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Abstract—Robots operating in everyday environments need
to effectively perceive, model, and infer semantic properties of
objects. Existing knowledge reasoning frameworks only model
binary relations between an object’s class label and its semantic
properties, unable to collectively reason about object properties
detected by different perception algorithms and grounded in
diverse sensory modalities. We bridge the gap between multi-
modal perception and knowledge reasoning by introducing an
n-ary representation that models complex, inter-related object
properties. To tackle the problem of collecting n-ary semantic
knowledge at scale, we propose a transformer neural network
that directly generalizes knowledge from observations of object
instances. The learned model can reason at different levels of
abstraction, effectively predicting unknown properties of objects
in different environmental contexts given different amounts of
observed information. We quantitatively validate our approach
against five prior methods on LINK, a unique dataset we
contribute that contains 1457 situated object instances with 15
multimodal properties types and 200 total properties. Compared
to the top-performing baseline, a Markov Logic Network, our
model obtains a 10% improvement in predicting unknown
properties of novel object instances while reducing training
and inference time by 150 times. Additionally, we apply our
work to a mobile manipulation robot, demonstrating its ability
to leverage n-ary reasoning to retrieve objects and actively
detect object properties. The code and data are available at
https://github.com/wliu88/LINK.

I. INTRODUCTION

Robust operation in everyday human environments requires
robots to effectively model a wide range of objects and to
predict object locations, properties, and uses. Semantic task
and object knowledge serves as a valuable abstraction in this
context. Perceiving and understanding semantic properties of
objects (e.g., a cup is ceramic, empty, located in kitchen,
and used for drinking) aids robots in performing many real-
world tasks, such as inferring missing information in human
instructions [52, 12], efficiently searching for objects in homes
[69, 68], and manipulating objects based on their affordances
and states [3, 43, 31].

Prior work has encoded semantic knowledge primarily as
pairwise relations between an object’s class label and its
semantic properties (e.g., the cup is wet, the cup is in cabinet)
[16, 13, 71, 60, 54] (Figure 1 left). These semantic properties
can come from a variety of perception methods, such as the use
of vision to predict visual attributes [23, 49] and affordances
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• Prior work primarily uses binary relations between an object's class label 
and its semantic properties, failing to take advantage of robot observations
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Fig. 1. N-ary relations enable robots to more effectively model complex,
inter-related object properties than binary relations. In our framework, we
learn generalizable n-ary relations from object instances represented as n-ary
observations.

[19, 15], haptic data to identify object materials [33] and
surface textures [14], as well as exploratory actions to detect
object states [61]. However, pairwise encoding of semantic
data fails to take full advantage of such multimodal obser-
vations because it ignores the complex relational structure
between various object properties. For example, observing that
a cup is wet does not help the robot infer that the cup more
likely should be placed in sink than in cabinet.

The objective of our work is to enable robots to collectively
reason about object properties that can be grounded in different
modalities and detected by separate perception algorithms.
Specifically, we situate our work in the task of predicting
semantic properties of objects based on partial observations.
We introduce a novel semantic reasoning framework that
uses n-ary relations to model complex, inter-related object
properties. In addition to modeling relations between object
properties, our framework enables the ability to reason at
different levels of abstraction (Figure 1 middle). For example,
a robot searching for a cup, with no additional information, is
able to perform class-level inference to identify both the cabi-
net and sink as likely locations. Given additional information,
such as wet, n-ary relations enable more refined reasoning and
the ability to detect that wet cups are more commonly found
in sink rather than in cabinet.

A key challenge presented by n-ary representations is the
collection of semantically meaningful n-ary relations, which
require various object properties to be conditioned on each
other. Unlike binary relations which can be created by experts
or crowdsourced at scale [28, 42, 47, 39], n-ary relations
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are difficult to construct manually. In this work, we obtain
n-ary observations, each representing a set of identified se-
mantic properties of an object instance within a particular
environmental context (e.g., a small silver metal cup that
is wet and in sink), from which we then learn a model
capturing generalizable n-ary relations (Figure 1 right). Since
the n-ary relations are learned from object instances, they
also encode knowledge at the instance-level. To mine gen-
eralizable patterns from n-ary observations, we introduce a
transformer-based neural network, inspired by recent advances
in contextualized language models [18, 64]. The model is
trained to reconstruct hidden properties of object instances.
With this self-supervised training objective, our model learns
to generalize n-ary relations, which help predict unobserved
properties of novel object instances.

