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Abstract—The ability to transfer a policy from one environ-
ment to another is a promising avenue for efficient robot learning
in realistic settings where task supervision is not available. This
can allow us to take advantage of environments well suited for
training, such as simulators or laboratories, to learn a policy for
a real robot in a home or office. To succeed, such policy transfer
must overcome both the visual domain gap (e.g. different illumina-
tion or background) and the dynamics domain gap (e.g. different
robot calibration or modelling error) between source and target
environments. However, prior policy transfer approaches either
cannot handle a large domain gap or can only address one type
of domain gap at a time. In this paper, we propose a novel policy
transfer method with iterative “environment grounding”, IDAPT,
that alternates between (1) directly minimizing both visual and
dynamics domain gaps by grounding the source environment
in the target environment domains, and (2) training a policy
on the grounded source environment. This iterative training
progressively aligns the domains between the two environments
and adapts the policy to the target environment. Once trained,
the policy can be directly executed on the target environment.
The empirical results on locomotion and robotic manipulation
tasks demonstrate that our approach can effectively transfer a
policy across visual and dynamics domain gaps with minimal
supervision and interaction with the target environment. Videos
and code are available at https://clvrai.com/idapt.

I. INTRODUCTION

Deep reinforcement learning (RL) presents a promising
framework for learning impressive robot behaviors [19, 31,
27, 10, 18]. Yet, performing RL directly on physical robots
in a home or an office is impractical due to the lack of
training supervision (e.g. reward function, state information)
and the high cost of data collection, which holds true in
most robot learning scenarios. One practical solution is policy
transfer, which first trains a policy under a more controllable
environment (often a simulator) with cheaper data collection
and easier access to reward and state information, and then
deploys this well-trained policy to the target environment. Thus,
our goal is to develop a method that can efficiently transfer a
policy trained in a source environment to a target environment
with minimal assumptions (i.e. no state and reward information),
as illustrated in Fig. 1.

However, RL policies trained in one environment tend to
perform poorly in the other due to the visual domain gap (e.g.
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Fig. 1: We aim to transfer a policy trained in the source
environment (top) which has full access to observation, state,
and reward, to the target domain (bottom) with no access to
state and reward. However, transferring a policy from one
environment to another is challenging due to visual differences
(e.g. lighting, viewpoint, clutter, background) and physical
differences (e.g. friction, mass, robot calibration).

lighting, viewpoint, clutter, and background) and dynamics
domain gap induced by physical difference (e.g. the mass
of objects and calibration of the robot) [11, 33, 21]. Hence,
a variety of approaches propose to train a policy robust to
domain gaps through noise injection [11], adversarial train-
ing [6, 23, 26], learning domain-invariant representations [7],
or domain randomization [33, 13, 21]. Yet, these approaches
only transfer well within the training domain distribution,
and training such robust policies becomes infeasible for large
domain ranges. Instead, grounding-based policy transfer meth-
ods directly minimize the visual [28, 2] and dynamics [9, 4]
domain gap by grounding the source environment in the target
environment. Instead, domain adaptation methods learn explicit
observation mappings [28, 2] or action mappings [9, 4] to close

 ���

https://clvrai.com/idapt


the visual and dynamics domain gap respectively. The mappings
are then used to modify the domain of the policy or source
environment to match that of the target environment.

These methods are designed to address only one type
of domain gap at a time; however closing both visual and
dynamics domain gaps is crucial for successful policy transfer
as most robot learning scenarios include both.

We propose Iterative Domain Alignment for Policy Trans-
fer (IDAPT) for policy transfer by modifying, or “grounding”,
the source environment to minimize both visual and dynamics
domain gaps to the target environment with minimal task
information. Concretely, we develop a novel policy transfer
method via iterative environment grounding that alternates
between (1) grounding the source environment in the target
environment by learning both visual and dynamics transfor-
mations; and (2) training a policy on the grounded source
environment, which has a smaller domain gap to the target
environment while still providing rich task supervision (e.g.
reward and state information) from the source environment. Our
iterative training gradually improves the grounded environment
and the policy, leading to successful transfer to the target
environment. For source environment grounding, we learn
the visual and dynamics correspondences between the two
environments from unpaired data from both domains via
unsupervised correspondence learning algorithms. Note that our
setup is robot learning friendly, as our method does not require
any instrumentation for acquiring reward and state information
in the target environment.

Our contributions are threefold: (1) we propose a grounded
environment model that can handle both visual and dynamics
domain gaps, (2) we propose IDAPT, a novel policy transfer
method with iterative environment grounding that gradually
improves the grounded environment and policy, and (3) we
develop a benchmark of locomotion and robotic manipulation
tasks for policy transfer across both visual and dynamics
domain gaps. On this benchmark, we demonstrate that our
method can effectively transfer a policy to target environments
with large visual and dynamics domain gaps where previous
policy transfer approaches fail.

II. RELATED WORK

Efficient policy transfer between two different domains
is a promising research direction for robot learning with
applications in simulation-to-real and real-to-real transfer.
However, the existence of visual and dynamics domain gaps
between environments makes policy transfer challenging. The
most naive approach is to finetune the policy in the target
environment [29, 15]. But, this is often not feasible if the
reward function is not available at deployment and it requires
a lot of expensive real-world interactions.

Instead of finetuning, domain randomization approaches
randomize parameters of the source environment during train-
ing, resulting in a policy robust to a wide range of domains.
Although domain randomization demonstrates promising results
in manipulation [33, 12, 21] and locomotion [22], this approach
is hardly applicable to real-to-real transfer scenarios, where the

environment is not easily modifiable. It has also shown limited
generalization as the domain gap becomes larger or if the target
environment is outside of the training randomization range, as
we show in Fig. 6. Similarly, a variety of approaches have been
proposed to train a policy robust to domain gaps through adding
random noise [11], learning domain-invariant features [7], or
adversarial training [6, 23, 26]. Yet, these approaches also work
on a limited target domain distribution.

