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Abstract—When studying robots collaborating with humans,
much of the focus has been on robot policies that coordinate
fluently with human teammates in collaborative tasks. However,
less emphasis has been placed on the effect of the environment
on coordination behaviors. To thoroughly explore environments
that result in diverse behaviors, we propose a framework for
procedural generation of environments that are (1) stylistically
similar to human-authored environments, (2) guaranteed to
be solvable by the human-robot team, and (3) diverse with
respect to coordination measures. We analyze the procedurally
generated environments in the Overcooked benchmark domain
via simulation and an online user study. Results show that the
environments result in qualitatively different emerging behaviors
and statistically significant differences in collaborative fluency
metrics, even when the robot runs the same planning algorithm.

I. INTRODUCTION

When humans and robots coordinate well, they time their
actions precisely and efficiently and alter their plans dynami-
cally, often in the absence of verbal communication. Evalua-
tion of the quality of coordination has focused not only on task
efficiency but on the fluency of the interaction [24]. Fluency
refers to how well the actions of the agents are synchronized,
resulting in coordinated meshing of joint activities.

A closely related, important aspect of human-robot teaming
is workload assignment. Human factors research has shown
that too light or too heavy workload can affect human perfor-
mance and situational awareness [35]. The perceived robot’s
contribution to the team is a crucial metric of fluency [24],
and human-robot teaming experiments found that the degree
to which participants were occupied affected their subjective
assessment of the robot as a teammate [19].

To achieve fluent human-robot coordination, previous
work [24] enabled robots to reason over the mental states and
actions of their human partners, by building or learning human
models and integrating these models into decision making.
While the focus has been on the effect of these models on
human-robot coordination, little emphasis has been placed on
the environment that the team occupies.

Our thesis is that changing the environment can result in
significant differences between coordination behaviors, even
when the robot runs the same coordination algorithm. We thus
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Fig. 1: An overview of the framework for procedurally gen-
erating environments that are stylistically similar to human-
authored environments. Our environment generation pipeline
enables the efficient exploration of the space of possible
environments to procedurally discover environments that differ
based on provided metric functions.

advocate for considering diverse environments when studying
the emergent coordination behaviors of human-robot teams.

Manually creating environments that show a diverse range
of coordination behaviors requires substantial human effort.
Furthermore, as robotic systems become more complex, it
becomes hard to predict how these systems will act in different
situations and even harder to design environments that elicit a
diverse range of behaviors.

This highlights the need for a systematic approach for gen-
erating environments. Thus, we propose a framework for auto-
matic environment generation, drawing upon insights from the
field of procedural content generation in games [41, 16, 46].
The framework automatically generates environments which
(1) share design similarities to human-authored environments
provided as training data, (2) are guaranteed to be solvable by
the human-robot team, and (3) result in coordination behaviors
that differ according to provided metrics (i.e. team fluency or
workload).

In this paper, we study our framework in the collabora-
tive game Overcooked [8], an increasingly popular domain
for researching the coordination of agent behaviors. In this
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domain, a human-robot team must work together to cook
and serve food orders in a shared kitchen. In the context of
Overcooked, our framework generates kitchen environments
that cause the human-robot team to behave differently with
respect to workload, fluency, or any other specified metric.

Fig. 1 provides an overview of our framework. First,
we train a generative adversarial network (GAN) [20] with
human-authored kitchens as examples. The GAN learns
to generate kitchens that share stylistic similarities to the
human-designed kitchens. However, GANs frequently gener-
ate kitchens which are, for the human-robot team, impossible
to solve. For example, ingredients or the serve station may
be unreachable by the agents, or the kitchen may not have
a pot. To guarantee the kitchen is solvable, mixed-integer
linear programming (MIP) [46] edits the kitchen with a
minimum-cost repair. By guaranteeing domain-specific con-
straints, the GAN+MIP pipeline forms a generative space of
viable kitchens that can be sampled through the latent codes
of the GAN. We then search the latent space directly with a
state-of-the-art quality diversity algorithm, Covariance Matrix
Adaptation MAP-Elites (CMA-ME) [15], to discover kitchens
that cause diverse agent behaviors with respect to specified
coordination metrics. Generated kitchens are added to an
archive organized by the coordination metrics, and feedback
from how the archive is populated helps guide CMA-ME
towards kitchens with underexplored metric combinations.

Evaluation of our framework in simulation shows that
the generated environments can affect the coordination of
human-robot teams that follow precomputed jointly optimal
motion plans, as well as of teams where the robot reasons
over partially observable human subtasks. In an online user
study, we show that our generated environments result in very
different workload distributions and team fluency metrics, even
when the robot runs the same algorithm in all environments.

Overall, we are excited to highlight the role that envi-
ronments play in the emergent coordination behaviors of
human-robot teams, and to provide a systematic approach for
procedurally generating high-quality environments that induce
diverse coordination behaviors.

II. BACKGROUND

Human-Aware Planning. In the absence of pre-coordination
strategies, robots coordinate with human teammates by reason-
ing over human actions when making decisions. While many
works have studied human-aware planning [3, 9, 27, 30, 6],
most relevant to this work are POMDP frameworks, where the
robot observes human actions to infer the internal state of a
human. POMDP-based models have enabled communication
with unknown teammates [4], inference of human prefer-
ence [33] and human trust [11] in human-robot collaboration,
and inference of human internal state [36] in autonomous
driving applications.

Since the exact computation of a POMDP policy is com-
putationally intractable [34], researchers have proposed sev-
eral approximation methods. One such approximation is the
QMDP, where the robot estimates its current actions based

on the current belief and the assumption of full observability
at the next time step [28]. Though the robot does not take
information-gathering actions in this approximation, QMDP
has been shown to achieve good performance in domains when
the user continuously provides inputs to the system, such as
in shared autonomy [26].

Most relevant to our implementation is the CAPIR frame-
work [32], which implements a QMDP agent by decomposing
a ghost-hunting game into MDPs that model different sub-
tasks (ghosts) that the human may wish to complete. The
CAPIR framework was also tested in a Cops and Robbers
game [29]. Given the large number of subtasks in the Over-
cooked environment, we use a QMDP planner to pick the next
subtask, e.g, “pick an onion”, while the cost of transitioning
from each subtask to the next is derived from pre-computed
jointly optimal motion plans.
Procedural Content Generation. Procedural content gen-
eration (PCG) refers to algorithmic, as opposed to manual,
generation of content [41]. A growing research area is PCG via
machine learning (PCGML) [40], where content is generated
with models trained on existing content (e.g., [39, 38, 21]).

