
Robotics: Science and Systems 2021
Held Virtually, July 12–16, 2021

1

Entropy-Guided Control Improvisation
Marcell Vazquez-Chanlatte∗, Sebastian Junges∗, Daniel J. Fremont†, Sanjit A. Seshia∗

University of California, {Berkeley∗, Santa Cruz†}

Abstract—High level declarative constraints provide a powerful
(and popular) way to define and construct control policies;
however, most synthesis algorithms do not support specifying
the degree of randomness (unpredictability) of the resulting
controller. In many contexts, e.g., patrolling, testing, behavior
prediction, and planning on idealized models, predictable or
biased controllers are undesirable. To address these concerns,
we introduce the Entropic Reactive Control Improvisation (ERCI)
framework and algorithm which supports synthesizing control
policies for stochastic games that are declaratively specified by (i)
a hard constraint specifying what must occur, (ii) a soft constraint
specifying what typically occurs, and (iii) a randomization
constraint specifying the unpredictability and variety of the
controller, as quantified using causal entropy. This framework,
which extends the state of the art by supporting arbitrary
combinations of adversarial and probabilistic uncertainty in the
environment. ERCI enables a flexible modeling formalism which
we argue, theoretically and empirically, remains tractable.

I. INTRODUCTION

The use of declarative specifications, e.g. in the form of
temporal logic formulas, has become a popular way to construct
high-level robot controllers [30, 58, 27, 21, 28, 40, 33]. Given
a user provided specification, synthesis algorithms aim to
automatically create a control policy that ensures that the
specification is met, or explain why such a policy does not
exist. Together, synthesis and declarative specifications facilitate
quickly and intuitively solving a wide variety of control
tasks. For example, consider a delivery drone operating in
a workspace. One may specify the drone should “within 10
minutes, visit four locations (in any order) and avoid crashing.”.
A synthesis tool may then create a finite state controller which
guarantees this specification is met, under a particular world
model. Importantly, while many controllers may conform to
the provided specification, many synthesis algorithms provide
a single, often deterministic, policy. For instance, in our drone
example, a synthesized controller may generate only a single
path through the workspace.

In some settings, such policies are undesirable. First, in
many tasks, the predictability (or bias) of the policy may be a
liability. Examples include patrolling [3], behavior prediction
and inference [57], and creating controller harnesses for fuzz
testing (see motivating example in Sec. II). Second, synthesis
algorithms work on idealized models, and thus any policy that
overcommits to any given model quirk may in practice yield
poor performance. In such settings, randomization is known to
make policies more robust against worst-case deviations [60,
17]. Unfortunately, classical synthesis methods result in policies
that need not (and typically do not) exhibit randomization.

To address these potential deficits, we advocate for the
adoption of the recently proposed control improvisation [19, 20]

framework, in which one specifies a controller with three
types of declarative constraints. (i) Hard constraints that, as
in the classical setting, must hold on every execution, (ii)
soft constraints that should hold on most executions, and
(iii) randomization constraints that ensure that a synthesized
policy does not overcommit to a particular action or behavior.
The key challenge when solving control improvisation is that
randomization and performance, in the form of soft constraints,
constitute a natural trade-off.

So far, control improvisation has only be studied in non-
deterministic domains where uncertainty is resolved adver-
sarially [19]. This assumption is often too restrictive and
leads (together with the soft/hard constraints) to conservative
policies or common situations in which the synthesis algorithm
cannot be employed at all. To overcome this weakness, we
develop a theory of control improvisation in stochastic games
which admit arbitrary combinations of nondeterministic and
probabilistic uncertainty, including unknown or imprecise
transition probabilities.

Technically, we formulate our problem on simple stochastic
games [14], an extension of Markov decision processes (MDPs)
that divides states between controllable states and uncontrol-
lable (or adversarially controlled) states. Soft constraints are
finite horizon temporal properties with a threshold on the
worst-case probability of the property holding by the end
of the episode. Hard constraints are soft constraints to be
satisfied with probability 1. In contrast to other work on
control improvisation, we adopt causal entropy as a natural
means to formalize randomness constraints. Causal entropy
is a prominent notion in directed information theory [39] that
strongly correlates with robustness in the (inverse) reinforce-
ment learning setting [60, 17]. We refer to this variant of control
improvisation as Entropic Reactive Control Improvisation
(ERCI) and show that ERCI conservatively extends reactive
control improvisation [19] to stochastic games. More precisely,
entropy can be used in the non-stochastic setting and yields
results analogous to reactive control improvisation. ERCI
also extends classical policy synthesis in stochastic games,
i.e. synthesis in absence of randomness constraints as, e.g.,
implemented in PRISM-games [35].