Another avenue of work adapts a policy to a specific target
domain by learning visual correspondences [2, 28] to address
the visual gap across domains (e.g. simulation rendering to
real-world image) . Visual correspondences can be learned
from unpaired data by optimizing cycle-consistency losses [36]
with additional regularization, such as Q-function prediction
from offline data [28] or task success prediction [2]. However,
even with the perfect visual correspondences, policy transfer
can fail if the dynamics or physical properties of the target
environment differ from those during training.

To bridge the dynamics gap between environments, prior
approaches learn an action transformation to compensate
the dynamics mismatch between domains based on learned
dynamics models, explicitly [9, 5, 20] or implicitly [4, 16].
One application of this action transformation is environment
grounding, which grounds the source environment in the target
environment, and trains a policy on the grounded environment.
The learned action transformations are used to modify the
source environment such that the grounded source environment
dynamics more closely match the target environment dynamics.
Then, a policy can be trained on this grounded environment,
resulting in better transfer to the target environment. Yet, these
methods only work when the source and target environments
share the same state space, and hence cannot handle policy
transfer with visual domain gaps.

Recently, Zhang et al. [35] proposes to learn cross-domain
correspondences for policy transfer across input modalities
and physics differences, but their approach is limited to state-
based policies in the source environment and is not suitable for
transferring visual policies. In contrast, our method learns to
close both the visual and dynamics domain gaps making policy
transfer possible without the assumption of shared dynamics
or the availability of a low-dimensional state representation.

III. APPROACH

In this paper, we aim to address the problem of transferring
a policy from a well-instrumented and controlled environment
to a target environment with minimal task information (i.e.
no reward and state information). However, in many robotics
setups, policies trained in the source environment struggle at
performing the learned task in the target environment due to
the visual and dynamics differences. To overcome such domain
gaps, we introduce IDAPT, a novel policy transfer method with
iterative environment grounding. The key goal is to learn a
grounded source environment that mimics that target domains
so that a policy trained in this grounded environment can then
directly be executed in the target environment.
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Fig. 2: Our approach, IDAPT, alternates between two stages: (1) source environment grounding and (2) policy training. We
ground the source environment in the target environment by learning visual (purple) and action (yellow) transformations. During
the grounding stage, we first train the visual transformation on unpaired images, and then train the action transformation. During
policy training, we fix the grounded environment and optimize the policy using RL.

A. Problem Formulation

We consider an RL framework for policy transfer of a task
from a source environment S to target environment T . The task
is defined by a shared state space S , action space A, and reward
function R : S ×A → R. The source and target environments
have different visual observation spaces, OS and OT , and
transition functions, T S : S ×A → S and T T : S ×A → S,
respectively. Note that the source environment provides full
access to reward rS , visual observation oS , and state sS , while
the target environment only provides visual observations oT .
Given a time horizon H and discount factor γ ∈ [0, 1], our
objective is to learn the optimal visual policy π∗(at|oTt ) that
maximizes the expected return in the target environment:

J(π) = Eτ∼p(τ |π,T T )

[
H∑
t=0

γtrt

]
. (1)

Due to the differences in observations and transition functions,
this is not equivalent to maximizing the expected return in the
source environment and results in different optimal policies.

In addition, we assume access to task-agnostic datasets
of unpaired visual observations in both domains, DSo =
{(oSt , sSt ), (oSt+1, s

S
t+1), · · · } and DTo = {oTt , oTt+1, · · · }. These

task-agnostic datasets do not need to align with the current task,
and therefore they can be collected via autonomous exploration,
hand-specified calibration sequences, or policies trained for
other tasks. However, we assume the datasets share similar
underlying state distributions, i.e., they are collected by similar
policies.

B. Iterative Domain Alignment for Policy Transfer

To overcome domain gaps for policy transfer, IDAPT iterates
between (1) source environment grounding; and (2) policy
training, as illustrated in Fig. 2:

• Source environment grounding: we learn a visual trans-
formation and action transformation that compensate for
the visual and dynamics domain gaps between the two
environments from unpaired trajectories.

• Policy training: the grounded environment acts as a proxy
for the target environment, providing interactions with
reward to train a policy.

We first initialize the grounded environment by training the
visual transformation on the unpaired, task-agnostic dataset of
images and initializing the action transformation as the identity
function. From the following grounding step, we collect task-
relevant trajectories using the learned policy to improve both
transformations. For every environment grounding iteration, we
further train our policy in the improved grounded environment.
Since we do not have access to paired data or expert task
data, the transformations for grounding are trained with the
unpaired, sub-optimal data. However, as the learned policy
generates still sub-optimal but more task-relevant data, the
visual and dynamics transformations become more accurate
around the task-relevant state and action spaces. The improved
grounding improves policy transfer as the domain gaps between
the grounded environment and the target environment shrink.
Therefore, we iterate over these two stages to gradually improve
the alignment between the grounded and target environments
and the performance of the policy. The entire training procedure
is outlined in Algorithm 1.

C. Learning Grounded Environment

The goal of this step is to ground the source environment
both visually and physically using unpaired source and target
environment trajectories. As the grounded environment is closer
to the target environment, the policy trained in the grounded
environment transfers better than one trained in the original
source environment.
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As illustrated in Fig. 2 (right), our grounded source environ-
ment is composed of three components: the source environment
S, visual transformation G : OS → OT , and action transfor-
mation F : OT × A → A. With these transformations, we
ground the source environment by:

(1) Translating the source observation to the target domain,
ôTt = G(oSt ).

(2) Translating the target action to the source action to
compensate dynamics mismatches, âSt = F (ôTt , a

T
t ).

(3) Rolling out the source environment, oSt+1 = T S(oSt , âSt ).
(4) Translating the next source observation to the target

domain, ôTt+1 = G(oSt+1).