Our work builds on the recent success of GANs as pro-
cedural generators of video game levels [44, 17]. However,
generating video game levels is not as simple as training a
GAN and then sampling the generator since many generated
levels are unplayable. Previous work [44] addressed this by op-
timizing directly in latent space via Latent Variable Evolution
(LVE) [5]. Specifically, the authors optimize with the Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES) [22]
to find latent codes of levels that maximize playability and
contain specific characteristics (e.g., an exact number of player
jumps) in the game Super Mario Bros..

However, game designers rarely know exactly which prop-
erties they want the generated levels to have. Later work
proposed Latent Space Illumination [16, 37] by framing the
search of latent space as a quality diversity (QD) [10] problem
instead of a single-objective optimization problem. In addition
to an objective function, the QD formulation permits several
measure functions which form the behavior characteristics
(BCs) of the problem. The authors generated levels that
maximized playability but varied in measurable properties, i.e.,
the number of enemies or player jumps. Their work showed
CMA-ME [15] outperformed other QD algorithms [31, 43]
when directly illuminating latent space. In the case where
the objective and measure functions are differentiable, recent
work shows that differentiable quality diversity (DQD) [14]
can significantly improve search efficiency.

As stated above, GAN-generated environments, including
those generated with LSI, are frequently invalid. For instance,
in Overcooked, they may have more than one robot or it
may be impossible for players to reach the stove. Previous
work [46] proposed a mixed-integer linear programming (MIP)
repair method for the game The Legend of Zelda, which
edits the input levels to satisfy formal playability constraints.
The authors formulate the repair as a minimum edit distance
problem, and the MIP repairs the level with the minimum total
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Fig. 2: Overcooked environment, with instructions for how to
cook and deliver a soup.

cost of edits possible.
Our work integrates the GAN+MIP repair method with

Latent Space Illumination. This allows us to move the objec-
tive of LSI away from simply generating valid environments
to generating environments that maximize or minimize team
performance. Additionally, while previous work on LSI [37,
16] generated levels that were diverse with respect to level
mechanics and tile distributions, e.g., number of objects, we
focus on the problem of diversity in the agent behaviors that
emerge from the generated environments.
Overcooked. Our coordination domain is based on the collab-
orative video game Overcooked [1, 2]. Several works [8, 45]
created custom Overcooked simulators as a domain for evalu-
ating collaborative agents against human models [8] and eval-
uating decentralized multi-agent coordination algorithms [45].

We use the Overcooked AI simulator [8], which restricts the
game to two agents and a simplified item set. In this version,
the goal is to deliver two soup orders in a minimum amount
of time. To prepare a soup, an agent needs to pick up three
onions (one at a time) from an onion dispenser and place them
in the cooking pot. Once the pot is full and 10 timesteps have
passed, the soup is ready. One of the agents then needs to
retrieve a dish from the dish dispenser, put the soup on the
dish, and deliver it to the serving counter (Fig. 2).

III. APPROACH

Overview. Our proposed framework consists of three main
components: 1) A GAN which generates environments and
is trained with human-authored examples. 2) A MIP which
edits the generated environments to apply domain-specific
constraints that make the environment solvable for the de-
sired task. 3) A quality diversity algorithm, CMA-ME, which
searches the latent space of the GAN to generate environments
that maximize or minimize team performance, but are also
diverse with respect to specified measures.

In Appendix E we discuss two alternatives: optimizing
latent space with random search instead of CMA-ME, and

directly searching over the tiles of the environment, instead of
exploring the latent space of a GAN.
Deep Convolutional GAN. Directly searching over the space
of possible environments can lead to the discovery of unreal-
istic environments. To promote realism, we incorporate GANs
into our environment generation pipeline. Prior work [46, 16]
in PCG demonstrates that in the Super Mario Bros. and Zelda
domains, GANs generate video game levels which adhere to
the design characteristics of their training dataset.

We implemented a deep convolutional GAN (DCGAN) ar-
chitecture identical to that in previous PCG work [46, 16, 44],
and we trained it on human-authored Overcooked environ-
ments. Fig. 4 shows the architecture of the GAN and Fig. 3
shows example human-authored (top row) and GAN-generated
(second row) environments. We provide implementation de-
tails in Appendix D-A.
Mixed-Integer Program Formulation. While GAN-
generated environments capture design similarities to their
training dataset, most GAN-generated environments are
unsolvable: GANs represent levels by assigning tile-types to
locations, and this allows for walkable regions to become
disconnected or item types to be missing or too frequent.
In general, GANs struggle to constrain the generative
environment space to satisfy logical properties [42].

To compensate for the limitations of GANs, we build
upon the generate-and-repair approach proposed in previous
work [46], which repairs environments with mixed-integer
linear programs (MIPs) that directly encode solvability con-
straints. To ensure that repairs do not deviate too far from
the GAN-generated environment, the MIP minimizes the edit
distance between the input and output environments. The result
is an environment similar to the GAN-generated one that
satisfies all solvability constraints.

In Overcooked, we specify MIP constraints that (1) bound
the number of each tile type (i.e. starting agent locations, coun-
ters, stoves, floor), (2) ensure that key objects are reachable by
both players and (3) prevent the agents from stepping outside
the environment. We formalize the MIP in Appendix A.

The third row of Fig. 3 shows example environments
generated by the GAN+MIP approach. We observe that the
environments allow execution of the Overcooked game, while
appearing similar to the GAN levels in the second row. In
contrast, the fourth row (MIP-random) shows environments
generated from random tile assignments passed as inputs to the
MIP. While all environments are solvable, they are stylistically
different than the human-authored examples: each environment
appears cluttered and unorganized.
Latent Space Illumination. While the GAN generator and
MIP repair collectively form a generative space of solvable
environments, simply sampling the generative space is not ef-
ficient at generating diverse environments (see Appendix E-A).

We address this issue by formulating the problem as a Latent
Space Illumination (LSI) problem [16] defined below. Solving
the LSI problem allow us to extract environments that are
diverse with respect to fluency metrics while still maximizing
or minimizing team performance.
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Fig. 3: Example Overcooked environments authored by different methods. The environments generated with the GAN+MIP
approach are solvable by the human-robot team, while having design similarity to the human-authored environments.
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Fig. 4: Architecture of the GAN network.