Contributions. In summary, this paper contributes ERCI, an
algorithmic way to trade performance and randomization in
stochastic games. As we motivate in the example below, games
that combine both adversarial and probabilistic behavior in
an environment allow for modeling flexibility, facilitating
applicability to new domains. To support this extension,
the paper proposes and shows the benefits of formulating

 ���

Fig. 1. Illustration of delivery drone testing example. The goal is to synthesize
a policy for the bottom left (white circle) drone to test the controller of the
top right (black square) drone. Ideally, the synthesized policy should be as
randomized as possible to avoid testing bias.

randomization constraints with causal entropy. Finally, this
work contributes the necessary technical machinery and a
prototype implementation. Combined, our theoretical and
empirical analysis suggest that the ERCI framework contributes
a tractable and flexible modeling formalism.

Overview. This paper is structured as follows. We begin with
a motivating example (Sec. II). Then we provide preliminaries
and formalize the ERCI problem statement (Sec. III). Next, we
cast ERCI as a multi-objective optimization problem and study
properties of the solution set (Sec. IV). With this technical
machinery developed, Sec. V re-frames existing literature on
maximum causal entropy inference and control to derive an
algorithm for MDPs. Then in Sec. VI, we provide an algorithm
for the general case of stochastic games. We conclude with an
empirical evaluation (Sec. VII) and a comparison with related
work, e.g., other control improvisation formulations (Sec. VIII).
Proofs are attached in Sec. X.

II. MOTIVATING EXAMPLE

We consider a scenario in which a regulatory agency wishes
to certify the safety and performance of a new delivery drone
Dnew. As part of the process, the agency runs Dnew through
a series of tests. For example, given a certain delivery route,
the agency investigates whether Dnew successfully delivers
packages while avoiding other delivery drones. To execute this
test, the agency decides to synthesize a controller for another
delivery drone, Dtest, to test if Dnew can be certified.

Concretely, suppose we command Dnew to continuously visit
four houses in some workspace. We illustrate such a scenario
in Fig. 1, in which Dnew and Dtest are shown as black square
and white circle drones respectively. For this test scenario,
the regulatory agency, wishes to exam how Dnew responds to
delivering packages to the red houses in the presence of Dtest. In
particular, it would like to let Dtest also deliver packages while
avoiding Dnew. Importantly, to properly exercise Dnew, Dtest
should show a variety of behaviors meeting the specification,
and the behaviors should not be biased to any behavior beyond
the given specification.

With the ERCI framework, the agency may formalize the
above scenario with the following constraints on Dtest:

1) (hard constraint) Ensure that the two drones never collide.
2) (soft constraint) With probability at least .8, visit all four

houses within 10 minutes.
3) (randomness constraint) Perform this task as unpredictably