Through this process, the grounded environment can simulate
the target environment by taking aTt and providing ôTt+1. In
addition, this grounded environment can provide the task reward
r̂Tt = rSt , which is not available in the target environment.

To achieve a transferable policy, it is crucial for the grounded
environment to simulate the target environment as closely as
possible. In the rest of this section, we explain how to efficiently
learn accurate grounding by learning a visual transformation
and action transformation from limited target environment data.
For each grounding step, we train the transformations with 1k
target environment samples.

1) Learning Visual Transformation: To transfer a visual
policy, the visual domains during training and deployment
should be similar. To match the domains, we ground the source
environment to be visually similar to the target environment
by learning a source-to-target visual transformation G.

The visual transformation is first initialized using the task-
agnostic datasets {DSo ,DTo }, and then we iteratively improve
it with online datasets {DSonline,DTonline} collected using the
current policy. This serves to improve the transformation in
the task-relevant observation spaces which may not be well
represented in the initial task-agnostic datasets.

We train our visual transformation using an unsupervised
image-to-image translation method, CycleGAN [36], which
optimizes the cycle-consistency loss between two domains.
However, due to the lack of paired images, the resulting visual
transformation can map semantically incorrect images, e.g.,
change the arrangements of objects in the scene. To ensure the
state information is preserved across domains (i.e. the domains
are semantically aligned), we propose a state reconstruction
regularization, which encourages the source state and the
predicted state from the translated observation to be the same.
Note that the state reconstruction can be replaced with any
form of self-supervision, such as a robot state or reward.

Since the target environment does not provide the state
information, we cannot directly train a target state predictor.
Instead, we first train a source state predictor s = PS(oS) using
the source domain dataset DSo with state labels, and generate
pseudo-labeled target domain dataset {(G(oS), s)|(oS , s) ∈
DSo } to train the target state predictor s = PT (oT ). Using
this target state predictor, we can compute the state reconstruc-
tion regularization loss ‖PT (G(oS)) − s‖1. We can jointly
train the visual transformation and target state predictor by

oS
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Fig. 3: To train the visual transformation, we first train the
source state predictor (left bottom) with image-state pairs from
the source environment, and copy its weights to the target state
predictor. Then, we train image translation models (purple) and
the first layer (conv1) of the target state predictor jointly using
the CycleGAN loss and state reconstruction regularization.

optimizing the CycleGAN objective with state reconstruction
regularization:

Lvisual = LCycleGAN (oS , oT ) + λ‖PT (G(oS))− s‖1,
(2)

where λ is a weighting factor for the regularization. For correct
visual alignment, we encourage the state predictors to extract
the shared state information: we initialize the target state
predictor with the weights of the source state predictor and
finetune only the top layer (conv1) in the target domain [1, 14],
as illustrated in Fig. 3. During subsequent iterations, we follow
the same procedure of first training PS and copying its weights
to PT , then jointly training the rest of the model to finetune
to task-relevant data.

2) Learning Action Transformation: In addition to the
visual domain gap, physical differences (e.g. friction, mass,
robot calibration) hinder policy transfer to the target domain.
To deal with the discrepancy between the dynamics of the
source and target environments, we learn an action transforma-
tion [9, 5, 16, 4] that compensates for the dynamics mismatch.
We learn the action transformation F (aS |oT , aT ) from a target
domain observation-action pair to a source domain action such
that the resulting transition in the respective environments
is the same. This grounds the source environment in the
target environment’s dynamics, and thus a policy trained in
the grounded environment can generate the same trajectories
in the target environment.

However, prior grounded action transformation approaches
require access to a shared, low-dimensional state space across
domains and are not suited for visual observations with
domain gaps. Since our goal is to solve more realistic cases
where the target environment does not provide access to such
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Algorithm 1 Iterative Domain Alignment for Policy Transfer

1: Input: Task-agnostic dataset {DSo ,DTo }, number of ground-
ing steps N

2: Randomly initialize policy π and visual transformation G
3: Initialize action transformation F as identity function
4: Pretrain source state predictor PS on DSo
5: Optimize G with PT to minimize Equation 2 on {DSo ,DTo }

6: for i = 1, 2, · · · , N do
7: Optimize π in grounded environment with RL
8: Roll out π in target environment to obtain DTonline
9: Roll out π in grounded environment to obtain DSonline

10: Finetune PS , G, and PT on {DSonline,DTonline}
11: Optimize F with GARAT on DTonline
12: end for
13: Output: Policy π to deploy in target environment

information, we extend the grounded action transformation to
image observations with visual domain differences. We use the
visual features fπ(oT ) generated by the policy network (i.e.
output of the convolutional layers of the policy network) as a
proxy for the state since the policy extracts low-dimensional
representations that contain task-relevant information. Since fπ
is trained on the target domain we can directly use it to encode
target domain observations into proxy states. In the source
domain, we can use the visual transformation G to obtain the
corresponding target domain observation, fπ(G(oS)). Hence,
we can use fπ to generate a shared feature space to act like
proxy states for both source and target domain observations.

To efficiently learn an action transformation on our proxy
state representation, we use the state-of-the-art grounded action
transformation method, GARAT [4] – which requires only a
few target domain trajectories – by framing our problem as
an adversarial imitation learning from observation problem in
the source environment. Specifically, the action transformation,
recast as the agent, transforms actions between domains such
that the resulting transitions in the source environment resemble
the transitions gathered in the target environment, thereby
correcting for any dynamics differences. We implement GARAT
using GAIfO [34] and PPO [30].

D. Policy Training

With the grounded environment, a policy π(aT |oT ) can be
trained using any RL algorithm as if it were trained on the
target environment. The policy learns to maximize the expected
return from the grounded environment:

Ĵ(π) = Eτ∼p(τ |F (G,π◦G),T S)

[
H∑
t=0

γtr̂t

]
. (3)

In this work, we use Asymmetric SAC [24] for policy training,
a variant of SAC [8] that is efficient for learning an image-based
policies by using state-conditioned critics.

