoor experiment environment.

optimization-based formulation of these controllers, they often
fail to achieve long-term optimal behavior. This deficiency
arises due to the fact that the cost of these optimization
problems fails to incorporate the future behavior of the system,
but is instead point-wise optimal [10].

In contrast, Nonlinear Model Predictive Control (NMPC)
emphasizes performance by solving a finite horizon optimal
control problem online and applying the first element of the
computed open-loop input trajectory to the system [40]. This
optimization is repeatedly solved with each newly measured
state to obtain the next control input trajectory. While this
class of control laws can achieve strong performance in
practice [12, 39, 13], and allows intuitive specification of
the desired behaviour, additional assumptions must be met to
certify closed-loop stability. In classical discrete-time NMPC,
stability is guaranteed by an appropriately designed terminal
penalty and terminal constraint [29, 7, 13].

The integration of Lyapunov methods with NMPC is not
a new idea. Lyapunov methods have been used to construct
stabilizing terminal conditions [19], or to analyze stability in
the absence thereof [18]. Another approach incorporates the
stability condition required by a CLF along the prediction
horizon found with NMPC [38, 48]. As noted in [38], this ap-
proach has several desirable properties such as the absence of a
terminal cost, stability for any horizon length, and recovery of
the CLF-QP [2] or infinite horizon optimal controllers when
considering the limiting behavior of the finite horizon. The
idea of imposing stability constraints along the horizon has
appeared in other forms such as contractive state constraints
[8], and has been applied within the context of chemical
process control [27, 47], economic cost functions [16], and
switched nonlinear systems [30].



While this existing work has analyzed the stability and
optimality properties obtained through the unification of CLFs
and NMPC, there has been little attention to the practical and
computational aspects of the resulting nonlinear optimization
problem. Limited computational resources and fast system
dynamics present a challenge to the deployment of these
unified methods to modern robotic systems. Indeed, to the
best of our knowledge, such a control scheme has not yet
been applied to robotic systems experimentally.

To achieve the goal of experimental realizability, we develop
a new methodology for combining CLFs with NMPC. We
describe practical methods to efficiently solve the resulting
nonlinear optimization problems and ultimately realize the
proposed controllers in simulation and, for the first time,
experimentally on a robotic platform; in this case, a Segway
hardware platform seen in Fig. 1. While each proposed method
provides theoretical stability guarantees, significant differences
in computational efficiency and performance are observed.
Furthermore, we find that the pairing of these control method-
ologies leads to improved performance over CLF methods and
significantly reduced tuning of prediction horizon length and
terminal conditions for NMPC methods.

Our paper is organized as follows. Section II provides a
review of CLFs and the stability guarantees they yield, and
reviews the NMPC problem and how it is solved in practice.
In Section III we propose a set of methods for incorporating
CLF stability constraints into the NMPC problem, and provide
additional details on implementation. Lastly, in Section IV
we provide results from both simulation and hardware that
demonstrate the ability of this unified control approach to
achieve stability and improve performance.

II. BACKGROUND

In this section we provide background information on
Control Lyapunov Functions (CLFs) and Nonlinear Model
Predictive Control (NMPC). This information supports the
specific framework unifying CLFs and NMPC in Section III.

A. Control Lyapunov Functions

Consider a state space X ⊂ Rn and a control input space
U ⊂ Rm, where it is assumed X is path-connected and 0 ∈ X .
Consider the control-affine dynamic system given by:

ẋ = f(x) + g(x)u. (1)

where x ∈ X , u ∈ U , and f : X → Rn and g : X → Rn×m
are Lipschitz continuous on X . Further assume that f(0) = 0,
or that the origin is an equilibrium point of the system. As in
[21], we define a class K function as a continuous function
α : [0, a) → R+, with a > 0, α(0) = 0 and α strictly
monotonically increasing (denoted α ∈ K). If a = ∞ and
limr→∞ α(r) =∞, then α is said to be a class K∞ function
(α ∈ K∞). This type of function can be interpreted as a type
of nonlinear gain function, noting the linear gain function
α(r) = kr with k > 0 satisfies this definition. Given this
definition, we define Control Lyapunov Functions (CLFs) as
in [4, 25].