1) Problem Formulation: LSI formulates the problem of
directly searching the latent space as a quality diversity (QD)
problem. For quality, we provide a performance metric f that
measures team performance on the joint task, e.g, time to
completion or number of tasks completed. For diversity, we
provide metric functions which measure how environments
should vary, e.g. the distribution of human and robot work-
loads. These metrics, defined in QD as behavior characteristics
(BCs), form a Cartesian space known as a behavior space.
In the MAP-Elites [12, 31] family of QD algorithms, the
behavior space is partitioned into N cells to form an archive
of environments. Visualizing the archive as a heatmap allows
researchers to interpret how performance varies across envi-
ronments inducing different agent behaviors.

LSI searches directly for GAN latent codes z. After simu-
lating the agents on the generated environment, each code z
maps directly to a performance value f(z) and a vector of
behaviors b(z). We discuss different performance metrics and
BCs in section V.

The objective of LSI is to maximize the sum of expected

performance values f :

M(z1, ...,zN ) = max

N∑
i=1

E[f(zi)] (1)

In Eq. 1, zi refers to the latent vector occupying cell i.
We note that the human and robot policies and the environ-
ment may be stochastic, therefore we estimate the expected
performance over multiple trial runs.

2) CMA-ME for Latent Space Illumination: We choose
Covariance Matrix Adapation MAP-Elites (CMA-ME) [15],
a state-of-the-art QD algorithm, to solve the LSI problem.
CMA-ME outperformed other quality diversity algorithms
when illuminating the latent space of a GAN trained to
generate Super Mario Bros. levels [16].

CMA-ME combines MAP-Elites with the adaptation mech-
anisms of CMA-ES [22]. To generate new environments, latent
codes z are sampled from a Gaussian N (µ, C) where each
latent code z corresponds to an environment. After generating
and repairing the environment with the GAN and MIP, we
simulate the agents in the environment and compute agent
performance f and behavior characteristics b. The behavior b
then maps to a unique cell in the archive. We compare our new
generated environment with the existing environment of that
cell and replace the environment if the new environment has a
better f value. The distribution N (µ, C) is finally updated
based on how the archive has changed, so that it moves
towards underexplored areas of behavior space. We provide the
pseudocode for CMA-ME adapted to solve the LSI problem
in Appendix C.
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IV. PLANNING ALGORITHMS

We consider two planning paradigms: (1) where human and
robot follow a centralized joint plan and (2) where the robot
reasons over the partially observable human subtask.
Centralized Planning. Here human and robot follow a cen-
tralized plan specified in the beginning of the task. We incorpo-
rate the near-optimal joint planner of previous work [8], which
pre-computes optimal joint motion plans for every possible
start and goal location of the agents, and optimizes the motion
plan costs with an A∗ planning algorithm [23].
Human-Aware Planning.

1) Robot Planner.: We examine the case where the robot
is not aware of the subtask the human is currently aiming to
complete, e.g., picking up an onion. We model the robot as
a QMDP planner, wherein the human subtask is a partially
observable variable.

To make the computation feasible in real-time, we only use
the QMDP to decide subtasks, rather than low-level actions.
To move to the location of each subtask, the robot follows a
motion plan precomputed in the same way as in the centralized
planning. The motion plan assumes that both agents move
optimally towards their respective subtasks.

The QMDP planner adapts to the human: it observes the
human low-level motions to update its belief over the human
subtasks, and selects a subtask for the robot that minimizes the
expected cost to go. We describe our QMDP implementation
in Appendix B.

2) Human Planner: We selected a rule-based human model
from previous work [8], which myopically selects the highest
priority subtask based on the world state. The model does
not reason over an horizon of subtasks and does not account
for the robot’s actions. Empirically, we found the model to
perform adequately most of the time, when users choose
actions quickly.

V. ENVIRONMENTS

We performed 4 different experiments to demonstrate that
our proposed framework generates a variety of environments
that result in a diverse set of coordination behaviors.1

In all experiments we use the same performance metric f ,
which is a function of both the number of completed orders
and the amount of time each order was completed. We describe
the metric and other implementation details in Appendix D.
Workload Distributions with Centralized Planning. We
generate environments that result in a broad spectrum of
workload distributions, such as environments where only one
agent does all the work and environments where both agents
contribute evenly to the task. Both agents execute a precom-
puted centralized joint plan.

To assess differences in workloads, we specify as BCs the
differences (robot minus human) in the number of actions
performed for each object type: number of ingredients (onions)
held, number of plates held, and number of orders delivered.

1Videos of task executions of all environments in the figures of this section
are included in https://github.com/icaros-usc/overcooked lsi videos.

Fig. 5 shows the generated archive: we illustrate the 3D
behavior space as a series of five 2D spaces, one for each
value of the difference in orders. Each colored cell represents
an environment with BCs computed by simulating the two
agents in that environment. Lighter colors indicate higher
performance f .

We observe that when the difference in orders is −1 or 1,
performance is low; this is expected since there are only 2
orders to deliver, thus an absolute difference of 1 means that
only one order was delivered.

We simulate the two agents in environments of the extreme
regions of the archive to inspect how these environments affect
the resulting workload distributions. For instance, either the
robot (green agent) or the simulated human (blue agent) did all
of the work in environments (1) and (2) of Fig. 5 respectively.
We observe that in these environments the dish dispenser,
onion dispenser, cooking pot and serving counter are aligned
in a narrow corridor. The optimal joint plan is, indeed, that
the agent inside the corridor picks up the onions, places them
in the pot, picks up the plate and delivers the onions.

On the other hand, in environments (3) and (4), the workload
was distributed exactly or almost exactly evenly. We see
that in these environments, both agents have easy access to
the objects. Additionally, all objects are placed next to each
other. This is intentional, since CMA-ME attempts to fill the
archive with diverse environments that each maximize the
specified performance metric. Since performance is higher
when all orders are delivered in the minimum amount of time,
positioning the objects next to each other results in shorter time
to completion.

This object configuration works well in centralized planning
since the agents precompute their actions in advance, and there
are no issues from lack of coordination. We observe that this is
not the case in the human-aware planning experiments below.
Workload Distributions with Human-Aware Planning. In
this experiment, the human and robot do not execute a pre-
computed centralized joint plan. Instead, the robot executes a
QMDP policy and the human executes a myopic policy.