as possible.
What remains is to synthesize a controller given the constraints
and the world model. At this point, it is worth examining more
closely how one models Dnew’s controller when synthesizing
Dtest. We illustrate by examining three models. In all models,
we capture the behaviors of Dnew and Dtest. We focus on Dnew,
but the ideas carry over to modeling the actuation of Dtest.
Nondeterministic Model. The simplest approach to modeling
is not to make any assumptions about Dnew beyond what
already has been established. Here, we model that the houses
are visited either in clockwise or counter-clockwise order but
that it may switch direction at any time. Such a model is too
liberal and our assumptions under which we plan the behavior
for Dtest is too pessimistic, which leads to a bad test set. First,
if Dnew is unrestricted, then Dtest’s behavior is severely limited,
as it must behave conservatively to avoid collisions under all
possible motions by Dnew (even very unlikely motions). This
limitation restricts the variance of its behavior, and it will not
test Dnew’s true behavior. A purely non-deterministic model for
Dnew thus may not lead to the synthesis of adequate behavior
for Dtest.
Stochastic Model. Rather than the pessimistic nondeterministic
(or adversarial) assumption, we may collect data about Dnew and
construct a stochastic model, e.g., using inverse reinforcement
learning [43]. Concretely (but simplified), after examining the
data, one observes that Dnew appears to flip a biased coin
with fixed probability p whenever it reaches a house to decide
whether or not to turn around. This models Dnew much more
precisely, and allows for more targeted test by Dtest.
Nondeterministic and Stochastic Model. However, a natural
criticism for stochastic models is the dependence on fixed
probabilities. Obtaining such probabilities with confidence
requires many tests which defeat the purpose of our test
setup, and making point-estimates from little data may not
create faithful models of the actual behavior. In absence
of enough (or reliable) data, we can arbitrarily combine
nondeterministic choices and stochastic behavior. We may use
stochastic abstractions for parts that we can faithfully model,
and nondeterministic behavior in absence of data. In particular,
we support interval-valued transition probabilities. Consider
the delivery-drone Dnew. Rather than inferring a point-estimate
from data, we may have inferred that the probability of turning
around is in the interval [p− ε, p+ ε] for adequate values of
p and ε. Furthermore the actual probability may even depend
on aspects of the current state.
ERCI as a unifying framework. The strength of the (entropy-
guided) control improvisation framework is that we can
combine all these aspects into a single and thus flexible
computational model. In particular, the models above are
captured by a 2-player game, a 1.5-player game (MDP) and
a 2.5-player game (stochastic game, SG), respectively. In all

 ���

s0 s1

s2 s3

s>

s⊥

a

b

a

b

a 1/3

2/3

1/3
2/3a

b

Fig. 2. A running example.

cases, the first player controls the behavior of Dtest and this
controller is to be synthesized. We contribute an algorithm that
synthesizes a controller that maximally randomizes in all of the
formalisms discussed above. In the coming sections, we shall
formally define the ERCI problem, highlight that there is an
implicit trade-off between performance of the soft constraint
and unpredictability, and provide an algorithm solving ERCI
for SGs.

III. PROBLEM STATEMENT

This section formalizes the novel Entropic Reactive Control
Improvisation (ERCI) problem. We start with some necessary
definitions and notations on stochastic games.

A. Stochastic Games

A (2.5-player) stochastic game (SG) is a tuple G =
〈S, ι, A, P 〉. The finite set of states S = Sego ∪ Senv is
partitioned into a set Sego of (controlled) ego-states and a
set Senv of (uncontrolled) env-states. ι ∈ Sego is the initial
state, A is a finite set of actions, and P : S×A→ Distr(S) is
the transition function. For simplicity of exposition, we assume
w.l.o.g. that controlled and uncontrolled states alternate. Thus,
P is defined by two partial transition functions: Pego : Sego ×
A→ Distr(Senv), Penv : Senv × A→ Distr(Sego). We identify
the available actions1 as A(s)

def
= {α | P (s, α) 6= ⊥}.

States without available actions, i.e., states with A(s) = ∅
are called terminal states. The successor states of a state s
and an (enabled) action α is the set of states that are
reached from s within one step with a positive transition
probability, i.e., Succ(s, α)

def
= {s′ | P (s, α)(s′) > 0}, and

Succ(s)
def
=
⋃
α∈A(s) Succ(s, α).

Example 1. We introduce a six-state toy-example (Fig. 2)
to illustrate the definitions. Terminal states are drawn with
a rectangle, ego-states with a circle and env-states with a
diamond. For every state s and action α, we draw transitions in
the form of edges that connect all successors s′, and label them
with the associated probabilities P (s, α)(s′). For conciseness,
we omit labelling probability 1 transitions.

SGs capture a variety of models. For example, if |A(s)| = 1
for all uncontrolled states, s ∈ Senv, then G is a Markov
decision process (MDP). If |A(s)| = 1 for all s ∈ S, then G
is a Markov chain. If P (s, α) is a Dirac distribution for every

1We use a partial function as we explicitly allow modeling unavailable
actions, e.g., we can model that a door can only be opened when close enough
to the door.

s ∈ S and α ∈ A, then G is called deterministic or a 2-player
game.