In summary, our work contributes:
• an n-ary instance-level representation of objects, which en-

ables modeling n-ary relations between multimodal object
properties and variance between object instances,
• a scalable transformer-based neural network which learns

semantic knowledge about objects from data and is capable
of performing inference at different levels of abstraction,
• a dataset, which we call LINK, consisting of 1457 object

instances associated with 15 types of 200 multimodal
properties, the richest situated object dataset to date.

We quantitatively validate our approach against five prior
methods on the above dataset and demonstrate that our rep-
resentation and reasoning method leads to significant im-
provement in predicting unknown properties of novel object
instances over prior state of the art while significantly reducing
computation time. Additionally, we apply our work to a
mobile manipulation robot. We demonstrate that the explicit
representation of n-ary knowledge allows the robot to locate
objects based on complex human commands. We also show
that the learned relations can help the robot infer properties
based on observations from multimodal sensory data.

II. RELATED WORK

Our work is related to the following prior efforts.

A. Semantic Reasoning in Robotics

Many ontologies and knowledge graphs have been used
across AI and robotics to encode general knowledge about
objects (e.g., locations, properties, uses, and class hierarchies)
[41, 54, 60, 38, 63]. In robotics, a key challenge for semantic
reasoning is generalization to previously unseen scenes or
environments. Bayesian logic networks have been used to
cope with noise and non-deterministic data from different
data sources [13]. More recently, knowledge graph (KG)
embedding models were introduced as scalable frameworks
to model object knowledge encoded in multi-relational KGs
[16, 4]. Although the above techniques effectively model
objects, they only support reasoning about binary class-level
facts, therefore lacking the discriminative features needed to
model object semantics in realistic environments.

Other frameworks take a learning approach to modeling
object semantics. Methods for learning relations between ob-
jects, between object properties, and between objects and their
environments have shown to be beneficial for detecting objects
on table tops [36, 27, 51], finding hidden objects in shelves
[48], predicting object affordances [71], and semantic grasping
[3, 43]. However, most methods leverage probabilistic logic
models to learn these relations, which have scalability issues
that limit them from modeling inter-connected relations in
larger domains [51, 48, 71, 3]. In contrast, our proposed
framework learns n-ary relations between 15 property types
and 200 properties, the richest representation to date.

Our approach is also related to methods for modeling
objects from sensory data. In computer vision, object attributes
are extracted from images [23, 22, 57]. Recent techniques
in visual question answering [49] and language grounding
[55, 32] allow robots to answer questions about objects and
describe objects with natural language. Haptic [45, 40] and
auditory data [20, 25] have also helped robots interpret salient
features of objects beyond vision. Interactive perception can
further leverage a robot’s exploratory actions to reveal sensory
signals that are otherwise not observable [9, 56, 14, 61, 2, 8,
59]. We consider our approach complimentary to the above, as
our framework can leverage the rich semantic information ex-
tracted from these methods to infer additional unknown object
properties. Our work shares the same goal as a recent work
that builds robot-centric object knowledge from multimodal
sensory data [62].

B. Modeling N-Ary Facts

Our neural network model is closely related to methods
developed in the knowledge graph community. Many relational
machine learning techniques, including most recent trans-
former models [65, 10], have been developed for modeling
KGs and in particular predicting missing links in KGs [50].
These techniques treat a KG as set of triples/binary facts,
where each triple (h, r, t) links two entities h and t with
a relation r (e.g., (Marie Curie, educated at, University of
Paris)). Despite the wide use of triple representation, many
facts in KGs are hyper-relational. Each hyper-relational fact
has a base triple (h, r, t) and additional key-value (relation-
entity) pairs (k, v) (e.g., {(academic major, physical), (aca-
demic degree, Master of Science)}). A line of work converts
hyper-relational facts to n-ary meta-relations r(e1, ..., en) and
leverages translational distance embedding [66, 70], spatio-
translational embedding [1], tensor factorization [44] for mod-
eling. Other approaches directly learn hyper-relational facts in
their original form using various techniques, including con-
volutional neural networks, graph neural networks, and trans-
former models [53, 24]. A representation of hyper-relational
facts more closely related to our work is used by [26]. This
approach unifies n-ary representation by converting the base
triple to key-value pairs; it uses convolutional neural network
for feature extraction and then models relatedness of role-value
pairs with a fully connected network. In our work, we model
facts with much higher arities than existing work in the KG
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TABLE I
COMPARING AVAILABLE DATASETS FOR LEARNING OBJECT SEMANTICS.