Even though the policy only learns from the grounded
source environment interactions, we can directly execute this

policy on the target environment as our learned transformations
effectively close the domain gaps between the source and
target environments. This makes IDAPT well suited for cases
where task supervision is not available and data collection
is expensive or dangerous in the target environment. Instead,
IDAPT efficiently learns the visual transformation and action
transformation using a few target domain interactions, and then
trains a policy by fully utilizing rich, cheaply obtained data
from the well instrumented and controlled source environment.

The initial task-agnostic dataset may not be sufficient to train
a grounded environment accurate enough to learn a transferable
policy. Hence, we improve the grounded environment using
the task-relevant data collected by the updated policy, and then
train the policy again using the better grounded environment.
We iterate between these two stages to gradually improve
the grounded environment and the policy. The entire training
procedure is outlined in Algorithm 1.

IV. EXPERIMENTS

In this paper, we propose a policy transfer method with
iterative grounding across visual and dynamics domains without
task supervision in the target environment. IDAPT iteratively
learns visual and action transformations with limited target en-
vironment data, uses these transformations to ground the source
environment such that it mimics the target environment, and
then trains a transferable policy in the grounded environment
with rewards from the source environment.

Through our experiments, we aim to answer the following
questions: (1) Can IDAPT effectively transfer a policy across vi-
sual and dynamics differences with minimal target environment
interactions? (2) How does IDAPT scale to wider domain gaps
when compared to prior work? (3) Can the iterative training
process overcome poor initial datasets?

A. Experimental Setup

To test how well IDAPT transfers a policy with various visual
and physical domain gaps, we design two benchmark target
environments, one with smaller domain gaps (Target-easy) and
one with larger domain gaps (Target-hard), on five simulation-
to-simulation transfer tasks: classic inverted pendulum, two
locomotion, and two robotic manipulation tasks. We vary both
physical parameters and visual appearances for the source and
target environments. The changes are summarized in Table I
and Fig. 4.

For the evaluation metric of a policy transfer, we use the
target domain performance (reward or success rate). For all
methods and tasks, we report the average target environment
performance and standard deviation over 5 random seeds unless
otherwise stated.

B. Baselines

To provide baselines for policy transfer performance, we
evaluate multiple representative policy transfer methods that
can handle visual and dynamics domain gaps as following:
• Domain Randomization (DR) [33, 21] learns robust

policies by randomizing the source environment’s visual
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Source Target-easy Target-hard

(a) InvertedPendulum

(b) HalfCheetah

(c) Walker2d

(d) Fetch-Reach

(e) Sawyer-Push

Fig. 4: Visualize source domain (left) and target domains
with small (middle) and large (right) domain gaps. While the
target-easy environments slightly differ in color and lighting
condition, the target-hard environments include drastic changes
in camera viewpoint, texture, and background. Especially in
the manipulation tasks, we use the Unity3D rendering engine
to make the target-hard environments look more realistic.

and dynamics parameters, including color, texture, lighting,
viewpoint, friction, and armature. In order to provide a
fair comparison, we define the randomization ranges to
include both source and target environments (DR-Wide).
For the cases where the DR policy is unable to learn to
cover the full range, we also include a policy trained with
a smaller randomization range (DR-Narrow) that only
includes source and target-easy domains.

• Adaptive RL learns a robust adaptive policy under domain
randomized environments that can identify and adapt to

Task Parameter Source Target
Easy Hard

InvertedPendulum Pendulum mass 4.895 50 200

HalfCheetah Armature 0.1 0.18 0.4

Walker2d Torso mass 3.534 5.4 10.0

Fetch-Reach Action Rotation 0 30 45◦
Action Bias 0 0 -0.5

Sawyer-Push Puck mass 0.01 0.03 0.05

TABLE I: Dynamics differences between source and the two
target domains. We chose different physical parameters to vary
for each environment that would affect transfer performance.

the current domain on the fly. This allows the policy to be
more flexible and accommodate a wider training range of
domains. We implement this with an LSTM-based policy.

• Learning Cross-Domain Correspondence (CC) [35]
utilizes a learned observation mapping and an action
mapping to transfer a policy across input modalities
and dynamics domains. CC addresses difference in input
modalities instead of visual domain gap so we use two
different modes for an informative comparison. CC-State
learns a state-to-state observation mapping to transfer a
state-based policy across dynamics differences. CC-Image
learns a state-to-image observation mapping to transfer
a policy across input modalities and dynamics domains.
CC uses a dataset of 50k samples from both domains.
We additionally make CC iterative by gathering 1k target
environment samples using the trained mappings between
every iteration.

• IDAPT (our method) takes iterative grounding and policy
training steps, as described in Section III-B. For these
experiments, we start out with a dataset of 20k images
from both domains and additionally collect 1k target
environment samples per grounding step. We execute
5 grounding steps for target-hard environments and 1
grounding step for target-easy environments. This results
in a total data usage of 25k interactions which is 50% of
that of the CC baselines.

For further implementation details, please refer to appendix,
Section D for environments, Section E for baseline implemen-
tations, Section F for our method.

C. Inverted Pendulum

We first examine the InvertedPendulum task, which is
a classic continuous control task [3]. We create the target
environments by changing the pendulum mass, color, and
background color. For the target-hard environment, we make
these changes more significant, tilt the camera angle, and
change the background texture. We collect trajectories of 20k
images by taking random actions for the task-agnostic dataset.