Definition 1 (Control Lyapunov Functions). A continuously
differentiable function V : X → R+ is a Control Lyapunov
Function (CLF) for (1) on X if there exists α1, α2, α3 ∈ K∞
such that for all x ∈ X :

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) (2)

inf
u∈U

V̇ (x, u) ≤ −α3(‖x‖), (3)

This definition can be restated with α1, α2, α3 ∈ K with
resulting stability guarantees holding locally. The existence of
a CLF for (1) implies the existence of a continuous (except
possibly at x = 0) state-feedback controller k : X → U that
renders the origin globally asymptotically stable [4, 43]. It is
possible to make k continuous at x = 0 if V satisfies the
small-control property [44]. If the functions α1, α2, α3 take
the form αi(r) = cir

2, i = 1, 2, 3, the resulting stability is
global exponential stability, with the magnitude of the state
upper bounded by a function exponentially decaying in time:

‖x(t)‖ ≤M‖x(0)‖e−γt (4)

with M,γ > 0. Similarly, the CLF can be upper bounded:

V (x(t)) ≤ V (x(0))e−γt (5)

This preceding bound will be useful for enforcing Lyapunov
stability guarantees within the discrete time NMPC problem.

The CLF definition implies the existence of a point-wise set
of stabilizing control inputs:

Uclf(x) = {u ∈ U | V̇ (x, u) ≤ −α3(‖x‖)}. (6)

Thus a CLF characterizes a stabilizing feedback controller as a
controller k : X → U such that k(x) ∈ Uclf(x) for all x ∈ X .
Furthermore, upon selection of such a controller, the CLF is
a certificate of stability for the closed loop system:

ẋ = f(x) + g(x)k(x). (7)

Establishing that a given function V serves as a CLF for (1)
is often done for robotic systems constructively by specifying
a controller taking values in Uclf(x) for all x ∈ X [46, 22].
Note that for any x ∈ X the set Uclf(x) is described by an
affine inequality in u due to the affine nature of the dynamics:

V̇ (x, u) =
∂V

∂x
(x) (f(x) + g(x)u) . (8)

Due to this, the CLF itself may then be used to synthesize a
optimization-based controller with more desirable properties
using quadratic programs [2, 1, 11]. Specifically, we obtain a
feedback control law k(x) that satisfies the inequality (3):

k(x) = argmin
u∈U

1

2
u>Ru+ q>u+ p (9)

s.t.
∂V

∂x
(x) (f(x) + g(x)u) ≤ −α3(‖x‖))

where R is positive definite and U assumed to be a polytope.
Feasibility of this optimization problem is guaranteed by the
satisfaction of the constraint (3) and Lipschitz continuity of
this controller has been studied in [32, 20].



This controller is point-wise optimal [10], and takes a
greedy approach to specifying control inputs. This often leads
to poor performance compared to even non-optimization based
controllers as there is no consideration of the future behavior
of the system when the input is chosen. In addition to chal-
lenges in achieving longer horizon optimality, these controllers
face difficulty in implementation on robotic platforms. The
stability guarantees endowed by these controllers assume a
continuous-time implementation, which is not possible on
many modern digital control systems. Instead, control inputs
are chosen and held for a small interval of time in a zero-order-
hold manner. Lyapunov stability of zero-order-hold systems
has been studied utilizing an approximate discretization of
the nonlinear dynamics [35, 34], or in the context of model
predictive control [15, 33, 31, 14].

B. Nonlinear Model Predictive Control

Nonlinear Model Predictive Control (NMPC) offers an
alternative to CLF-based methods for controlling nonlinear
systems, and is inherently designed to resolve the challenges
of longer horizon optimality at the expensive of higher online
computational cost.

We consider a direct NMPC approach to transform the
continuous optimal control problem into a finite dimensional
nonlinear program (NLP) [6]. The continuous control signal
u(t) is parameterized over subintervals of the prediction hori-
zon [0, T ] to obtain a finite dimensional decision problem. This
creates a fixed grid of nodes k ∈ {0, ... , N} defining control
times tk separated by intervals of duration δt = T/(N − 1).
In this work, we consider a piecewise constant, or zero-order-
hold, parameterization of the input. Denoting xk = x(tk) and
integrating the continuous dynamics in (1) over an interval
leads to a discrete time representation of the dynamics:

xk+1 = fd(xk, uk) = xk +

∫ tk+δt

tk

f(x(τ)) + g(x(τ))uk dτ.

(10)
The integral in (10) is numerically approximated with an inte-
gration method of choice to achieve a desired approximation
accuracy of the evolution of the continuous time system under
the zero-order-hold commands.