We run two experiments: In the first experiment, we gen-
erate environments that maximize the performance metric
f , identical to Section IV. In the second, we attempt to
find environments that minimize the performance metric. The
latter is useful when searching for failure cases of developed
algorithms [13]. We are specifically interested in drops in
performance that arise from the assumptions of the QMDP
formulation, rather than, for example, poor performance be-
cause objects are too far from each other. Therefore, for the
second experiment we use as a baseline the performance of
the team when the robot executes an MDP policy that fully
observes the human subtask, and we maximize the difference
in performance between simulations with the MDP policy and
the QMDP policy.

We note that in decentralized planning, the two agents may
get “stuck” trying to reach the same object. We adopt a rule-
based mechanism from previous work [8] that selects random
actions for both agents until they get unstuck. While the
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Fig. 5: Archive of environments with different workload dis-
tributions for the centralized planning agents and four example
environments corresponding to different cells in the archive.
Environments (1,2) resulted in uneven workload distributions,
while environments (3,4) resulted in even workload distribu-
tions. We annotate four environments from the archive. The
bar shows the normalized value of the objective f .

MDP, QMDP, and myopic human policies are deterministic,
the outcomes are stochastic because of these random actions.
Therefore, we run multiple trials in the same environment, and
we empirically estimate the performance and BCs with their
median values (see Appendix D-D).

1) Maximizing Performance: Inspecting the environments
in the extremes of the generated archive (Fig. 6) reveals inter-
esting object layouts. For example, all objects in environment
(1) are aligned next to each other, and the agent that gets first
in front of the leftmost onion dispenser “blocks” the path to
the other agent and completes all the tasks on its own. In
environment (2), the robot starts the task next to the onion
dispenser and above the pot. Hence, it does all the onion
deliveries, while the human picks up the onions and delivers
the order by moving below the pot.

In environments (3) and (4), each agent can do the task
independently, because each team member is close to their

4
3

1

2

(1) (2)

(3) (4)

Fig. 6: Archive of environments with different workload
distributions of a QMDP robot and a simulated myopic human.

own pot. This results in even workload distribution. The two
agents achieve high performance, since no delays arise from
lack of coordination.

2) Minimizing Performance: In the generated archive of
Fig. 7, lighter colors indicate lower performance of the team of
the QMDP robot and the myopic human compared to an MDP
robot and a myopic human. We are particularly interested in
the environments where the team fails to complete the task.

In environment (1) of Fig. 7, the simulated human picks up
an onion at exactly the same time step that the robot delivers
the third onion to the pot. There is now no empty pot to
deliver the onion, so the human defaults to going to the pot and
waiting there, blocking the path of the robot. The environment
leads to an interesting edge case that was not accounted for in
the hand-designed human model but is revealed by attempting
to minimize the performance of the agents.

In environment (2) of Fig. 7, the two agents get stuck in the
narrow corridor in front of the rightmost onion dispenser. Due
to the “auto-unstuck” mechanism, the simulated human goes
backward towards the onion dispenser. The QMDP planner,
which uses the change of distance to the subtask goal location
as observation (see Appendix B), erroneously infers that the
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Fig. 7: Archive of environments when attempting to minimize
the performance of a QMDP robot (green agent) and a simu-
lated myopic human (blue agent). Lighter color indicates lower
performance. (1a) and (1b) show successive frame sequences
for environment (1), and similarly (2a), (2b) for environment
(2).

human subtask is to reach the onion dispenser, and does
not move backwards to allow the human to go to the dish
dispenser. This environment highlights a limitation of the
distance-based observation function since it is not robust to
random motions that occur when the two agents get stuck.

Overall, we observe that when minimizing performance,
the generated environments reveal edge cases that can help
a designer better understand, debug, and improve the agent
models.
Team Fluency with Human-Aware Planning. An important
aspect of the quality of the interaction between two agents is
their team fluency. One team fluency metric is the concurrent
motion (also defined as concurrent activity), which is defined
in [24] as “the percentage of time out of the total task time,
during which both agents have been active concurrently.”

We include as second metric the number of time steps
the agents are “stuck,” which occurs when both agents are
in the same position and orientation for two successive time

2

1

3
4

(1) (2)

(3) (4)

Fig. 8: Archive of environments with different team fluency
metrics. Environments (1) and (2) resulted in low team fluency,
while (3) and (4) resulted in high team fluency.

steps. We use the human-aware planning models as in the
previous experiment, and we search for environments that
maximize team performance but are diverse with respect to
the concurrent motion and time stuck of the agents.

We observe in the generated archive (Fig. 8) that environ-
ments with higher concurrent motion have better performance,
since the agents did not spend much time waiting. For exam-
ple, environments (3) and (4) result in very high team fluency.
These environments have two pots and two onion dispensers,
which are easily accessible.

On the other hand, example environments (1) and (2) have
poor team fluency. These environments have long corridors,
and one agent needs to wait a long time for the second agent
to get out of the corridor. In environment (1), the two agents
get stuck when the myopic human attempts to head towards
the onion dispenser ignoring the robot, while the QMDP agent
incorrectly assumes that the human gives way to the robot.

VI. ROBUSTNESS TO HUMAN MODEL

When evaluating the generated environments in human-
aware planning, we assumed a myopic human model. We wish
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Workload Distribution Max Workload Distribution Min Team Fluency

ε Diff. in Ingredients Diff. in Plates Diff. in Orders Diff. in Ingredients Diff. in Plates Diff. in Orders Concurrent Motion Stuck

0.00 0.85 0.67 0.66 0.85 0.78 0.76 0.88 0.92
0.05 0.76 0.55 0.50 0.79 0.63 0.61 0.77 0.85
0.10 0.68 0.46 0.39 0.72 0.52 0.50 0.67 0.76
0.20 0.56 0.33 0.23 0.63 0.40 0.35 0.52 0.62
0.50 0.46 0.22 0.08 0.39 0.26 0.11 0.34 0.30

TABLE I: Spearman’s rank-order correlation coefficients between the computed BCs and the initial placement of environments
in the archive for increasing levels of noise ε in human inputs.

to test the robustness of the associated coordination behaviors
with respect to the model: if we add noise, will the position
of the environments in the archive change?

Therefore, for each cell in the archives from Fig. 6 and 7,
and for 100 randomly selected cells in the archive of Fig. 8,
we compute the BCs for increasing levels of noise in the
human actions. We simulate noisy humans by using an ε-
myopic human model, where the human follows the myopic
model with a probability of 1−ε and takes a uniformly random
action otherwise. We then compute the Spearman’s rank-order
correlation coefficient between the initial position of each
environment in the archive and the new position, specified
by the computed BCs, in the presence of noise.