B. Paths and Path Properties

A finite path, ξ, of length n is a sequence s0
α0−→ s1

α1−→
s2 → . . . → sn in (S ×A)

n × S where P (si, αi)(si+1) > 0
for each i. We denote the length with |ξ|, and denote sn,
i.e., the last element of ξ, with last(ξ). Further, note that ego
states are even indexed and env states are odd indexed as
we assume alternation. A path, ξ′ = s′0

α′0−→ . . ., is a prefix
of ξ, if for all i ≤ |ξ′|, si = s′i and for all i < |ξ′|, αi = α′i.
The set of all finite paths of length n is denoted PathsGn , and
PathsG =

⋃
n∈N PathsGn . We omit G whenever it is clear from

the context. It is helpful to partition paths based on their
last state: [Paths]ego = {ξ ∈ Paths | last(ξ) ∈ Sego} and
[Paths]env = Paths \ [Paths]ego.

Example 2. In Fig. 2, there are two paths that end in s3,
s0

a−→ s1
b−→ s3 and s0

b−→ s2
a−→ s3, both of length 2. Both

paths are in [Paths]ego, as s3 ∈ Sego.

Whenever some state s is reached, the corresponding player
draws an action from A(s). As standard, we capture this with
the notion of a scheduler2. A scheduler is a tuple of player
policies σ = 〈σego, σenv〉 with σi : [Paths]i → Distr(A) such
that support(σi(ξ)) ⊆ A(last(ξ)) for each ξ, i.e., for every
history, the policy sets a distribution over the enabled successor
actions. For a given path, ξ and a policy σi, we denote by
σi(α | ξ) the distribution of actions induced by σi given the path
ξ. To ease notation, we liberally use the notation σ : Paths →
Distr(A), where this function is given dependent on which
player owns the last state.

Example 3. An example for a ego-policy σego is given by,

σego(α | ξ) =

1/2 if α ∈ {a, b}, ξ = s0,

1 if α = a, ξ = s0
b−→ s2

a−→ s3,

1 if α = b, ξ = s0
a−→ s1

b−→ s3.

The probability Pr(ξ | σ) of a finite path ξ in an SG G
conditioned on a policy σ is given by the product of the
transition probabilities along a path. More precisely, we define
the probability Pr(ξ | σ) recursively as:

Pr(s | σ)
def
= 1

Pr(ξ | σ)
def
= Pr(ξ′ | σ) · σ(α | ξ′) · P (last(ξ′), α)(s′)

(1)

where ξ = ξ′
α−→ s′. The probability of a prefix-free set X ⊆

Paths of paths is the sum over the individual path probabilities,
Pr(X | σ) =

∑
ξ∈X Pr(ξ | σ).

Next, we develop machinery to distinguish between desirable
and undesirable paths. We focus on finite path properties,
referred to as specifications or constraints, that are decidable
within some fixed τ ∈ N time steps, e.g., “Recharge before
t=20.” Technically, we represent these path properties as prefix
free sets of finite paths, ϕ, reflecting some formal property3.

2Also known as strategy or policy.

 ���

An example are all paths that end in a particular terminal
state s> within τ steps.

C. Control Improvisation

In control improvisation, we aim to find an ego-policy, σego,
that satisfies a combination of hard- and soft constraints, and
additionally generates surprising behavior, where we measure
the expected surprise by the causal entropy [39] over the paths.

We first define causal entropy on arbitrary sequences of ran-
dom variables. Let X1:i

def
= X1, . . . ,Xi and Y1:i

def
= Y1, . . . ,Yi

denote two sequences of random variables. The probability of
X1:i causally conditioned on Y1:i is:

Pr(X1:i || Y1:i)
def
=

i∏
j=1

Pr(Xj | X1:j−1Y1:j). (2)

The causal entropy of X1:i given Y1:i is then defined as,

H(X1:i || Y1:i)
def
= EX1:i,Y1:i

[− log(Pr(X1:i || Y1:i))] (3)

Using the chain rule, one can relate causal entropy to (non-
causal) entropy, H(X|Y)

def
= EX [− log(Pr(X | Y))] via:

H(X1:i || Y1:i) =

i∑
t=1

H(Xt | Y1:t, X1:t−1) (4)

This relation shows that: (1) Causal entropy is always lower
bounded by non-causal entropy (and thus non-negative).
(2) Causal entropy can be computed “backward in time”.
(3) Causal and non-causal conditioning can be mixed,

H(X1:i || Y1:i | Z)
def
=

i∑
t=1

H(Xt | Y1:t, X1:t−1, Z). (5)

Intuitively, and contrary to non-causal entropy, causal entropy
does not condition on variables that have not been revealed, e.g.,
on events in the future. This makes causal entropy particularly
well suited for measuring predictability in sequential decision
making problems, as the agents cannot observe the future [60].

We now define causal entropy in stochastic games. Recall
that a path alternates states and actions. The next state after
observing a sequence of state-action pairs is a random variable.
Formally, given G and a scheduler σ, let us denote by Aego

1:i

and S1:i random variable sequences for ego-player actions and
states respectively. The causal entropy of controllable actions
in τ -length paths under σ is then,

Hτ (σ)
def
= H(Aego

1:τ ′ || S1:τ), (6)

where τ ′ = d τ2 e is the number of ego-actions due to alternation.

Example 4. Consider the uniform ego policy on Fig. 2. If
σenv(a | ξ) = 1. Hτ (σ) = log(2) + 1/2(log(2)). Note, only
ego can add entropy, while env and stochastic transitions yield
convex combinations via expectation.

We now formalize the problem statement.

3Such paths may e.g. be defined using temporal properties such as linear
temporal logic over finite traces (LTLf) [24].

The Entropic Control Improvisation (ERCI) Problem:
Given a SG G, τ -bounded path properties ψ and ϕ, and
thresholds p ∈ [0, 1] and h ∈ [0,∞), find a ego-policy
σego (or report that none exists) such that for every env-
policy σenv,

1) (hard constraint) Pr(ψ | σ) ≥ 1
2) (soft constraint) Pr(ϕ | σ) ≥ p
3) (randomness constraint) Hτ (σ) ≥ h

where σ = 〈σego, σenv〉.

We say that an instance of the ERCI problem is realizable, if
an appropriate σego exists and call such σego an improviser.
The problem is unrealizable otherwise.

IV. ERCI AS MULTI-OBJECTIVE OPTIMIZATION

We investigate the ERCI problem statement. Based on a
sequence of observations, we reduce the ERCI problem to the
Core ERCI problem which significantly eases the description
(and implementation) of the algorithm afterwards.

A. Preprocessing

To ease the technical exposition, without loss of generality,
we make the following assumptions: We assume the graph
structure underlying the SG is finite and acyclic – and thus
all paths are finite length. When considering τ -bounded path
properties (monitorable by finite automata), this assumption is
naturally realized by a τ -step unrolling of a monitor augmented
SG 4, i.e., augmenting the state space with a counter from 0
to τ and the current property monitor state.

Next, in order to ensure the hard constraint, ψ, we calculate
all states from which the env-player can enforce violating
the hard constraint. Such states are identifiable using a single
topologically ordered pass over G from the terminal states to
the initial state. We remove such states along with their in-
and outgoing transitions. Any ego-policy now satisfies the hard
constraint. The remaining terminal states are all merged into
two states s> and s⊥, based on membership in ϕ, i.e.,

last(ξ) = s> =⇒ ξ ∈ ϕ
last(ξ) = s⊥ =⇒ ξ /∈ ϕ

. (7)

Example 5. In Fig. 3a we show a (deterministic) MDP and we
plot for all schedulers the induced probability to reach s> and
the induced causal entropy, in Fig. 3b and 3c, respectively. We
see that taking action a with increasing probability yields a
larger probability to reach s>, whereas taking action a and b
uniformly at random is optimal for the entropy.

B. Geometric Perspective

There is a natural trade-off between probability of gener-
ating paths in ϕ (from here onwards: the performance) and
causal entropy induced by a policy (the randomization). In
particular, with all other ingredients fixed, we are interested
in understanding the combinations of p and h that yield a

4One may then represent this unrolled graph as a binary decision diagram,
resulting in a (typically) concise graph that grows proportional to the horizon
and minimal state space augmentation required [57].