Fig. 6a shows that our method outperforms baseline methods
in transferring to both target-easy and target-hard domains.
Moreover, IDAPT shows a high target data efficiency as
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(a) InvertedPendulum (b) HalfCheetah (c) Walker2d

(d) Fetch-Reach (e) Sawyer-Push

Fig. 5: Performance of policies when evaluated in the target-hard domain. We report success rates for manipulation tasks and
reward for other tasks. For CC and IDAPT, we report performance after each training iteration. The remaining methods do not
take online target environment interactions so we report their final evaluation performance after training. For IDAPT, we use a
backwards walking dataset for (b), (c) and randomly collected datasets for all other tasks. IDAPT (Visual Only) ablates our
action transformation (over 3 random seeds). We evaluate the mean performance over 100 episodes for all methods. The results
with normalized rewards can be found in appendix, Fig. 8.

it achieves nearly maximum reward starting from the first
grounding step, as shown in Fig. 5a.

We can also observe that DR-Narrow and DR-Wide achieve
60% and 40% success rates on the target-easy domain but fail
to generalize to the target-hard domain. Our results show that
with the smaller randomization range, DR-Narrow learns the
task well but fails to generalize beyond the training domain
distribution. In contrast, DR-Wide is difficult to train as the
resulting policy must learn to cover a large range of visual and
physical domains; but once trained, it can perform better in
the target environment with a large domain gap.

D. Locomotion

HalfCheetah and Walker2d are two representative loco-
motion tasks [3]. For dynamics domain shifts, we vary
the armature [35] and torso mass [4] for HalfCheetah and
Walker2d, respectively. For the visual domain shifts of the
target-easy environment, we make small changes in the agent
and background color. For the target-hard environment, we
create a domain gap in the visual style of DeepMind Control
Suite [32] and change the camera viewpoint.

To study the effect of different datasets for initial visual
transformation training for IDAPT and correspondence training
for CC, we collect two task-agnostic datasets, one using random
actions and one with a policy trained to walk backwards.
In the following results, we first compare absolute transfer

performance by reporting the best performance out of the two
datasets (random for CC, backwards for ours). We then do an
analysis on the effect of dataset quality in Section IV-F.

In the target-hard environment of HalfCheetah, DR-Wide
performs better than IDAPT (see Fig. 5b), while Adaptive
RL performs comparatively. We hypothesize that the stable
agent pose and relative ease of the task can allow a policy
to find conservative actions that work with a large range
of dynamics. On the other hand, learning explicit domain
correspondences can still have some errors, resulting in poorer
policy performance. While CC-State also outperforms IDAPT,
the performance difference to CC-Image demonstrates the
added difficulty of the visual domain gap.

The Walker2D character is an example of a locomotion
problem that is less stable and more prone to falling. Here, we
demonstrate the relative advantage of IDAPT for more difficult
control tasks where domain differences are more crippling.
IDAPT is able to achieve up to 75% of the upper bound value
Fig. 8c while the baselines cannot improve much beyond direct
transfer. In fact, the strongest baseline here is DR-Narrow, but
it does not generalize well to the target-hard task outside of
its training distribution. In contrast, DR-Wide fails to learn a
good policy for any domain because the randomization range
required to fit the target environment is too challenging for
this type of control task.
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(a) InvertedPendulum (b) HalfCheetah (c) Walker2D

(d) Fetch-Reach (e) Sawyer-Push

Fig. 6: Performance of policies transferred to the target domains with different domain gap sizes, target-easy and target-hard.
Our proposed approach, IDAPT, outperforms the baselines on most environments and scales better to larger domain gaps.

E. Manipulation

We evaluate our method in two robotic manipulation tasks
with the 7-DoF Fetch robot: Fetch-Reach [25] and the 7-DoF
Rethink Sawyer robot: Sawyer-Push. The robot must move
its end effector to a goal position in Fetch-Reach or push a
puck to a target position for Sawyer-Push. For the target-easy
domain, we simply change colors, lighting conditions, and
viewpoint (Fetch-Reach only); but in the target-hard domain,
we emulate a realistic visual gap by generating more realistic
backgrounds using Unity3D and changing viewpoint. The
dynamics differences for Sawyer-Push come from puck mass.
In Fetch-Reach we bias and rotate the input actions to model
calibration error. For the initial target domain dataset, we collect
20k images from either domain with random end-effector
control.

In Fetch-Reach, IDAPT achieves greater than 90% success
rate in both domain gaps (see Fig. 6d), demonstrating a
robustness to a wide visual gaps. The visual transformation
can handle drastic changes in viewpoint and background, as
well as the more realistic rendering. In addition, we attain a
good success rate in just one grounding step (see Fig. 5d),
showing the effectiveness of our grounded environment with
only a few target environment interactions.

In Sawyer-Push, IDAPT achieves a 75% success rate in five
grounding steps. This task is more difficult due to the wide
visual domain gap as well as the varying mass of the object

which can be hard to adapt to based on task-agnostic data.
The increasing learning curve in Fig. 5e shows the benefit of
iterative domain alignment: IDAPT shows low performance
for the first three grounding steps but as the visual and
action transformations provide better grounding of the source
environment, the policy successfully transfers to the target
environment. Moreover, in the initial dataset, the robot is very
unlikely to have moved the puck, making it difficult for CC
and IDAPT to model the puck dynamics or generate the correct
visual translation, therefore failing to transfer a policy. Both
iterative CC and IDAPT are improved over multiple iterations
as the transformation is finetuned over a better data distribution.