The general NMPC problem presented below can be formu-
lated by defining and evaluating a cost function and constraints
on the grid of nodes. Here, we write the problem in parametric
form, depending on the current measured state x̂ and additional
parameters contained in p, and with a subset of the constraints
implemented as soft-constraints with slack terms:

min
X,U,S

lN (xN , p) + φ(sN ) +

N−1∑
k=0

lk(xk, uk, p) + φ(sk) (11a)

s.t. x0 − x̂ = 0, (11b)

xk+1 − fdk (xk, uk) = 0, k = 0, ... , N−1, (11c)
hk(xk, uk, p) ≤ sk, k = 0, ... , N−1, (11d)
hN (xN , p) ≤ sN , (11e)

sk ≥ 0, k = 0, ... , N, (11f)

where X = [x>0 , . . . x
>
N ]>, U = [u>0 , . . . u

>
N−1]>, and

S = [s>0 , . . . s
>
N ]> are the sequences of state, input, and

slack variables respectively. The nonlinear cost and constraint
functions lk, hk, lN , and hN , are allowed to vary depending
on the node index k and are dependent on problem specific
parameters p and the current measured state x̂. The slack
variables are penalized with φ(s) = z>s + 1

2s
>Zs, an exact

`1 − `2 penalty [42]. Collecting all decision variables into a
vector, w = [X>, U>, S>]>, problem (11) can be framed as
a general nonlinear program (NLP):

min
w

F (w, p) s.t.
{

G(w, p) = 0,
H(w, p) ≤ 0.

(12)

C. Sequential Quadratic Programming (SQP)

Interior-Point Methods (IP) and Sequential Quadratic Pro-
gramming (SQP) are two popular families of algorithms for
solving general NLPs [37]. Additionally, the sparsity of (12)
induced by the underlying structure of (11) can be exploited
to obtain solutions in real-time and at a high sampling rate,
which is necessary in many dynamic robotic applications. An
overview of recent advances in sparsity exploiting algorithms
and software tools is provided in [23].

SQP approaches offer a distinct advantage in that successive
problem instances may be warm-started with solutions from
preceding instances. This serves to further decrease computa-
tion time as it is often only feasible to take a single SQP step
per control iteration [24]. As NMPC computes optimal control
inputs over a horizon, successive instances of (11) are similar
and portions of the preceding optimal control sequence can be
use to warm-start the following iteration, enabling convergence
across multiple iterations of the problem, rather than iterating
until convergence on one instance of the problem [9].

SQP based methods apply Newton-type iterations to KKT
optimality conditions for (12), assuming some regularity con-
ditions on the constraints [28]. The Lagrangian of the NLP in
(12) is defined as:

L(w, λ, µ, p) = F (w, p) + λ>G(w, p) + µ>H(w, p), (13)

with Lagrange multipliers λ, and µ ≥ 0 corresponding to
equality and inequality constraints, respectively. The Newton
iterations can be equivalently computed by solving the follow-
ing potentially non-convex QP [37]:

min
δw

∇wF (wi, p)
>δw +

1

2
δw>Biδw (14a)

s.t G(wi, p) +∇wG(wi, p)
>δw = 0, (14b)

H(wi, p) +∇wH(wi, p)
>δw ≤ 0, (14c)

where the decision variables, δw = w−wi, define the update
step relative to the current iteration wi, and the Hessian
Bi = ∇2

wL(wi, λi, µi, p). Computing the solution to (14) pro-
vides a decision variable update, δwi, and updated Lagrange
multipliers λQPi and µQPi . These iterations are ran until the
variables wi, λi, and µi converge. This iterative approach is
summarized in Algorithm 1.



Algorithm 1 Sequential Quadratic Programming (SQP)

Given p, w0, λ0, µ0, F,G,H
Initialize (i, wi, λi, µi)← (0, w0, λ0, µ0)
while NotConverged(wi, λi, µi) do

compute ∇wF (wi, p), Bi, H(wi, p),∇wH(wi, p),
G(wi, p),∇wG(wi, p).

(δwi, λ
QP
i , µQPi )← Solve (14)

wi+1 ← wi + δwi
λi+1 ← λQPi
µi+1 ← µQPi
i← i+ 1

end while

Convergence of the SQP algorithm leads to a state and input
sequence, X? and U?, respectively. The first element of U?,
denoted as u0, can be applied to the system, after which the
SQP algorithm is run again to determine a new control input
sequence. The application of SQP as a subroutine within a
NMPC feedback controller is provided in Algorithm 2.

III. UNIFYING CLFS WITH NMPC

In this section we explore different ways of integrating
the stability based CLF-QP and performance driven NMPC
controllers discussed in Section II. These different methods
will be evaluated experimentally in Section IV.