Dataset Application # Object Classes # Object Instances # Properties # Property Types Situated Complete Annotation

Shop-VRB [49] Vision & Language 20 66 99 6 X
GoLD [32] Language Grounding 47 207 / /
Thomason 2018 [61] Interactive Perception 4 32 81 6 X X
Zhu 2014 [71] Knowledge Base 40 4000 97 4 X
Paolo 2019 [3] Semantic Grasping 8 30 44 5 X
AI2Thor [35] Simulation / 125 28 6 X
Ours Semantic Reasoning 11 98 200 15 X X

cup

n-ary fact: 
{class: cup, color: red, material: plastic, transparency: 
opaque, physical property: compressible, dimension: 
short, dimension: wide, dimension: big, shape: 
hollow, shape: curved, cleanliness: dirty, dampness: 
wet, content: full, temperature: room temperature, 
room: kitchen, location: on counter, price: $0.1, 
weight: 0.6 ounces , size: 4.3 x 3.5 x 3.5 inches}

bowl box …
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…
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Fig. 2. An example of the collected data showing various cups and diverse environmental contexts each of these instances can be found in. Pictures at the
situated object instance level are for illustration but correspond to descriptions of the contexts in our dataset. Each situated object instance has a corresponding
fully annotated n-ary observation (bottom left).

community and directly reason about n-ary relations between
role-value pairs using the transformer model.

III. PROBLEM DEFINITION

Given a set of observed/known object properties, we aim to
predict an unobserved/unknown property of a novel situated
object instance using semantic knowledge learned from data.
We define a situated object instance as a particular specimen of
a given object class within a particular environmental context
(e.g., the full red Solo cup on the kitchen counter). The object’s
semantic representation encodes properties grounded in differ-
ent modalities, and includes both immutable properties (e.g.,
class, material, shape, and hardness) and mutable properties
(e.g., location, clealiness, fullness).

We use the n-ary representation to model all object data.
Each n-ary relation is defined by a set of role-value pairs
{ri : vi}, where ri ∈ R is the role set, vi ∈ V is the value
set, and i = 1, ..., n. The value n represents the arity of the
relation. In the context of modeling object semantics, each role
corresponds to a property type and each value corresponds to a
property value. In this representation, our task can be formally
written as {r1 : v1, ..., rn−1 : vn−1, rn :?}, where n − 1 is
the number of known properties, and rn is the type of the
property being queried. The number of known properties n
determines the level of abstraction for the query. A smaller n
queries more abstract semantic knowledge (e.g., {class: cup,
material: ?}) and a larger n queries more specific semantic
knowledge (e.g., {class: cup, transparency: opaque, physical
property: hard, color: brown, material: ?}).

IV. LINK DATASET

In this section, we present the content and features of the
LINK dataset for Learning Instance-level N-ary Knowledge.
Our dataset contains 1457 fully annotated situated object
instances. In Table I, we compare the content of our dataset
to a representative set of data sources from the computer
vision, natural language processing, and robotics communities;
as can be seen, our dataset has the most diverse set of property
types and property values, leading to much richer and more
realistic object representations. Properties in our dataset are
inherently multimodal, which help bridging robots’ perception
and reasoning. In addition to visual attributes, we intentionally
model properties that are hard to extract from visual data (e.g.,
dampness and temperature). Our dataset represents variance
between object instances by having on average of nine objects
per class. Objects in different situations are captured by
mutable properties such as location, cleanliness, temperature,
and dampness. Furthermore, our dataset provides complete and
logically coherent annotations (truth values) of all properties
for each situated object instance. Figure 2 illustrates the hier-
archy of objects in our dataset, which facilitates the learning
of generalizable n-ary relations between object properties at
different levels of abstraction.

A. Objects and Properties

Our dataset contains 98 instances of everyday household
objects organized into 11 object classes. For each object class,
we selected objects diverse in sizes, geometries, materials,
visual appearances, and affordances from the Amazon product
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TABLE II
OBJECT CLASSES AND PROPERTIES IN OUR DATASET.