F. Effect of Initial Dataset Quality

One critical factor for successful domain adaption is the qual-
ity of the data used to train transformations or correspondences,
specifically its relevance to the current task. If the dataset does
not align with the state distribution or behaviors of the current
task, the learned correspondences may not generalize, and
therefore fail to transfer a policy for the task. We analyze the
effect of dataset quality on the HalfCheetah and Walker2d tasks
for IDAPT and unmodified CC-State (without iterative training).
We use three different datasets, collected by a random policy
(Random), a policy trained to move backwards (Backwards),
and a policy trained on the current task (Expert). Here, the
Random and Backwards datasets do not align well with the
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(a) HalfCheetah (b) Walker2d

(c) HalfCheetah (d) Walker2d

Fig. 7: Performance of policies transferred to the target
domain using initial datasets of different qualities. “Random”
is collected by a random agent, “Backwards” is collected by
an agent walking backwards, and “Expert” is collected by an
expert agent on the current task. We compare performances
of our method and CC-State (top) and performances of our
method over grounding steps (bottom) on different datasets.

task. In all experiments, we use datasets of 20k images in both
domains and 5 grounding steps and CC-State uses 50k images
in both domains following its original experimental setup [35].
We report the final transfer performance in terms of reward in
Fig. 7.

With the exception of HalfCheetah Random data, IDAPT
consistently achieves better transfer than CC-State. With our
iterative training procedure we can obtain better task-aligned
data through training, which mitigates the effects of a poor
initial dataset. In Walker2d, IDAPT actually performs better
with the Backwards dataset rather than the perfectly aligned
Expert data. We hypothesize that this is due to the expert policy
in this task having little variability in its behavior, resulting
in an image translation that does not generalize well to an
imperfect agent, making policy training harder. Meanwhile, the
backwards policy generated a wide range of poses resulting in
a more robust image translation for training that can be later
improved. While alignment of both datasets with the current
task and the breadth of its distribution are key factors that
affect the quality of a learned transformation, through iterative
grounding, IDAPT is able to partially overcome this issue.

We further examine the use of mixed datasets, “Ran-
dom+Expert” and “Random+Backwards+Expert”, consisting of
trajectories gathered from multiple different policies. In Fig. 7c
and Fig. 7d, it is clear that the choice of dataset impacts transfer
performance. Notably, the Random dataset performs worst and

is unable to improve over multiple grounding steps. Meanwhile,
the “Random+Backwards+Expert” dataset generally performs
well, suggesting that in practice, a mixture dataset of many
different behaviors will likely perform well even if some
of those behaviors on their own would not result in good
transformations.

G. Ablation on Action Transformation

To verify the importance of closing dynamics domain gaps,
we compare the performance of IDAPT with and without
the action transformation. In the ablated model, we only
train the visual transformation during the grounding step and
apply actions directly in each environment. Fig. 5 shows
a large drop in performance compared to our full model,
which quantifies the performance gains by correcting the
dynamics gap. Furthermore, with the dynamics domain gap,
the distribution of the online target environment data can be
far from the source environment data. When this happens, the
quality of the translation will not improve and can lead to
worse transfer performance when dynamics differences are
unaccounted for. Thus, it is vital that IDAPT addresses both
visual and dynamics domain gaps for the full benefits of
iterative grounding.

H. State Reconstruction Regularization for Visual Transforma-
tion Training

We ablate the state reconstruction regularization in our visual
transformation model. We train IDAPT with and without the
state reconstruction regularization and compare performance on
the target environment with only the visual domain gap during
the initial policy training phase. The results demonstrate that
in general, our model with state reconstruction regularization
achieves better transfer performance (see appendix, Fig. 10).

We further perform the same ablation on target-hard environ-
ments over multiple grounding steps. The results in appendix,
Fig. 11 show that the state reconstruction regularization
improves performance significantly over all environments.
Qualitatively, we observe that the regularization helps minimize
artifacts and stabilize CycleGAN training, resulting in better
visual transformations.

V. CONCLUSION

We propose IDAPT, a novel policy transfer approach that
addresses visual and dynamics domain gaps with minimal
assumptions in the target environment by grounding the
source environment in the target environment with a visual
transformation and action transformation between domains.
IDAPT iteratively updates the transformations and optimizes
a policy in the grounded environment to progressively align
the domains and train a policy. We demonstrate that IDAPT
outperforms domain randomization methods which struggle
to learn in high randomization regimes. IDAPT is designed
for target environments that have difficulties in collecting task
supervision and interactions, which is not limited to sim-to-
sim transfer. Therefore, applying IDAPT to sim-to-real and
real-to-real policy transfer is a promising future direction.
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[31] Francisco Suárez-Ruiz and Quang-Cuong Pham. A frame-
work for fine robotic assembly. In IEEE International
Conference on Robotics and Automation, pages 421–426,
2016.

[32] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez,
Yazhe Li, Diego de Las Casas, David Budden, Abbas
Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P.
Lillicrap, and Martin A. Riedmiller. Deepmind control
suite. arXiv preprint arXiv:1801.00690, 2018.

[33] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Woj-
ciech Zaremba, and Pieter Abbeel. Domain randomization
for transferring deep neural networks from simulation to
the real world. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 23–30. IEEE,
2017.

[34] Faraz Torabi, Garrett Warnell, and Peter Stone. Generative
adversarial imitation from observation. arXiv preprint
arXiv:1807.06158, 2018.

[35] Qiang Zhang, Tete Xiao, Alexei A Efros, Lerrel Pinto, and
Xiaolong Wang. Learning cross-domain correspondence

for control with dynamics cycle-consistency. In Inter-
national Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=QIRlze3I6hX.

[36] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In IEEE International
Conference on Computer Vision, pages 2223–2232, 2017. ���

https://openreview.net/forum?id=QIRlze3I6hX


APPENDIX

A. Results on Normalized Reward

In addition to Fig. 5, we report the normalized results for the
experiments in Fig. 8. For each task, we normalize the reward
or success rate between the target environment performance
of a policy trained in the source environment (lower bound)
and target environment (upper bound). In every task except
HalfCheetah, IDAPT results in more than 50% of the optimal
performance.

(a) InvertedPendulum (b) HalfCheetah

(c) Walker2d (d) Fetch-Reach

(e) Sawyer-Push

Fig. 8: Comparisons of all methods on the target-hard task
with normalized rewards. The lower bound is the performance
of a policy trained in the source environment, then evaluated
in the target. The upper bound is a policy training directly in
the target environment.