The NMPC framework presented in Algorithm 2 can be
interpreted as a closed-loop feedback controller, kNMPC : X →
U . As described in Section II-A, for each state x ∈ X , a CLF
defines a point-wise set of stabilizing control inputs Uclf(x)
given in (6). To inherit the stability guarantees provided by
the CLF, we need to restrict the NMPC controller to these
stabilizing inputs, such that kNMPC(x) ∈ Uclf(x) for all x ∈ X .

As noted in [38], if only the first input in the input
sequence is applied before the input sequence is recomputed,
the restriction of the NMPC controller to stabilizing inputs can
be achieved by directly imposing the CLF condition only on
the first input, subject to the current measured state x̂:

hCLF (x̂, u0) =
∂V

∂x
(x̂) (f(x̂) + g(x̂)u0) ≤ −α3(‖x̂‖). (15)

As in the case of the controller (9), for a given state, this
constraint is affine in the decision variable u0. Due to this,
the SQP subroutine (14) contains the CLF constraint without
approximation, and will therefore, in the same way as the CLF-
QP, compute a stabilizing control input after solving just one
QP. In the context of dynamic robotic platforms, this provides
an advantage over general NMPC in that it does not require the
computational cost of multiple Newton iterations to converge
to a potentially stabilizing control input.

Beyond the constraint on the first input, any further modifi-
cations to the NMPC problem are done explicitly to increase
performance or accommodate the discrete time implementa-
tion of control inputs. In the following, we will discuss addi-

Algorithm 2 SQP - NMPC

Given w0, λ0, µ0

Initialize (j, wj , λj , µj)← (0, w0, λ0, µ0)
while ControllerIsRunning() do

x̂← StateEstimation()
yref ← Commands()
p← (x̂, yref )
(wj+1, λj+1, µj+1)← Solve SQP(p, wj , λj , µj)
U? ← ExtractInputSequence(wj+1)
u0 ← ExtractFirstInput(U?)
f(x) + g(x)u← ApplyInput(u0)
j ← j + 1

end while

tional constraints that serve to increase performance beyond
that of the controller given by (9) while achieving stability.

A. Extended Horizon Constraints

While the preceding CLF constraint (15) enforces the se-
lection of a stabilizing control input, the resulting theoreti-
cal stability properties rely on the controller being applied
continuously in time, as noted in Section II-A. As this is
not possible in practice, it desirable to incorporate additional
stability constraints that enforce stable behavior when control
is implemented in a zero-order-hold fashion. NMPC is an
advantageous framework for these types of constraints as
future states to reflect desired stability properties.

In particular, consider the bound in time on the Lyapunov
function established with exponential stability in (5). While
this bound is continuous in time, comparison principles [21]
may be used to formulate an analogous discrete time bound
at the kth node:

hLLS(xk, x̂) = V (xk)− V (x̂)e−γk·δt ≤ 0. (16)

The constraints given by hCLF and hLLS can be combined
in varying ways along the length of the prediction horizon.
The basic approach, denoted CLF-0 and presented in (17a)
to (17f), implements the hCLF constraint only at the initial
node. This is extended in the CLF-All approach, where the
hCLF constraint is enforced at each node in the horizon in
(17g). These constraints are no longer affine since at nodes
k ≥ 1 both state xk and input uk are decision variables, and
are non-linearly coupled in (15).

In the approach denoted LLS-N, we enforce the hCLF
constraint at the first node and enforce the hLLS constraint
at only the final node in the prediction horizon in (17h). A
similar bound, which relies on evaluating V at the final node
after the system has been simulated under a control law given
by Sontag’s universal formula [43], is enforced in [38]. Our
bound differs in that it is controller independent and only relies
on the bound from exponential stability. Lastly, in the approach
denoted LLS-All, the level set constraint hLLS is applied
at each node in (17h), forming an exponentially contracting



funnel along the horizon. Additionally, for all formulations,
the inputs are bounded

¯
u ≤ uk ≤ ū, enforcing uk ∈ U .

CLF-NMPC:

min
X,U,S

φ(sN ) +

N−1∑
k=0

1

2
u>k uk + φ(sk) (17a)

s.t x0 − x̂ = 0, (17b)

xk+1 − fdk (xk, uk) = 0, k = 0, ... , N−1, (17c)

¯
u ≤ uk ≤ ū, k = 0, ... , N−1, (17d)

sk ≥ 0, k = 0, ... , N, (17e)
CLF-0 : hCLF (x̂, u0) ≤ s0, (17f)
Additionally, for

CLF-ALL : hCLF (xk, uk) ≤ sk, k = 1, ... , N−1, (17g)
LLS-N : hLLS(xN , x̂) ≤ sN , (17h)
LLS-All : hLLS(xk, x̂) ≤ sk, k = 1, ... , N. (17i)

B. Quadratic Approximation Strategy

When applying the SQP algorithm presented in Section II-B
to the nonlinear formulations presented in (17), the quadratic
subproblem (14) is repeatedly solved. As we seek to deploy
NMPC on dynamic robotic platforms, it is critical that these
optimization problems are well conditioned and do not provide
difficulty to numerical solvers. In particular, when Bi in (14a)
is positive semi-definite (p.s.d), the resulting QP is convex and
can be efficiently solved [23, 45].