Table I shows the computed correlation coefficients for each
BC and for increasing values of ε. The “Workload Distribution
Max,” “Workload Distribution Min,” and “Team Fluency”
refer to the archives of Fig. 6, 7 and Fig. 8. All values are
statistically significant with Bonferroni correction (p < 0.001).

We observe that even when ε = 0, the correlation is strong
but not perfect, since there is randomness in the computed BCs
because of the “auto-stuck” mechanism. Values of ε = 0.05
and 0.1 result in moderate correlation between the initial and
new position of the environments in the archive. The correla-
tion appears to be stronger for the difference in ingredients.
This is because the environments with extreme values of this
BC (+6,−6) had nearly zero variance since one agent would
consistently “block” the other agent from accessing the onion
dispenser. As expected, when the simulated human becomes
random 50 % of the time (ε = 0.5), there is only a weak, albeit
still significant, correlation.

VII. USER STUDY

Equipped with the findings from section VI, we want to
assess whether the differences in coordination observed in
simulation translate to actual differences when the simulated
robot interacts with real users.

We selected 12 environments from the generated archives in
the human-aware planning experiments of section V, including
3 “even workload” environments, 3 “uneven workload” envi-
ronments”, 3 “high team fluency” environments and 3 “low
team fluency” environments. These environments are shown
in Appendix F.
Procedure. Participants conducted the study remotely by
logging into a server while video conferencing with the exper-
imenter. Users controlled the human agent with the keyboard

and interacted with the QMDP robot. The experimenter first
instructed them in the task and asked them to complete
three training sessions, where in the first two they practiced
controlling the human with their keyboard and in the third they
practiced collaborating with the robot. They then performed
the task in all 12 environments in randomized order (within
subjects design). We asked all participants to complete the
tasks as quickly as possible.2

Participants. We recruited 27 participants from the local
community (ages 20-30, M=23.81, SD=2.21). Each participant
was compensated $8 for completing the study, which lasted
approximately 20 minutes.
Hypotheses.
H1. The difference in the workloads between the human and
the robot will be larger in the “uneven workload” environ-
ments, compared to the “even workload” environments.
H2. The team fluency of the human-robot team will be better
in the “high team fluency” environments, compared to the “low
team fluency” environments.
Dependent Measures. Identically to the experiments in sec-
tion V, we computed the following BCs: the difference in
the ingredients, plates, and orders from the playthroughs in
the “even/uneven workload” environments, and the percentage
of concurrent motion and time stuck in the “low/high team
fluency” environments.

We used the average over the BCs computed from the three
environments of the same type, e.g., the three “even workload”
environments, as an aggregate measure. For the analysis, we
used the absolute values of the workload differences, since we
are interested in whether the workload is even or uneven and
not which agent performed most of the actions.
Analysis. A Wilcoxon signed-rank test determined that two
out of the three workload BCs (difference in ingredients: z =
3.968, p < 0.001, difference in orders: z = 2.568, p = 0.01)
were significantly larger in the “uneven workload”, compared
to the “even workload” environments.

Additionally, a Wilcoxon signed-rank test showed that the
percentage of concurrent motion was significantly higher for
the high team fluency environments, compared to the low
team fluency ones (z = 4.541, p < 0.001). There were no
significant differences in the time stuck, since users resolved
stuck situations quickly by giving way to the robot.

2All the anonymized user data and instructions about visualizing all the
playthroughs are in https://github.com/icaros-usc/overcooked lsi user study.
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These results support our hypotheses and show that the
differences in the coordination observed in simulation translate
to differences observed in interactions with actual users. We
plot histograms of the computed BCs and discuss participants’
open-ended responses in Appendix F.

VIII. DISCUSSION

Limitations. Our work is limited in many ways. Our user
study was conducted online with a simulated robot. Our future
goal is to evaluate our framework on human-robot experiments
in a real-world collaborative cooking setting, where users
are exposed to different scenes. Further experiments with a
variety of robot and human models would expand the diversity
of the generated environments and the observed behaviors.
Another limitation is that, while the framework is agnostic of
the agents’ models, our framework requires human input for
specifying the behavior characteristics and MIP constraints.
Automating part of the solvability specification is an exciting
area for future work.
Implications. We envision our framework as a method to help
evaluate human-robot coordination in the future, as well as a
reliable tool to help practitioners debug or tune their coordina-
tion algorithms. More generally, our framework can facilitate
understanding of complex human-aware algorithms executing
in complex environments. We are excited about future work
that highlights diverse behaviors in different settings where
coordination is essential, such as manufacturing and assistive
care. Finally, we hope that our work will guide future human-
robot coordination research to consider the environment as a
significant factor in coordination problems.
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APPENDIX A
MIXED-INTEGER LINEAR PROGRAM REPAIR

We adapt the problem formulation from [46] for repairing
The Legend of Zelda levels to Overcooked. Since the Over-
cooked environments require different constraints to guarantee
environment solvability for the human-robot team, our exact
formulation differs in the type of objects and domain-specific
constraints. For replicability and completeness we provide the
entire MIP formulation.

To generate solveable environments, we first formulate
the space graph [41] that governs agent motion in possible
environments. Let G = (V,E) be a directed space graph were
V is the vertex set and E is the edge set. Each vertex in V
represents a location an object will occupy. Now consider the
movement dynamics of each agent (human or robot) where
each agent can move up, down, left, or right. Each edge
(i, j) ∈ E represents possible motion between location i and
location j for an agent if no object impedes their motion.

To generate an environment, we solve a matching problem
between object types O and locations V . In the simplified
Overcooked AI environment there are 8 object types and
15 × 10 = 150 different tile locations. If unconstrained
further, there are 8150 ≈ 2.9 · 10135 different environments
possible. Object types O include the human h, the robot r,
countertops c, empty space (floor) e, serve points s, dish
dispensers d, onion dispensers n, and pots (with stoves) p.

To formulate the matching in the MIP, we create a vector
of binary decision variables for each pair of object type o ∈ O
and location v ∈ V in the space graph. For example, if variable
sv were assigned to 1, then vertex v in the space graph would
contain a serve point. Assigning sv to 0 means that vertex
v does not contain a serve point. Finally, we constrain each
vertex to contain exactly one object type:

hv + rv + cv + ev + sv + dv + nv + pv = 1,∀v ∈ V (2)

Solvability Constraints. While the above formulation ensures
that a feasible solution to the MIP results in an Overcooked
environment, the generative space of environments must be
further constrained to ensure each generated environment is
solveable by the human-robot team.