Type (# Value) Values

class (11) bottle, bowl, box, brush, can, cup, fork, ladle, pan, spatula, sponge
material (8) ceramic, foam, glass, metal, paper, plastic, porcelain, wood

transparency (3) opaque, translucent, transparent
dimension (10) big, deep, long, narrow, shallow, short, small, thick, thin, wide

physical property (6) absorbent, compressible, elastic, fragile, hard, soft
shape (9) angular, blunt, curved, flat, forked, hollow, irregular, sharp, straight

*temperature (3) cold, hot, room temperature
*fullness (3) empty, full, half

*dampness (3) damp, dry, wet
*cleanliness (3) clean, dirty, normal

price (3) cheap, expensive, medium
weight (3) heavy, light, medium

size (3) large, medium, small
*room (11) balcony, bathroom, bedroom, child’s room, closet, dining room,

garage, kitchen, laundry, living room, study
color (15) black, blue, bronze, brown, clear, colorful, gold, green, orange,

pink, purple, red, silver, white, yellow
*location (117) in bag, in basket, in bathtub, in bin, in box, in bucket, in cabinet,

in cooler, on bathtub, on bed, on bench, on bookshelf, ...

website. We created the initial set of 83 properties (the
additional 117 location properties are crowdsourced) from
adjectives that people use for describing objects [46]. We then
followed GermaNet1 [29] to categorize these properties into
15 distinct types based on their semantic meanings. Table II
shows the property values and types in our dataset (mutable
properties are labeled with asterisk).

B. Collection of N-ary Labels

Given 98 object instances and 15 property types, our next
step was to collect situated object instances where each object
is described by a semantically meaningful combination of
properties. We used Amazon Mechanical Turk (AMT) to
crowdsource property combinations. The novelty in our crowd-
sourcing process is that we asked AMT workers to imagine ob-
jects situated in different environment contexts. Compared to
established approaches to collect semantic knowledge, such as
asking workers to annotate properties for objects in images and
prompting workers to answer commonsense questions about
objects, our method is more effective at eliciting multimodal
and instance-level knowledge.

More specifically, after we extracted pictures of each object,
as well as details of its material, weight, dimension, and price
from the Amazon product web page, we conducted a three-
stage crowdourcing process. First, for all 98 object instances,
we showed pictures of the object to AMT workers and asked
them to list the object’s immutable properties. Second, we pre-
sented AMT workers with an object and a room, and had them
imagine and describe three situations in which that object-
room combination could be encountered, including details of
the location of the object, the associated daily activity, and
the object state (e.g., a wet cup on the bathroom counter used
for rinsing after brushing teeth). Third, we presented a new
set of AMT workers with the above collected situated object
descriptions, and had them label mutable properties (e.g., wet,
empty, clean) for the associated object. To ensure the quality of
the crowdsourced data, we used 3 annotators for each question

1GermaNet, the German version of the English lexical database Wordnet
[47], provides hierarchical structures for adjectives.
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Fig. 3. Our model architecture includes embedding layers, a transformer
encoder, and a feed-forward layer for predicting probabilities of properties.

and filtered workers based on gold standard questions. We
manually verified descriptions of situations from stage 2.

V. APPROACH

Given n−1 properties, we aim to predict the the nth property
of type rn, i.e., {r1 : v1, ..., rn−1 : vn−1, rn :?}, where
n − 1 is the number of observed properties. We develop a
transformer-based neural network based on following design
goals: learning interactions between typed properties (i.e.,
role-value pairs), accommodating arbitrary order of properties,
supporting inference at different levels of abstraction by ac-
cepting arbitrary number of observed properties, representing
uncertainties in semantic knowledge, and being scalable.

As shown in Figure 3, our model takes {r1 : v1, ..., rn−1 :
vn−1, rn : [MASK]} as input, where [MASK] is a special
token for the query property. The masked input is then fed into
the transformer encoder [64], which builds a contextualized
representation of the input. Finally, The encoding at the nth

position is used to predict the query property via a feedfor-
ward layer and a sigmoid function. Now we describe each
component of the model in detail and discuss how they help
to satisfy the design goals and learn n-ary relations between
object properties.

A. Input Encoder

The input encoder uses learned embeddings to convert
role-value pairs in the input to vectors of dimension dmodel.
Specifically, for each pair, we construct its representation as

h0i = xvalue
i + xrole

i (1)

where xvalue
i is the embedding for the ith value and xrole

i is the
embedding for the ith role. At the query position, the value
embedding of the [MASK] token indicates that this property
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is in query. We maintain the role embedding of the query
property, allowing the model to condition its reasoning on the
type of the query property. Different from existing transformer-
based models [18, 10, 65], we do not use positional embed-
dings to indicate the position of each role-value pair in the
n-ary query since, unlike natural language sentences or KG
triples, there is no particular order for object properties. As the
latter components of the model are permutation invariant to the
order of input data, removing the positional embeddings also
allows our model to efficiently learn from object properties
represented in n-ary observations.