To ensure this, an approximate (p.s.d) Hessian can be used
instead of the full Hessian of the Lagrangian. For (17), the
objective function has a least-squares form, i.e. F (w, p) =
1
2‖R(w, p)‖2, in which case the Gauss-Newton approximation,

Bi ≈ ∇wR(wi, p)
>∇wR(wi, p), (18)

proves effective in practice [5, 17]. This neglects the curvature
of R(w, p), as well as the contribution by the curvature of the
constraints. We use this strategy for the CLF-0 and CLF-All
formulations.

For the LLS-N and LLS-All formulations, we retain the
contribution of the LLS constraints in the Hessian approx-
imation. The second term in (16) is independent of the
decision variables, and the properties of this constraint are
thus directly determined by the structure of the CLF V . In
particular, if the CLF used is convex (as is the case for many
constructive techniques for producing CLFs [46, 22]), then the
approximation

Bi ≈ ∇wR(wi, p)
>∇wR(wi, p)

+
∑
k

µk,LLS∇2
whk,LLS , (19)

remains positive definite, and, as we will show in Section IV-C,
improves convergence compared to a Gauss-Newton approxi-
mation.

C. Baseline Comparisons
To understand how unifying these two control method-

ologies impacts performance and stability, it is necessary
to compare against baseline controllers given by both (9)
and (11). In particular, elements should be shared between
controllers to limit the impact of tuning on performance. To
this end, we begin by synthesizing a CLF using feedback-
linearization based constructive techniques discussed in [46],
which enables the consideration of underactuated systems.

Consider an output y : X → Rk with relative degree 2 [41]
and k ≤ m, a time-varying reference trajectory y : R+ → Rk,
and define the tracking error e : X × R+ → Rk:

e(x, t) = y(x)− yd(t). (20)

A feedback-linearizing controller exists, kfbl : X → U that
yields linear closed-loop error dynamics given by:

η̇(x, t) = Aη(x, t), η =

[
e(x, t)
ė(x, t)

]
(21)

where the eigenvalues of A ∈ R2k×2k have negative real part.
For any positive definite Q ∈ R2k×2k, the Continuous Time
Lyapunov Equation (CTLE):

A>P + PA = −Q (22)

has a positive definite solution P ∈ R2k×2k. This enables
the synthesis of a quadratic (and convex) Lyapunov function
V : X × R+ → R given by V (x, t) = η(x, t)>Pη(x, t)
with time derivative V̇ (x, t) = −η(x, t)>Qη(x, t), which is
negative definite. Furthermore, the existence of the feedback
linearizing controller kfbl implies that V is a CLF, as:

inf
u∈U

V̇ (x, t, u) ≤ −λmin(Q)‖η(x, t)‖22. (23)

This CLF can be used in the following CLF-QP controller that
achieves exponential stability with γ = λmin(Q)

λmax(P ) . The constraint
is slacked for numerical conditioning with z, Z ≥ 0.

CLF-QP:
min

u∈U,s∈R+

1

2
u>u+ zs+

1

2
Zs2 (24)

s.t. V̇ (x, t, u) ≤ −λmin(Q)‖η(x, t)‖22 + s

To synthesize a baseline NMPC-β controller, elements from
the construction of the CLF can be utilized. In particular, Q
can be used as a running cost on the state, and the terminal
value of the CLF can penalized as in [19]:

NMPC-β:

min
X,U

βV (xN , tN )+

N−1∑
k=0

η(xk, tk)>Qη(xk, tk)+
1

2
u>k uk (25a)

s.t x0 − x̂ = 0, (25b)

xk+1 − fdk (xk, uk) = 0, k = 0, ... , N−1, (25c)

¯
u ≤ uk ≤ ū, k = 0, ... , N−1, (25d)

That is, the CLF is used as a terminal cost and scaled up
with the parameter β. As noted in [40] if β is selected large



enough, stability can be achieved without the need to specify
a terminal state constraint. The baseline NMPC problem has
constraints on the initial condition and dynamic evolution
given by (11b) and (11c), but does not include any CLF-based
constraints. The inputs are also constrained such that u ∈ U .