 ���

s0

s>

s⊥

a

b

(a) Minimal MDP

σ(a | s0)

Pr(ϕ | σ)

(b) Probability to reach s>

σ(a | s0)

H(σ)

(c) Causal Entropy

Fig. 3. Minimal ERCI problem with ϕ = (last(ξ) = s>)

solvable instance of the (core) ERCI problem. To this end,
we cast ERCI as an instance of a multi-objective optimization
problem, and study its Pareto front. Some ideas are inspired
by variants of multi-objective analysis of MDPs with multiple
soft constraints, e.g. [11, 16, 18].

It is convenient to consider this front geometrically. To begin,
given a fixed ERCI instance, a scheduler σ induces a point xσ:

xσ
def
=
〈

Pr(Xϕ | σ), H(σ)
〉
∈ [0, 1]× [0,∞). (8)

To ease notation, for xσ = 〈p, h〉 we use pσ
def
= p and hσ

def
= h.

Next, we partially order these points via the standard product
ordering:

〈p, h〉 � 〈p′, h′〉 iff p ≤ p′ ∧ h ≤ h′. (9)

We say that σego guarantees a point xego
def
= 〈p, h〉, if for

every policy σenv, using σ = 〈σego, σenv〉, we have pσ ≥ p
and hσ ≥ h. Thus, a point is guaranteed if no matter what
policy env uses, xσ will induce a point no worse w.r.t. to either
randomization or performance than xego. We define the set of
guaranteed points for a scheduler σego:

S[σego]
def
= {〈p, h〉 | σego guarantees 〈p, h〉}. (10)

We observe that guaranteed points are downward closed, i.e.,
if σego guarantees x and x′ � x, then σego guarantees x′.
Example 6. Consider Fig. 4a. We fix σego and in the blue
hatched area draw all points induced by σ = 〈σego, σenv〉 when
varying σenv. We take the minimal randomness h and the
minimal performance p. The points in the downward closure
of 〈p, h〉 (green circle) are the guaranteed points for σego in
the green solid area. We notice the gap between both areas:
While the performance and randomization may be better than
the optimum that ego can guarantee, it cannot guarantee a
higher randomization and performance simultaneously, as the
env-player would have a counter-policy violating either the
performance or the randomization.

Points guaranteed by some σego are called achievable. Thus,
the achievable points are: S =

⋃
σego

S[σego]. Importantly, the
ERCI problem is realizable iff 〈p,h〉 is achievable. Thus, to
solve ERCI instances, we start by characterizing S. We start
by observing the S is convex5 (proof in Sec X).

Proposition 1. The set of achievable points, S, is convex.

5That is, x, x′ ∈ S implies for every w ∈ [0, 1] that w ·x+(1−w) ·x ∈ S

Next, because S is downward closed, it suffices to study the
“maximal” or non-dominated points. Precisely, we say that a
point x is dominated by x′ if x ≺ x′, i.e., if x � x′ ∧ x 6= x′.
The Pareto front FS of S is then the set of non-dominated
achievable points,

FS
def
= {x ∈ S | ∀x′ ∈ S, x 6≺ x′}. (11)

Importantly, it holds that the ERCI problem is satisfiable
iff there exists a x ∈ FS such that 〈p,h〉 � x.

Example 7. The set S illustrated in Fig. 4b is obtained by
taking the union of guaranteed points, and can be characterized
by the set of points on the Pareto front: This is the curved
border between the green and white area, in particular the three
green dots are on the Pareto front. Any ERCI instance with
〈p,h〉 in the green area is realizable.
Approximating the Pareto front gives a natural approximation
scheme for ERCI instances: For any subset F ⊆ FS,

1) If there exists an x ∈ F such that 〈p,h〉 � x, then the
ERCI problem must be realizable and x is a witness to
realizability.

2) If there exists an x ∈ F such that x ≺ 〈p,h〉, then the
ERCI problem is not realizable and x is a witness to
unrealizability.

Due to convexity, we may speed up the search for realizability:
If there exist x1, x2 ∈ F such that 〈p,h〉 ≺

(
w · x1 + (1 −

w) · x2

)
, we call x1, x2 a witness-pair.