B. Transformer Encoder

The transformer encoder takes the embedded input
{h01, ..., h0n} and builds a contextualized representation
{hL1 , ..., hLn} where L is the number of transformer layers in
the transformer encoder. Each transformer layer applies the
following transformation to the input:

ĝl = MultiAttn(hl−1, hl−1, hl−1) (2)

gl = LayerNorm(ĝl + hl−1) (3)

ĥl = FFN(gl) (4)

hl = LayerNorm(ĥl + gl) (5)

where MultiAttn is a multi-head self-attention mechanism,
which we discuss in more depth below. FFN is a fully-
connected feedforward network, which is applied to each
position of the input separately and identically. The FFN
consists of two linear fully-connected layers with a ReLU
activation in between. Residual connections [30] are applied
both after MultiAttn and FFN, which are followed by layer
normalizations [5].

C. Multi-Head Attention

The core component of the transformer encoder is the multi-
head attention mechanism, which builds on the scaled dot-
product attention function. An attention function takes in a
query and a set of key-value pairs. The output is computed
as a weighted sum of the values, where the weight assigned
to each value is based on the compatibility of the query
with the corresponding key. The scaled dot-product attention
performs the attention computation efficiently by computing
on a set of queries simultaneous with matrix multiplication.
The queries, keys, and values are stacked together into matrix
Q ∈ Rnquery×dmodel , K ∈ Rnkey×dmodel , and V ∈ Rnvalue×dmodel ,
where nquery is the number of queries. Formally, the scaled
dot-product attention is computed as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (6)

where dk is the dimension of queries and keys, and serves as
a scaling factor for stabilizing gradients.

Instead of computing the attention function once, the multi-
head attention has H heads, where each head performs a
scaled dot-product attention. This allows each head to attend
to different combinations of the input. In order to reason about

the information at different representational space, Q, K, and
V are also uniquely projected prior to the attention being
computed. Specifically,

Th = Attention(QWQ
h ,KW

K
h , V WV

h ) (7)

where Th is the output of a single attention head. WQ
h ∈

Rdmodel×dk ,WK
h ∈ Rdmodel×dk ,WV

h ∈ Rdmodel×dv are learned
linear projection weights for query, key, and value. In order
to maintain the computation efficiency, dk is chosen to be
dmodel/H . The outputs of the attention heads are concatenated
and projected to form the final output of the multi-head
attention:

MultiAttn(Q,K, V ) = Concat(T1, ..., TH)WO (8)

where WO ∈ RHdv×dmodel is a learned output projection.
In our model, we use self-attention. Therefore, Q, K, and V

are all constructed from hl−1. Each position can freely attend
to all positions in the input, thus aiding in modeling inter-
relations between properties.

D. Classification and Training

The final layer uses a learned linear transformation and a
sigmoid function to convert the encoded input to predicted
probabilities of properties. Specifically,

pn = σ(Evalue FCN(hLn)) (9)

where FCN is a fully connected layer and Evalue is the learned
embedding matrix used to create input value embeddings. The
use of the sigmoid function σ allows the model to accept
multiple correct answers, therefore modeling uncertainties in
semantic knowledge (e.g., cups can be found in both kitchen
and living room)

During training, we construct the masked input by replacing
only a single value in an n-ary observation with the [MASK]
token. We perform this procedure exhaustively for all values
and all n-ary observations in the training set. We then group
n-ary observations sharing the same masked instances and use
their ground-truth values at the query position to construct a
one-hot label (continuous-valued properties are discretized).
Scoring multiple instances simultaneously is also known as
the 1-N setting [17] and helps reduce training and inference
time. We use cross-entropy between the ont-hot label and
prediction as training loss. We use label smoothing [58] to
prevent overfitting.

E. Implementation Details

All components of the model are trained end-to-end. The
best set of parameters is found to be L = 1, H = 4, dmodel =
240. We used Adam [34] for optimization. We implement our
model using PyTorch and train on a Nvidia GTX1080Ti gpu.

VI. EXPERIMENTS ON LINK DATASET

In this section, we use the value prediction task to assess
our model’s ability to learn n-ary relations between object
properties. In the value prediction task, the model is presented
with a previously unseen n-ary observation, and must predict
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TABLE III
RESULTS% OF OUR MODEL AND BASELINE MODELS.