B. Additional Analysis

1) Data Accumulation: For each grounding step, we chose
to use the online dataset of 1k interactions to finetune the
visual transformation model. An alternative would be to use
the accumulated data gathered at each grounding step along
with the large task agnostic dataset to make use of all available
data. We compare the two in Fig. 9 and find that there is no
performance improvement with data accumulation. In fact, we
may have to train for significantly more epochs or use a data
balancing scheme to achieve similar results. We hypothesize
that the use of a small number of finetuning epochs and the
fact that the most recent online dataset is better aligned with

(a) HalfCheetah (b) Walker2d

Fig. 9: Performance of policies transferred to the target domain
using different data accumulation options. For IDAPT (Ac-
cumulate Data), we used double the number of finetuning
epochs.

the task mitigates any issues with forgetting or overfitting and
is more computationally efficient.

(a) InvertedPendulum (b) HalfCheetah

(c) Walker2d (d) Fetch-Reach

(e) Sawyer-Push

Fig. 10: Learning curve of policy in the target visual environ-
ment, without dynamics differences, throughout policy training
in source environment to convergence.

2) Additional Datasets Analysis: The quality of the task-
agnostic dataset can affect the initial grounding of the training
environment. We investigate the effect of using datasets
gathered by different policies (Random, Backwards, Expert) in
HalfCheetah and Walker2d tasks. In addition, we also use mixed
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(a) InvertedPendulum (b) HalfCheetah

(c) Walker2d (d) Fetch-Reach

(e) Sawyer-Push

Fig. 11: Policy transfer performance in target-hard environments
with and without state reconstruction regularization. The results
show that the state reconstruction regularization is essential
for our method to learn the visual transformation.

datasets, “Random+Expert” and “Random+Backwards+Expert”,
consisting of trajectories gathered from multiple different
policies. We look at both the first policy training step in a
target environment with visual domain gap only (Fig. 12)
is isolate the visual domain difference and performance over
multiple grounding steps in the target-hard environment (Fig. 7c
and Fig. 7d). In both cases, it is clear that the choice of
dataset impacts transfer performance. Notably, the Random
dataset performs worst and is unable to improve over multiple
grounding steps. Meanwhile, the “Random+Backwards+Expert”
dataset performs well, suggesting that in practice, a mixture
dataset of many different behaviors will likely perform well
even if some of those behaviors on their own would not result
in good transformations. Furthermore, we see that for most
datasets, the performance does improve over multiple grounding
steps, which allows IDAPT to partially overcome poor initial
transformations.

C. Quality of Visual Transformations

To evaluate the visual transformation quality, we show pairs
of images from target and source domains that share the same
underlying state, and compare the difference between images

(a) HalfCheetah (b) Walker2d

Fig. 12: Learning curve of policy in the target visual environ-
ment, without dynamics differences, throughout policy training
in source environment to convergence. We use different initial
datasets composed of trajectories collected by a random policy,
a policy trained to walk backwards, and the expert policy.

generated by the visual transformation with source domain
images and true target domain images, in Fig. 14. Before
grounding, the puck disappears in the later frames because
the Sawyer rarely moves the puck in the pretraining dataset.
After grounding, our visual transformation learns to translate
the puck position correctly.

In HalfCheetah and Walker2D, we noticed that occasionally
the colors of the checkered floor flipped in the translated image,
resulting in large pixel-wise errors (Fig. 13). The repeated floor
pattern and the gait of the backwards agent used to gather the
initial data result in a uniform floor distribution that makes
it difficult for the CycleGAN to learn the correct alignment.
However, this did not affect the transfer performance of the
policy, demonstrating that the learned policy can be robust to
errors in translation that are task irrelevant. This is possibly
due to an invariance introduced by the random cropping image
augmentation during training.

Source Translated Target Diff

Fig. 13: Translated images across visual domains for the
Walker2D target-easy task using the visual transformation.
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Source Translated Target Diff

(a) Before grounding step

(b) After grounding step

Fig. 14: Translated images across visual domains for the
Sawyer-Push task using the visual transformation after pretrain-
ing (a) and after finetuning with one grounding step (b). Top
row of each section is a series of source environment images,
bottom row is the corresponding translated target environment
image.

D. Environment Details

1) Locomotion Environments: The locomotion environ-
ments are modified from OpenAI Gym [3] and use the same
default action space and visual domain. We created the target-
easy visual domains by varying lighting and background color.
For the target-hard visual domain, we additionally varied
background texture, character color, and viewpoint.

2) Manipulation Environments: Our manipulation environ-
ments included Fetch-Reach which is modified form OpenAI
Gym, and Sawyer-Push which uses a simulation of he 7-DoF

Rethink Sawyer. To create the dynamics of Fetch-Reach target
environment we rotate the action vector around z-axis and add
a bias to the third coordinate of the action vector. For Sawyer,
we vary the friction and mass to create target environment
dynamics. For visual of the target domain, we change colors,
lighting, and viewpoint in easy target environment, and we use
Unity3D rendering with realistic lighting and background in
the hard target environment.

E. Baseline Implementations

1) Domain Randomization Implementation: We imple-
mented domain randomization by modifying simulation parame-
ters every iteration with uniformly sampled random values. The
sampling range for dynamics parameters are specified in Table.
II. Example images of visual randomization we used during
training can be found in Fig. 17 and Fig. 16. Additionally we
use random cropping from 100x100 pixels images to 92x92
pixels. We train InvertedPendulum for 5e4 environment steps,
HalfCheetah and Walker2D for 5e5 steps, and Sawyer-Push
and Fetch-Reach for 1e5 steps. For policy optimization, we use
asymmetric SAC [24] and use the same hyperparameters our
method uses Table III. We include learning curves in Fig. 15.
For some environments, DR-Wide was unable to reach good
performance even in the training environment.