Importantly, agents must be able to reach key objects
in the environment. For example, the human must have an
unobstructed path to the stove, dish dispenser, ingredients, and
serve point.

We model the reachability problem as a flow problem [18].
Network flow can be modelled as a linear program, and as
a result we can incorporate flow constraints into our MIP
formulation. To model flow, we create non-negative integer
variables f(u, v) ∈ Z≥0 for each edge e = (u, v) ∈ E in the
space graph G.

Now consider special object types S ⊆ O, for source object
types, and T ⊆ O, for sink object types. We require that a path

from a source object exists to each sink object. Specifically,
we require that a path exists from the human h to all empty
space, serve points, dish dispensers, onion dispensers, pots,
and the robot by setting S = {h} and T = {e, s, d, n, p, r}.
Note that if we allow the human to reach the robot, then the
robot can reach all other objects in T . 3

However, we must also require that the path is unobstructed.
Therefore, each path must not pass through countertops or
other objects that impede movement. Let B ⊆ O be the set
of all object types that can impede movement. In Overcooked,
we set B = {c, s, d, n, p}. To guarantee that we do not pass
through a location with an object of type B, we will restrict
any flow from leaving vertices assigned an object type in B.
By restricting flow from leaving blocking objects instead of
entering them, we allow for flow to reach key objects T that
are also blocking objects B.

To complete our flow modeling, for each vertex v ∈ V we
create non-negative supply variables, fsv ∈ Z≥0, and demand
variables, f tv ∈ Z≥0. These variables are enough to define a
flow network between S and T :

fsv ≤
∑
x∈S
|V | · xv (3)

f tv =
∑
x∈T

xv (4)

fsv +
∑

u:(u,v)∈E

f(u, v) = f tv +
∑

u:(v:u)∈E

f(u, v) (5)

f(u, v) +
∑
x∈B
|V | · xu ≤ |V |, ∀u : (u, v) ∈ E (6)

Equation (3) ensures that there is supply flow only in
vertices in the space graph where a location v ∈ V is assigned
an object type from S. Note that multiple units of flow can
leave source locations as we wish to reach many object types,
but no more than |V | locations exist with objects. Equation
(4) creates exactly one unit of demand if location v ∈ V is
assigned an object from T . Equation (5) is a flow conservation
constraint and ensures that flow entering a location v ∈ V
equals the flow leaving v. Equation (6) ensures that no flow
leaves a location v ∈ V that is assigned a blocking object.

In addition to reachability constraints, we introduce domain-
specific constraints on the frequencies of objects of each type
and ensure that neither agent can step outside the environment.
First, we require that all locations on the border of the
environment must be a blockable object type from B, and
the environment contains exactly one robot r and human h.
Next, each environment requires at least one instance of a
serve point s, an onion dispenser n, a dish dispenser d, and
a pot p to make it possible to fulfill food orders. Finally, we
upperbound the number of serve points s, onion dispensers n,
dish dispensers d, and pots p to reduce the complexity of the

3This holds only if the free space does not form a line graph, but empirically
we found this constraint to be sufficient for large environments.
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environment regarding runtime planning:

1 ≤
∑
v∈V

sv ≤ 2 1 ≤
∑
v∈V

nv ≤ 2

1 ≤
∑
v∈V

dv ≤ 2 1 ≤
∑
v∈V

pv ≤ 2
(7)

∑
v∈V

sv +
∑
v∈V

nv +
∑
v∈V

dv +
∑
v∈V

pv ≤ 6 (8)

Objective. The constraints of our MIP formulation make any
valid matching a solvable environment. To make the MIP a
repair method, we introduce a minimum edit distance objec-
tive from a provided input environment Ki (in Overcooked a
kitchen) to the repaired environment Kr our MIP generates.

We define an edit as moving an object through a path in
the space graph or changing which object type occupies a
location. We wish to consider moving objects first, before
changing the object type. Therefore, we permit different costs
for different edit operations, with moving having a smaller
cost than changing object type. A minimum cost edit repair
discovers a new environment Kr that (1) minimizes the sum
of costs for all edits made to convert Ki to Kr, and that (2)
satisfies all solvability constraints.

Following previous work [46], we formalize minimum cost
repair as a minimum cost matching problem. Intuitively, we
construct a matching between objects at locations in environ-
ment Ki and objects at locations in environment Kr. Instead
of considering all pairs of object locations between Ki and
Kr, we construct a matching as paths through the space graph
G from all objects in Kr to all objects in Ki. Constructing
matchings as paths allows us to assign costs based on the
length of the path and corresponds to moving each object.

Formally, we model our minimum cost matching as a
minimum cost network flow problem4 for each object type.
Consider creating a flow network for object type o ∈ O.
First, we create a supply indicator cv (a constant). We assign
cv = 1 if and only if Ki has an object of type o to location
v and cv = 0 otherwise. We then create a demand variable
f tv ∈ {0, 1} for each vertex v ∈ V .

However, note there may not be a bijection between objects
in Ki and objects in Kr. To account for missing objects, we
create waste variables rtv , which consume flow not assigned
to vertices with object type o. The separate variable enables
the assignment of different costs to deletion and movement
edits.

f tv ≤ ov (9)

cv +
∑

u:(u,v)∈E

f(u, v) = rtv + f tv +
∑

u:(v,u)∈E

f(u, v) (10)

∑
v∈V

cv =
∑
v∈V

f tv +
∑
v∈V

rtv (11)

4Note that these are separate networks than the one defined for the
reachability problem.

Equation (9) guarantees only vertices assigned objects of
type o have demands. Equation (10) ensures flow conservation
for each vertex and equation (11) ensures that supplies and
demands are equal.

The edit distance objective becomes minimizing the cost of
deleting (Cd = 20) and moving (Cm = 1) objects:∑

o∈O

(∑
v∈V

Cdr
t
v +

∑
u,v:(u,v)∈E

Cmf(u, v)

)
(12)

MIP Implementation We implement our MIP interfacing
with IBM’s CPLEX library [25]. Each MIP consists of 8850
variables and 3570 constraints to repair a 15×10 Overcooked
environment.

APPENDIX B
QMDP IMPLEMENTATION

Fig. 9: Human subtask state machine. The first element in the
tuple is the object held by the simulated human; the second
element is the subtask the human aims to complete.