Model Metric Scores Time (min)

MRR Hits@1 Hits@2 Hits@3 Training Testing

Co-Occur 63.0 44.3 67.3 80.2 <1 3
TuckER 58.7 38.5 59.9 79.3 <1 3
TuckER+ 62.5 43.0 65.9 81.4 2 3
NaLP 57.9 38.9 60.3 75.8 8 10
MLN 66.1 50.2 68.8 82.0 420 487
Transformer (Ours) 76.3 63.3 79.4 89.1 3 3

TABLE IV
ABLATION ON INPUT ENCODER DESIGN

Embeddings Metric Scores

V R Pos MRR Hits@1 Hits@2 Hits@3

X X 76.3 63.3 79.4 89.1
X 75.3 62.3 79.0 86.8
X X X 74.0 59.9 77.7 87.5
X X 74.0 59.9 77.7 87.5

TABLE V
MRR% OF OUR MODEL AND BASELINE MODELS FOR EACH PROPERTY TYPE.

Class Mat Color Trans Dim Phys Shape Temp Full Damp Clean Room Loc Price Weight Size

# Values 11 8 15 3 10 6 9 3 3 3 3 11 117 3 3 3

Random 27.1 33.3 19.9 60.8 18.7 37.7 22.6 61.4 61.5 61.5 61.0 28.5 4.7 60.2 60.7 60.5
Co-Occur / 55.5 39.2 83.1 17.9 76.1 64.4 91.0 77.4 74.5 67.1 56.1 44.3 56.9 70.7 70.9
TuckER / 56.1 37.7 84.0 16.7 74.3 57.8 83.9 59.9 71.6 61.4 57.3 31.4 55.6 64.6 69.0
TuckER+ 53.7 60.0 42.2 85.1 20.1 74.8 60.4 90.9 69.7 72.4 62.6 60.9 39.2 59.7 73.8 65.1
NaLP 45.0 47.4 39.0 84.4 17.7 69.2 52.4 91.0 68.5 70.8 67.7 55.2 23.1 59.0 61.6 61.4
MLN 62.9 79.1 72.5 95.7 25.3 79.4 64.3 90.0 69.1 69.5 65.3 67.7 4.6 68.9 75.8 63.7
Transformer (ours) 72.3 78.9 73.2 97.1 43.8 84.1 75.7 92.3 90.7 82.2 90.2 68.5 59.6 74.4 76.6 61.8

a single missing value given the value’s role and all other
role-value pairs in the instance.

A. Experimental Setup

Data Split: In our dataset, each n-ary observation corresponds
to a situated object instance. To prevent test leakage, we first
split object instances in the dataset into 70% training, 15%
testing, and 15% validation. Situated object instances are then
assigned to the correct set based on its corresponding object
instance.
Metrics: For each missing value in a test instance, we obtain
probabilities of candidate values from the model. Then the
candidate values are sorted in descending order based on the
probabilities. The rank of the ground-truth value vn is used to
compute metric scores. During ranking, we adopt the filtered
setting [17] to remove any value v′n different from vn if {r1 :
v1, ..., rn−1 : vn−1, rn : v′n} exists in the train, validation,
or test set. This whole procedure is repeated for each value
of each testing instance in the test set. We report standard
metric Mean Reciprocal Rank (MRR) and proportion of ranks
no larger than 1, 2, and 3 (Hits@1, 2, and 3). For both MRR
and Hits, a higher score indicates better performance.
Baselines: We compare against the following baselines:
• Co-Occur learns co-occurrence frequency of entities. This

model has been used for modeling semantic relations in
various robotic applications, including modeling object
object co-occurrence [36], object affordance co-occurrence
[11], and object grasp co-occurrence [37]. We apply this
model to learn the co-occurrence frequency of object class
with object properties in our experiments. The model by
design is not able to consider other properties as contextual
information.
• TuckER is a recent state of the art knowledge graph

embedding model [6]. In this paper, we compare to two

variants of TuckER. The regular TuckER model follows
existing work [16, 4] to model binary relations between
object class and object properties.

• TuckER+ is a TuckER embedding model we implement
to model binary relations between all pairs of property
types (e.g., color and material, shape and location); it
approximates an n-ary relation with a combination of
binary relations.

• NaLP is a neural network model developed for modeling
n-ary relational data in knowledge graphs [26]. NaLP
explicitly models the relatedness of all the role-value pairs
in an n-ary observation. We apply this model to learn n-ary
relations between object properties.

• Markov Logic Network (MLN) represents probabilistic
logic languages that have been used to model complex se-
mantic relations in various robotic domains [51, 71, 52, 3,
13]. We closely follow prior work to specify probabilistic
rules for our domain.