IV. SIMULATION & EXPERIMENTAL RESULTS

In this section we provide details on the implementation of
the methods established in Section III on a Segway platform,
and discuss simulation and experimental results.

A. Segway System & Implementation

Dynamics simulations provide an environment for assessing
attainable levels of performance of the various approaches.
The simulated dynamics model reflects a modified Ninebot E+
Segway platform, seen in Fig. 1. We consider a planar repre-
sentation of the Segway, with state x =

[
r θ ṙ θ̇

]> ∈ R4

where r is the horizontal position and θ is the pitch angle.
The input to the Segway, u =

[
i
]
∈ [−20, 20], is current to

the Segway motors. The equations of motion are derived via
the Newton-Euler equations for an asymmetric, two-wheeled
inverted pendulum with torque input. The asymmetry of the
system leads to an unforced equilibrium at xe =

[
0, θe, 0, 0

]
with θe = 0.138. In the NMPC controllers, a forward Euler
time discretization is used with δt = 0.01 s.

State estimation on the physical Segway is done with
wheel encoders and IMU data from a VectorNav VN-100. All
computations are performed on board on an ARM Cortex-A57
(quad-core) @ 2GHz CPU running the ERIKA3 RTOS. For
each NMPC formulation, all functions, gradients, and Hes-
sians in (14) are found using the CasADi auto-differentiation
framework [3]. This leads to a QP with a fixed sparsity pattern,
which we solve with the sparsity-exploiting solver OSQP [45].
We solve a single QP per control iteration, unless otherwise
stated.

B. Simulation Results

To compare the behavior of the different control approaches,
we considered a stabilization task. In particular, we simulated
the system under each controller with a fixed initial condition
and an objective of stabilizing to the unforced equilibrium
point xe. The performance of each controller was quantified
by the average input norm over a 2 second time horizon, which
provides an assessment of the total input used. These averages
appear in Table I.

TABLE I. Average input norm along the simulation horizon against prediction
horizon length (N) for different controller formulations defined in Section III.
Absences indicate failure to stabilize the system.

N 1 10 20 30 40 50
CLF-QP 1.085 1.085 1.085 1.085 1.085 1.085
CLF-0 1.085 1.085 1.085 1.085 1.085 1.085

CLF-All 1.085 1.072 0.952 0.849 0.794 0.769
LLS-N 1.083 0.957 0.889 0.842 0.808 0.784
LLS-All 1.083 0.956 0.887 0.839 0.805 0.782

NMPC-0.1 - - 3.232 2.435 2.036 1.783
NMPC-1 - 3.026 2.019 1.732 1.574 1.471

NMPC-10 0.828 0.607 0.704 0.823 0.926 1.006

Fig. 2. Initial CLF-NMPC solutions stabilizing to xe for N = 20 and
x̂ = [0, π

8
, 0, 0]>. Top: The optimal input sequence determined by each

controller, with the CLF-0 controller dropping to zero beyond the first node.
Middle: Evaluation of the bound on V̇ in (15). The controllers with the hCLF
constraint meet this bound at all required points, while the two LLS controllers
violated it at various points along the trajectory. Bottom: Evaluation of the
the level set bound in (16). This bound is satisfied at all necessary points
by the LSS controllers, but is violated by the CLF-All controller due to the
zero-order-hold implementation.

We see that the CLF-QP and CLF-0 controllers select
identical inputs over the entire trajectory and have the largest
average input of any CLF-based controllers. This indicates
that the addition of a prediction horizon to the baseline CLF-
QP controller only improves its performance if the stability
hCLF constraint is applied further along the horizon. We
also see that with no horizon (N = 1), all of the CLF-based
controllers recover similar performance to the baseline CLF-
QP. If we consider the controllers that impose constraints
further along the horizon we see that their average input
consistently decreases with horizon length, with the CLF-All
controller marginally outperforming the LLS controllers at the
longest horizon lengths.

The performance of the baseline NMPC-β controllers heav-
ily depended on the weighting of the terminal cost. At shorter
horizons the NMPC-0.1 and NMPC-1 controllers failed to
stabilize the system, and saw improved performance as the
horizon grew longer. In contrast, the NMPC-10 controller
demonstrated the best performance of all controllers at shorter
horizons, but saw worsening performance as the horizon grew
longer. This illustrates the issues that arise when both stability
and performance are achieved through the cost, rather than de-
coupled through constraints as in the CLF-based formulations.