We specify the QMDP as a tuple {S,A, T,Ω, O,C}:
• S is the set of states consisting of the observable and

partially observable variables. The observable variables
include the robot and human’s held object, the number
of items in a pot, and the remaining orders. The non-
observable variable is the human subtask.

• A is a set of robot subtasks that include picking up or
dropping onion, dishes and soups.

• T : S×A→ Π(S) is the transition function. We assume
that the human does not change their desired subtask
until it is completed and the environment is deterministic.
Once a subtask is completed, the human chooses the next
feasible subtask with uniform probability.

• Ω is a set of observations. An observation includes the
state of the world, e.g., number of onions in the pot, the
human position and the current low-level human action
(move up, down, left, right, stay, interact).

• O : S → Π(Ω) is the observation function. Given
a human subtask, the probability of an observation is
proportional to the change caused by the human action in
the cost of the motion plan to that subtask. This makes
subtasks more likely when the human moves towards
their location.

• C : S×A→ R is the immediate cost. It is determined as
the cost of the jointly optimal motion plan for the human
and robot to reach their respective subtasks from their
current positions.

Every time the human completes a subtask, the robot
initializes its belief over all feasible subtasks with a uniform
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Algorithm 1 Latent Space Illumination with CMA-ME

Input: GAN Generator Network G
Initialize: archive of latent vectors X ← ∅ and assessments
F ← ∅
Initialize population of emitters E with initial Covariances
Ce and means µe.
for t = 1, . . . , N do

Select emitter e from E
Generate vector z ← generate(µe,Ce)
Environment Env ← G(z)
Environment Env′ ← MIP repair(Env)
Simulate agents in Env′

f ← performance(Env′)
b← behaviors(Env′)
emitter update(e, z, f, b)
if F [b] = ∅ or F [b] < f then

Update archive X [b]← z,F [b]← f
end if

end for

Algorithm 2 emitter update (Improvement emitter)

Input: emitter e, latent vector z, performance f , and
behaviors b
Unpack the parents, sampling mean µe, covariance matrix
Ce, and parameter set Pe from e.
if X [b] = ∅ then

∆← f
Flag that z discovered a new cell
Add z to parents

else
if F [b] < f then

∆← f −F [b]
Add z to parents

end if
end if
if sampled population is size λ then

if parents 6= ∅ then
Sort parents by their ∆ values (prioritizing parents that
discovered new cells)
Update µe, Ce, Pe by parents
parents← ∅

else
Restart from random elite in X

end if
end if

distribution, and updates its belief by observing the world after
each human action. The feasible subtasks are determined by
modeling the human subtask evolution with a state machine,
shown in Fig. 9.

The best action is selected by choosing the robot subtask
with the highest expected value Q(s, a) = E[C(s, a)+V (s′)],
given the current belief on the human subtask.

APPENDIX C
LATENT SPACE ILLUMINATION WITH CMA-ME

Algorithm 1 presents the CMA-ME algorithm, adapted for
latent space illumination. CMA-ME consists of three com-
ponents: a population of emitters, a scheduling algorithm for
emitters, and an archive. Each emitter is a modified CMA-ES
instance focused on improving a different area of behavior
space. The scheduling algorithm selects emitters in a round-
robin fashion to generate new environments.

To generate an environment from an emitter, we sample a la-
tent vector for the emitter’s Gaussian distribution N (µe, Ce).
We then pass that latent vector to the GAN generator net-
work to generate a new candidate environment, after which
we repair the environment with the MIP solver. Next, we
simulate the human and robot in the environment and compute
performance f and behavior characteristics b. We compute
which unique cell the new environment belongs to based on b,
and we insert the new environment into the archive if the new
solution improved upon the current environment occupying
the cell with respect to f . Information about how the archive
changes when we insert the new environment governs how we
update an emitter’s mean µe and covariance Ce. Conceptually,
N (µe, Ce) models which directions from position µe in latent
space result in the largest changes in the archive.

The authors of CMA-ME proposed several types of emit-
ters. In this paper, we configure CMA-ME with improvement
emitters since they were shown to offer good balance between
quality and diversity. Algorithm 2 details how CMA-ME up-
dates improvement emitters based on how the archive changes.
After generating and evaluating a new environment, we return
the environment to the emitter with performance f and behav-
ior characteristics b. When adding environments to the archive,
there are two cases which change the archive: the environment
occupies a new cell in the archive or the environment improves
upon an existing cell. For new cells, the archive change
∆ is the raw performance f . If the environment improves
upon an existing cell, the archive change ∆ is the difference
between performance f and the performance of the incumbent
environment F [b]. For each new candidate environment that
changes the archive we store that environment in a list called
parents. Once the number of sampled environments reaches
λ samples, we have enough samples to update N (µe, Ce).
First, we sort parents by two criteria: newly discovered cells
have higher priority than improvements to existing cells and
next by the computed ∆ values. The ranking corresponds
to a log-likelihood estimate on which search directions are
most profitable (see [7]), and we adapt the emitter’s mean
µe, covariance Ce, and additional CMA-ES parameters Pe

5

towards search directions which yielded the largest archive
improvements. If the archive didn’t change after λ samples,
then the emitter restarts from a latent code in the archive
chosen uniformly at random as µe and an identity covariance
matrix Ce = I .

5Pe contains evolution paths and the global step-size scalar σ. For more
information on CMA-ES’s adaptation mechanisms see [22].
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APPENDIX D
IMPLEMENTATION OF LATENT SPACE ILLUMINATION

A. GAN Training

We hand-authored Overcooked AI environments based on 77
levels from the Overcooked [1] and Overcooked 2 [2] video
games. For training the GAN, we augment the environments
by mirroring each environment horizontally, vertically, and
both horizontally and vertically to expand the training set to
308 training environments in total.

We encode each environment as a 2-dimensional grid of to-
kens, where each token represents different object types (e.g.,
countertop, pot and onion dispenser). We then convert each
environment layout to 2-dimensional tensor where each cell
contains an 8-dimensional vector with the one-hot encoding
of the tile. We then pad the layout to a 8 × 16 × 16 input
tensor which gets passed to the discriminator network. For
the generator network, we make the latent vector input 32-
dimensional, following previous work [16, 44].

We train the GAN with RMSprop for 50 000 iterations with
learning rate of 1e−5 and a batch size of 64 in approximately
2 hours.