B. Results

As shown in Table III, our model outperforms existing
methods by significant margins on all metrics. Compared to the
second-best model, MLN, our model achieves a 10% increase
in MRR while reducing training and testing time by 150
times. In comparison with NaLP, another model developed
specifically for modeling n-ary data, our model’s superior
performance confirms that the transformer structure and multi-
head attention mechanism are more effective at learning the
complex semantic relations between object properties. We
also observe that TuckER+, which learns binary relations
between all pairs of object properties, outperforms the regular
TuckER. This result demonstrates that only modeling class-
level semantic knowledge can lead to over-generalization, and
that reasoning about the differences between object instances is
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Fig. 4. Visualizations of the attention weights illustrate that different amount of information from each property type is used by our model to predict different
types of properties.

crucial. It is worth noting that NaLP and TuckER variants are
not able to outperform the simpler Co-Occur model. TuckER
variants are good at learning latent representation of the global
structure, but our analysis shows that they do not capture the
frequencies of the binary relations well. NaLP has shown to
be effective at modeling n-ary facts mainly on dataset with 2
to 6 role-values, but it struggles to learn n-ary relations in our
data which can have up to 24 role-values.

Further analyzing MRR for each type of query shown in
Table V, we see that our model outperforms existing models
in predicting most of the properties. We also notice that the
baselines have degraded performance at predicting property
types with many candidate values (e.g., location, room, and
dimension). MLN especially struggles to predict the location
role which has 117 possible values. One potential explanation
is the closed world assumption being made by MLN. Our
model uses label smoothing to prevent being overconfident
at negative training examples and has demonstrated good
performance even for these many-valued role types.

C. Ablation on Input Encoder Design

We investigate our input encoder design with an ablation
study. Specifically, we examine the effect of the role embed-
dings and positional embeddings (discussed in Section V-A).
Results in Table IV show that enforcing the order of role-value
pairs in an n-ary observation using the positional embeddings
results in a drop in performance. The results also confirm that
role embeddings are useful for modeling multimodal object
properties represented as role-value pairs.

D. Visualizing Attention

To understand why our transformer-based model is effective
at modeling n-ary relational data, we visualize the multi-
head attention weights, i.e., softmax(QKT

√
dk

). Figure 4 shows
the average attention weight assigned to each role when
predicting class, physical property, cleanliness, and weight.
The attention mechanism exhibits n-ary relational reasoning
patterns, which correspond strongly with human intuition—for
example, dampness, location, and fullness of an object aids
in predicting its cleanliness. Baseline models cannot perform
this type of reasoning and thus are not able to model object
properties as well as our model.

VII. ROBOT EXPERIMENT: OBJECT SEARCH

In this section, we demonstrate how a household robot can
locate specific objects based on users’ requests by leveraging

Fig. 5. Home environment for the object search experiment.
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Fig. 6. 3D floor plan for remotely collecting preferred locations of objects
from five users.

the explicit representation of our learned n-ary knowledge. Our
experiment serves two purposes, i) to validate our model in a
realistic physical setting with non-AMT users, and ii) to test
our model’s ability to handle queries that reflect realistic use
cases, such as a human asking a robot to find a cold beverage
or collect dirty dishes. Queries used in this study utilize only
a sparse set of known properties2, and the robot’s task is to
predict multiple unknown properties. Specifically, we seek to
predict the room and location of each object.

2Human users are unlikely to phrase requests with long adjective sequences.
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TABLE VI
RESULTS% ON OBJECT SEARCH

Hits@1 Hits@2 Hits@3 Hits Any@1 Hits Any@2 Hits Any@3

Human Baseline 34.8 ± 6.5 52.0 ± 7.0 64.7 ± 7.3 64.7 ± 7.2 83.2 ± 7.0 90.6 ± 3.9

Co-Occur 20.0 29.0 36.8 49.0 68.0 80.0
TuckER+ 8.4 20.0 29.6 37.2 60.0 74.4
NaLP 1.2 2.8 4.4 7.2 12.4 16.8
Transformer 17.2 34.4 48.0 42.4 73.6 87.6

Fig. 7. Two object search tests comparing our model with Co-Occur.
Provided properties are shown on top.

Fig. 8. Our model predicts different locations based on the given object
properties.

We set up a home environment in our lab with 4 rooms
and typical household furniture (Figure 5). We also generated
a corresponding 3D floor plan of the environment (adding an
additional bathroom), which listed 24 possible locations for
storing objects (Figure 6). We then recruited 5 users, and had
them label their preferred locations for 50 object instances
sampled from our dataset. For each object, the user was shown
an image of the object, given 1-3 properties describing the
state of the object (i.e., cleanliness, temperature, dampness,
and content), and then asked to list 3 ranked likely locations
for the object.