TABLE II: Physics parameters for domain randomization.

Task Parameter Target
Easy Hard

InvertedPendulum Pendulum mass 4 ∼ 55 4 ∼ 220

HalfCheetah Armature 0.08 ∼ 0.25 0.08 ∼ 0.44

Walker2d Torso mass 3 ∼ 6 3 ∼ 11

Fetch-Reach Action Rotation −30◦ ∼ 30◦ −45◦ ∼ 45◦

Action Bias −0.55 ∼ 0 −0.55 ∼ 0.55

Sawyer-Push Puck mass 0.01 ∼ 0.033 0.01 ∼ 0.05
Puck Friction 2 ∼ 3.3 2 ∼ 4.4

2) Adaptive RL Implementation: We use an asymmetric
SAC agent and use LSTM for both actor and critic network.
During training, the agent collects experiences from domain
randomized environments using the same domain randomiza-
tion parameters as DR-Wide. During network updates, we
use randomly sampled sequences of 7 time steps to calculate
actor and critic loss. To initialize LSTM states during network
update, We use stored the internal states of LSTM in both
actor and critic collected during episode rollouts. We use the
same hyperparameters, training steps, and image cropping as
Domain Randomization. We found that adaptive policies are
difficult to train in environments with early termination based
on failure, specifically InvertedPendulum and Walker2D. The
flexibility of the adaptive policy is outweighed by the difficulty
of training in these tasks and would require further engineering
to provide a strong comparison. We include learning curves in
Fig. 15.

3) Cross-Domain Correspondence Implementation: We
use the implementation provided by the authors [35] for
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(a) InvertedPendulum (b) HalfCheetah

(c) Walker2d (d) Fetch-Reach

(e) Sawyer-Push

Fig. 15: Learning curves of baseline methods on training
environments.

cross morphology transfer for CC-State. This model learns
action and state-to-state correspondences to transfer a state-
based policy across dynamics differences. For CC-Image, we
modified the existing cross-modality and cross-morphology
implementations to replicate the cross-physics-and-modality
algorithm to the best of our ability using the same architectures
and implementation details. This model learns action and state-
to-image correspondences to transfer a state-based policy across
dynamics and modality differences. To make this algorithm
iterative, we gather 1k samples from both environments with
the current policy and train the model on the online data for
each iteration.

F. IDAPT Implementation Details

1) Policy Training: We use Asymmetric SAC [24] to learn
an RL policy. The input to the actor is a stack of 3 consecutive
image frames, originally 100x100 pixels and randomly cropped
to 92x92. The input to the critic is the state. The actor network
consists of a 4-layer CNN encoder with output feature space
of dimension 50 and a 2-layer MLP with hidden dimensions
of 1024, whose output parameterizes a Gaussian distribution
over the action space. For InvertedPendulum, Sawyer-Push,
and Fetch-Reach, we train for 1e4 steps per policy training
stage, which takes approximately 20 minutes to train on an
NVIDIA Titan X GPU. For HalfCheetah and Walker2D, we
train for 2e5 steps, which takes approximately 3 hours.

2) Visual Transformation: CycleGAN with Regularization:
We base our CycleGAN implementation on [36] and use
the same hyperparameters and architectures. Additionally,
each state prediction network consists of a 4-layer CNN
encoder with output dimension of 50 and a 2-layer MLP with
hidden dimensions of size 256. To train the source domain
state prediction network, we use the Adam optimizer [17]
with learning rate 3e-4. We initialize the target domain state
prediction network with the weights of the source domain
network and train only the top convolutional layer jointly with
the CycleGAN generator networks. During pretraining, we first
train the source domain state prediction network for 40 epochs,
then train the CycleGAN + target domain state prediction
network for 40 epochs. During finetuning, we train each
network group for 5 epochs. Training time for the initial training
is approximately 8 hours and for finetuning is approximately
20 minutes.

3) Action Transformation: Visual GARAT: We use GAIfO
adversarial training to optimize the action transformation using
a PPO agent with parameters listed in Table. IV. The observa-
tion space of the agent and discriminator is the concatenation
of the policy feature space, f(ot) (dim = 50) and action space
of the environment. The discriminator learns to differentiate
(f(ot), a, f(ot+1)) tuples. The agent and discriminator are both
2-layer MLPs with hidden dimensions of 1024. Following Desai
et al. [4], we add the output of the agent to the original action
and use action smoothing, proposed in Hanna and Stone [9]
with smoothing parameter 0.95, to get the transformed action.
Every grounding step, we train the action transformation for
10 epochs. Training time for the action transformation training
in each grounding step is approximately 30 minutes.

TABLE III: SAC hyperparameters.

Hyperparameter Value

Learning Rate 0.0003
Learning Rate Decay Linear decay
Batch Size 32
# Epochs per Update 10
Discount Factor 0.99
Entropy Coefficient 0.001
Reward Scale 1
Normalization False

TABLE IV: PPO hyperparameters.

Hyperparameter Value

Rollout Size 5000
Learning Rate 0.0003
Learning Rate Decay Linear decay
Batch Size 32
# Epochs per Update 5
Discount Factor 0.5
Entropy Coefficient 0.001
Clipping Ratio 0.1
Normalization False
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(a) InvertedPendulum

(b) HalfCheetah

(c) Walker2d

(d) Fetch-Reach

(e) Sawyer-Push

Fig. 16: Narrow range visualize domain randomization exam-
ples, including color and lighting changes.

(a) InvertedPendulum

(b) HalfCheetah

(c) Walker2d

(d) Fetch-Reach

(e) Sawyer-Push

Fig. 17: Wide range visualize domain randomization examples,
including viewpoint changes and more textures in addition to
color and lighting changes.
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