B. CMA-ME

A single run of CMA-ME deploys 5 improvement emitters
with population λ = 37, and mutation power σ = 0.2. We ran
all experiments for 10 000 evaluations in a distributed manner
on a high performance cluster, utilizing 120 Xeon CPUs. Each
experiment took between 12 and 18 hours to complete.

C. Performance function

We wish to represent in the performance function f both
the number of completed orders and the amount of time each
order was completed. Thus, we use a rank-based aggregate
function with at most five digits. The fifth digit (in the ten-
thousand place) indicates the number orders delivered. The
fourth and the third digit indicate the number of time steps left
after the second order is delivered (the simulation ended after
100 timesteps), and the second digit and first digit indicate the
number of time steps left after the first order is delivered. For
example, if 2 orders are delivered with the first one at time
step 20 and the second 60, the performance value would be
24 080. If no order is delivered, the performance is 0. Finally,
we normalize the value so that it is between 0 and 1.

D. Multiple Trials

When running multiple trials (section V), we compute the
median performance to estimate the performance metric f ,
since the performance metric is rank-based. Similarly, we used
the median, rather than the mean, for the estimation of BCs,
since the median is more robust to outliers, and we wanted to
avoid the case that an environment where one agent does all
of the work in nearly half of the trials and none of the work in
the other half would be placed in the “even workload” region
of the archive.

We ran 50 trials for the median calculation, since we em-
pirically found this number of trials reduced variance enough
to give consistent results.

APPENDIX E
ALTERNATIVES TO LATENT SPACE ILLUMINATION

A. Random Search

Previous work [16] demonstrates that searching the latent
space of a GAN with CMA-ME significantly outperforms
random search in the quality and diversity of generated levels
for the Super Mario Bros. video game. In random search,
we directly sample the latent space of the GAN from the
same distribution that we used to train the generator network:
a normal distribution with zero mean and variance equal to
one. For each sample, we generate an environment, repair
the environment with the MIP solver and update the archive,
according to the CMA-ME algorithm.

As a proof of concept, we show the generated archive for
the team fluency BCs for a single run of random search.
After 10 000 evaluations, random search populates the archive
with 563 unique environments, compared to 624 by CMA-
ME. We observe that, while the difference between the two
methods is smaller compared to previous experiments in the
Super Mario Bros. domain [16], CMA-ME visibly finds more
environments in the bottom half of the archive (Fig. 10a).
These environments have unique characteristics such as narrow
corridors leading to dead-ends and are hard to find by directly
sampling GAN latent vectors from a fixed distribution. This
result shows the capability of CMA-ME to find environments
at extreme positions of the behavior space.

Since both methods are stochastic, we compare CMA-ME
and random search by doing 5 runs of CMA-ME and 5 runs
of random search. A one-way ANOVA found the difference in
coverage to be significantly larger for CMA-ME (F (1, 8) =
10.064, p = 0.013), supporting previous findings [16].

Fig. 10b shows the archives of the two algorithms after
50 000 evaluations. The difference between the two methods is
more visible, since CMA-ME has more time to adapt towards
the hard-to-reach regions of the behavior space.

B. Directly Searching for Environments

To demonstrate the benefit of searching the latent space
of a GAN, we implemented a baseline vanilla MAP-Elites
(ME) algorithm [31], where we directly search over layout
tiles. We choose MAP-Elites, instead of CMA-ME, since
CMA-ME operates only on continuous search spaces. We ran
ME for 10 000 iterations. At each iteration an environment
was selected randomly from the archive. For each selected
environment, we generated a new environment by randomly
selecting 20 tiles and replacing them with new ones, the
type of which were sampled uniformly. We then repaired
and evaluated each new environment using the workload
distribution BCs and the centralized planners, identically to
the GAN-generated environments.

Fig. 11 shows two example environments, one of even and
one of uneven workload, generated by this method. We observe
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CMA-ME Random Search

(a) Archives generated after 10 000 evaluations.
CMA-ME Random Search

(b) Archives generated after 50 000 evaluations.

Fig. 10: Comparison of the team-fluency archives generated
with CMA-ME and random search.

(a) (b)

Fig. 11: Example environments generated with a MAP-Elites
implementation that directly searches over the tiles of the
layouts, rather than searching the latent space of a GAN.

that the two environments are stylistically different from the
human-authored examples: they include empty rooms and
they lack the partial symmetry often exhibited in the human-
authored examples and the GAN-generated environments.
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5 6

(1) (2)

(3) (4)

(5) (6)

Fig. 12: Environments selected for the user study. (1)-(3) are
“even workload”, (4)-(6) are “uneven workload.”

APPENDIX F
USER STUDY

A. Environments

Fig. 12 and 13 show the environments selected for the
user study. We selected environments from the archive of
Fig. 7, since these environments were more challenging for
coordination.

B. Histograms of Computed Behavior Characteristics

Fig. 14 and 15 show the computed BCs from the
playthroughs of the users for even and uneven workload
environments, as well as for low and high team fluency
environments.
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Fig. 13: Environments selected for the user study. (1)-(3) are
“low team fluency”, (4)-(6) are “high team fluency.”

C. Open-ended Responses

In a post-experiment questionnaire, we asked participants to
describe which factors affected the quality of the collaboration.
In response, participants noted the “openness of the space,”
the “number of pots” and the “location of the stove, onions
and delivery port.” They also referred to the robot’s behavior.
According to one participant, the robot recognized that “I am
walking in a narrow pathway and stand aside to not block
my way. This really helps the collaboration because I can
understand that the robot is trying to help me by standing
still.” Others stated that “sometimes the robot blocked my
way,” “Sometimes we did the same next step which makes
the procedure less efficient” and “[the robot] does not seem
to know how to ‘pass’ items to me (take items and put them
somewhere so I can pick them up).” The latter is an ability

Fig. 14: Histograms of computed BCs from the playthroughs
of the users for even and uneven workload environments.

Fig. 15: Histograms of computed BCs from the playthroughs
of the users for the low and high team fluency environments.

that we excluded from the QMDP model to enable real-time
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computation of the QMDP policy.
We additionally asked participants to describe which fea-

tures made some environments more challenging than others.
Most participants stated that long and narrow paths made
environments harder, especially when there were no alternative
routes. A few participants also pointed to the distance between
objects as a factor, which affected the ability of the team to
complete the task in time.

Overall, in addition to the robot’s performance, participants
recognized the environment as a significant factor influencing
the quality of the collaboration. This supports the importance
of searching for diverse environments when studying coordi-
nation behaviors. ���
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