We compare the performance of our model against NaLP,
Co-Occur, and TuckER+. We leave MLN out because of
its exceedingly long inference time on queries with partial
evidence (as a large number of properties other than the
query properties were missing). All models are trained on our
complete dataset to validate against collected user data. All
models have access to the properties given to the human users
as well as the class and material of the object. To predict likely
room-location combinations, separately predicted probabilities
of the two properties are multiplied and ranked.

We use Hits@K and Hits Any@K as metrics. Hits@1,2,3

indicate the percentage of times that a model correctly predicts
a user’s most preferred location of an object within 1, 2, and 3
attempts, respectively. We also introduce Hits Any@K, which
considers a prediction correct if it matches any one of the 3
locations listed by a user, without rank order.

Table VI summarizes the result of this experiment. We
also report the human baseline, which we compute by cross-
validating each user against the other users. We observe that
only our model is able to reach within the range of human
performance at Hits Any@2 and 3. Co-Occur outperforms
our model at Hits@1 and Hits Any@1, suggesting that class-
level frequency is a good heuristic for finding objects if given
only one chance. However, given that only approximately 30%
of objects can be retrieved in one shot, even by humans, we
argue that our model is more beneficial in the general use case.

Beyond quantitative difference between our model and
baselines, we also demonstrate the qualitative improvement on
a Fetch robot [67]. The robot is equipped with the navigation
stack developed in [7] for mapping and navigation, and the
method introduced in [43] for object detection and grasping.
As shown in Figure 7, the difference (A, B) between our model
and Co-Occur is clear as our model takes into account of the
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Fig. 9. The Fetch robot uses an infrared temperature sensor to detect the temperature and a spectrometer to detect the material of each novel object situated in
different environmental contexts. Our model leverages extracted information (shown on top of each figure on the right) to predict an unknown object property
(shown on bottom).

properties of objects (e.g., cold, dry, clean) while Co-Occur
searches the same locations for different cups. We also show
in Figure 8 that our model is able to find objects considering
both immutable (material in E and F) and mutable properties
of objects (dampness in C and D).

VIII. ROBOT EXPERIMENT: INTEGRATING WITH
MULTIMODAL PERCEPTION

In this section, we examine whether our model can enable
a robot to infer object properties that cannot be directly
observed by collectively reasoning about properties extracted
from multimodal sensors. This experiment also aims to test
whether our model can generalize learned n-ary knowledge to
new object instances in the real world.

In this experiment, a robot is tasked to predict either an
unknown immutable property of an object based on its class,
color, material, and room, or to predict an unknown mutable
property based on class, color, material, room, temperature,
and location. The robot physically interacts with real objects
situated in the environment and leverages different sensing
capabilities to extract multimodal observations. We use the
same Fetch robot, object detection, and mapping as the previ-
ous experiment. Color is detected using OpenCV. Material is
detected by the robot using a spectrometer, the SCiO sensor,
and the method introduced in [21]. Temperature is detected
using a Melexis contact-less infrared sensor connected to an
Arduino microcontroller. To detect materials and temperatures
of objects in real time, the sensors are attached to the end-
effector of the robot. The robot uses RRT to plan to poses
that allow the sensors to touch the surfaces of the objects. The
poses are computed from task-oriented 6-dof grasping poses
with the method introduced in [43]. As shown in Figure 9,
we test on 22 objects which are semantically different from

objects in our dataset (e.g., no ceramic pan and plastic box
exist in our dataset).

In this experiment, our model is able to correctly predict
34/52 (65%) of the queried object properties. In comparison,
the second best performing models, TuckER+ and Co-Occur,
both correctly predict 24/52 (46%). Object materials are cor-
rectly detected 45/52 (87%) times. Figure 9 shows examples
of the queries.

IX. CONCLUSION

This work addresses the problem of predicting semantic
properties of objects based on partial observations. We in-
troduce a scalable transformer neural network that learns n-
ary relations between object properties from observations. The
model can perform inference at different levels of abstraction
by conditioning on different numbers of input properties. We
also contribute LINK, a dataset containing objects situated
in various environmental contexts and modeled by diverse
semantic properties. Evaluation of our model on the collected
data shows significant improvements over prior methods, in-
cluding knowledge graph embedding models and a probabilis-
tic logic language. The learned model helps a Fetch robot per-
form two tasks common in everyday environments: searching
for objects based on multiple desired properties and inferring
object properties given partial multimodal observations. Future
directions of this work include learning n-ary relations from
different data sources such as incomplete semantic data and
multimodal sensory data. We also hope to investigate using
n-ary knowledge about object properties to guide interactive
perception and inform object manipulation.
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