To more clearly understand the possible behaviors of the
various CLF-NMPC controllers, we visualize the solutions to
each controller obtained at the initial condition, i.e. x̂ = x(0)
in Fig. 2. As the CLF-0 controller is only required to satisfy the
stability constraint at the initial node, its input quickly drops
to zero and the hCLF constraint is violated in the next step
in the horizon. In contrast, the CLF-All controller meets the



Fig. 3. Simulation results stabilizing to xe for x(0) = [0, π
8
, 0, 0]>. The

evaluation of the CLF constraint (15) along the simulation horizon is shown
in the bottom-left plot. The system input, pitch angle, and pitch rate are
shown in the top-left, top-right, and bottom-right respectively. The lower
weighted NMPC-β controllers take significantly more time to converge to
the equilibrium point.

hCLF constraint along the entirety of the horizon as required.
Despite meeting this constraint on V̇ at each node, the CLF-All
controller slightly fails to meet the implied level-set bounds
along the horizon. This is due to the fact that the constraint
is checked only at the beginning of each interval and is not
required to hold over the interval which the control input is
held over.

The LLS controllers both satisfy the level constraints at the
required points, with the LLS-N controller violating the level
set bounds earlier in the horizon. Despite meeting these level
set bounds and the required points, both controllers violate the
associated bound on V̇ , with the LLS-All controller satisfying
the hLLS constraint loosely early in the trajectory before
satisfying it tightly at the end of the trajectory.

The evolution of the system under these controllers with
a horizon length N = 30 is captured in Fig. 3. We see that
all CLF-based controllers satisfy the stability constraint (15)
during the entire simulation. The most significant difference
in the behavior of these controllers arises in the magnitude
of the input taken early in the trajectory. The best performing
controllers applying higher inputs earlier in the trajectory to
stabilize the system quickly and avoid accruing input over
more of the trajectory.

We additionally perform a simulation in the opposite di-
rection, driving the Segway from its unforced equilibrium
xe to a desired state, xd = [0.0, π8 , 0.0, 0.0]>. The resulting
trajectories are seen in Fig. 4. In this scenario we see that
the CLF-QP controller demonstrates significantly different
behavior from the CLF-NMPC controllers. In particular, the
CLF-QP controller takes an initial input to drive the system
towards the desired state, and then allows gravity to carry
it to this point. This results in a large overshoot past the

Fig. 4. Simulation results stabilizing to xd = [0, π
8
, 0, 0]> from x?. The

evaluation of the CLF constraint (15) along the simulation horizon is shown
in the bottom-left plot. The system input, pitch angle, and pitch rate are
shown in the top-left, top-right, and bottom-right respectively. The CLF-
QP controller overshoots the desired state, while the CLF-NMPC controllers
slowly approach it. The NMPC-β controllers do not converge due to the trade-
off between input and state error in the cost function.

desired state, where as the CLF-NMPC controllers approach
the equilibrium point more slowly.

The NMPC-β controllers fail to converge to the desired
state. This arises due to the fact that the cost on the input
is not centered about the input that makes the desired state an
equilibrium point, i.e. |u−uref |22. Because both the input and
the state error appear in the cost, larger error is accepted in the
state to minimize the input. This highlights the flexibility in
choosing the cost function in the CLF-NMPC formulations.
General cost functions that do not necessarily obtain their
minimum at the goal can be used, which opens up the
possibility of using economic cost functions [16].

C. Numerical Results

To understand the feasibility of deploying these control
approaches on the computationally limited Segway platform,
we investigated the convergence rate of each formulation on a
single instance of the NMPC problem. We also considered
variants of the LLS formulations using the Gauss-Newton
approximation in (18) (denoted LLS-NGN and LLS-AllGN ) and
compare them to using the modified Hessian in (19).

We execute Algorithm 1 for each formulation until the
constraints are sufficiently satisfied, ‖c(w)‖1 ≤ 10−6, and no
further progress is made in cost, |F (wi)−F (wi−1)| ≤ 10−6.
The optimization is fully cold-started such that all decision
variables and Lagrange multipliers are initialized to zero. The
problem is set up with x̂ = xd = [0, π8 , 0, 0]> and a horizon
length of N = 30. The step size, constraint satisfaction, and
first order optimality are plotted in Fig. 5.

The CLF-0 and NMPC-β formulations converge rapidly as
they have a quadratic cost function and affine constraints. The
only nonlinearity in these problems therefore arises from the



Fig. 5. Convergence of Algorithm 1 applied to a cold-started NMPC problem
with x̂ = xd = [0, π

8
, 0, 0]>. Top: Step size, ‖δw‖2, Middle: Constraint

violation, ‖c(w)‖1, Bottom: First order optimality condition, ‖∇wL‖1.
The CLF-0 and NMPC-β methods converge quickly, while the CLF-NMPC
methods take longer. The LLS formulations without the modified Hessian in
(19) stop progressing beyond a certain point.

system dynamics, making the QP subproblem a good model
for the full problem. The CLF-All, LLS-N, and LLS-All have
nonlinear constraints along the horizon, and therefore take
significantly longer to converge. Nonetheless, the convergence
rate accelerates over the last few iterations, indicating that
these formulations can still perform well when starting close
to the solution. Finally, the LLS-NGN , and LLS-AllGN formu-
lations initially decrease the constraint violation, but fail to
make further progress after a certain point.

D. Experimental Results

In addition to simulation, we also demonstrate the ability of
this unified control approach on the physical Segway in Fig. 1.
In particular, we define a desired angular trajectory in time:

θd(x, t) = θe −Kv(ṙ − ṙd(t)), (26)

where ṙd(t) is a commanded velocity and Kv = 0.3 is a
velocity feedback gain, leading to error dynamics given by
e(x, t) = θ− θd(x, t). These dynamics are used to synthesize
a quadratic CLF as per Section III. This CLF was used to
formulate a CLF-QP controller given by (24), a NMPC-1
and NMPC-10 controller with cost given by (25a), and CLF-
All, LLS-N, and LLS-All controllers. Each controller was used
to track the desired trajectory and then stabilize the system.
The results of these experiments can be seen in Fig. 6 and
the accompanying video1. We see that all controllers except
the NMPC-1 controller are able to stabilize the system. The
CLF-QP displays aggressive behavior compared to the NMPC
controllers as it does not incorporate a prediction horizon. The
average input and control frequency along the experimental
horizon is seen in Table II. We see that at a horizon of N = 30
the NMPC-10 controller has the best performance, with the
NMPC-1 controller omitted due to failure to stabilize. Of the
CLF-NMPC controllers the CLF-All controller has the best
performance. We note that although the baseline NMPC-10
controller outperforms the proposed methods, this required
tuning of the cost function and matches the behavior seen in

1https://youtu.be/weNv-FlRKiE

Fig. 6. Experimental results from trajectory tracking. Top: Desired velocity
profile, Middle: Input profile, Bottom: Pitch angle profile. The CLF-QP
controller displays more aggressive behavior due to no prediction horizon,
while the NMPC-1 controller fails to stabilize the system.

simulation at this horizon length. We see that the CLF-NMPC
methods have a higher computational cost than the NMPC-10
controller. This follows as the NLP has additional constraints
related to stability that must be met. In that sense, LLS-N is
an appealing approach among the CLF-NMPC methods, as it
imposes only two stability constraints.

TABLE II. Average input norm (ū) and computation time (tCPU ) in ms
along the experiment horizon with prediction horizon N = 30 for the different
controller formulations defined in Section III.

CLF-QP CLF-All LLS-N LLS-All NMPC-10
ū 2.081 1.594 1.666 1.898 1.152
tCPU 1.25 5.56 4.17 6.13 3.11

V. CONCLUSION

In conclusion, we have presented a novel set of approaches
for unifying CLFs and NMPC on robotic platforms with
limited computational resources. The use of a SQP algorithm
with modified Hessian was proposed to efficiently solve the
resulting nonlinear optimization problem. The different uni-
fied formulations were analyzed in simulation, for the first
time demonstrated on hardware, and were shown to improve
performance beyond baseline CLF and NMPC methods. In
particular for forced equilibria, the CLF-NMPC method con-
verges without modifications while the cost-driven baseline
NMPC does not. Furthermore, the unified methods all achieved
stability where as the stability baseline NMPC methods was
sensitive to cost function parameters. As system complexity
increases, such manual tuning becomes increasingly difficult.
In this space, we see an opportunity for the presented CLF-
NMPC methods, where stability is explicitly embedded and
requires no further tuning.
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[7] H. Chen and F. Allgöwer. A Quasi-Infinite Horizon Non-
linear Model Predictive Control Scheme with Guaranteed
Stability. Automatica, 34(10):1205 – 1217, 1998.

[8] S. L. de Oliveira Kothare and M. Morari. Contractive
model predictive control for constrained nonlinear sys-
tems. IEEE Transactions on Automatic Control, 45(6):
1053–1071, June 2000.

[9] M. Diehl, H.G. Bock, J. P. Schlöder, R. Findeisen,
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