Remark 1. Given a witness(pair) to realizability, it is easy to
extract the corresponding improviser. Let x1, x2 be a witness-
pair to realizability, induced by σλ1 and σλ2 such that 〈p,h〉 �
w · x1 + (1− w) · x2, then the policy described by

σ∗ego(α | s)
def
= w · σλ1(α | s) + (1− w) · σλ2(α | s) (12)

is an improviser solving the ERCI problem.
Example 8. Consider Fig. 4c. We have found three points on the
Pareto front, and already have a good impression of the trade-
off between randomization and performance. In particular, the
green area is definitively a subset of S: It exploits the downward
closure and the convexity of S. The red (dotted) part contain the
points on the Pareto front in their downward closure, thus they
cannot be part of the Pareto front themselves. Furthermore, the
topmost point on the Pareto front was obtained by maximizing
performance (and optimizing randomization only as a secondary
objective). Thus, by construction, the bricked area at the top
is not realizable. Analogously, the bricked area at the right
reflects non-achievable randomization.
Remark 2. We notice that the multi-objective optimization
perspective allows us to extend the set of witnesses for
unrealizability. In particular, every point of the Pareto-curve
can be described as optimizing some scalarization of the objec-
tives. Geometrically, it optimizes along a particular direction.
Whenever we know that a Pareto-optimal point x = 〈p, h〉
optimizes a weighted objective with weights w = 〈w1, w2〉,

 ���

h

p

(a) Guaranteed points Sσego

h

p

(b) Solutions S

h

p

h∗h−

p∗

p−

(c) Iterative construction

h∗hδh−

p∗

pε

p−

(d) Regret-based ERCI

h∗h−

p∗

p− 0:λ=0

0:λ=∞

1:λ=1

2:λ=2

3:λ=4
5:λ=6

4:λ=8

(e) Rationality-based algorithm

Fig. 4. Geometric interpretation of the ERCI problem for some fixed SG.

then x and w together are a witness for unrealizability for
〈p,h〉 whenever w1 · p+ w2 · h < w1 · p + w2 · h.

Thus a key algorithmic question in ERCI is how to efficiently
explore the Pareto front FS.

C. Regret-Based ERCI

To algorithmically explore the Pareto-curve, we re-
parameterize the ERCI problem.

First, we find the two special points induced by (1) opti-
mizing performance and only then randomization (the topmost
green point in the figures) and (2) optimizing randomiza-
tion and only then performance (the rightmost green point).
As we have seen, these restrict the domain in which we
can actually trade performance for randomness. We define
h∗

def
= max{h | ∃p s.t. 〈p, h〉 ∈ S}, i.e., the largest randomness

that can be guaranteed by any ego-policy. Likewise, we define
p∗

def
= max{p | ∃h s.t. 〈p, h〉 ∈ S}, i.e., the largest performance

that can be guaranteed by any ego-policy. Then, we define
p−

def
= max{p | 〈p, h∗〉 ∈ S}, the best performance that ego can

guarantee while guaranteeing optimal randomness. Likewise,
we define the analogous h− def

= max{h | 〈p∗, h〉 ∈ S}. We thus
obtain two points on the Pareto front: 〈p−, h∗〉 and 〈p∗, h−〉,
and intuitively, we can trade between these two points following
the Pareto front.

Now, rather that fixing p and h a priori, we seek to guarantee
some percentage of the independently achievable soft constraint
and causal entropy measure. We re-parameterize ERCI as
follows:

pε
def
= ε · (p∗ − p−) + p− hδ

def
= δ · (h∗ − h−) + h− (13)

where ε, δ ∈ [0, 1]. We call this version of ERCI regret-based.
We remark that the reparameterization is not only beneficial
from a usability point-of-view, but it also eases our exposition.
Geometrically, after computing p∗ and h∗, we know that the left
triangle in Fig. 4d is definitively realizable, and the regret-based
ERCI asks whether the white circle is also realizable (where
the point of the white point is given by ε and δ. Together, we
obtain the following (core) ERCI problem.

The Core ERCI Problem: Given an finite acyclic SG G,
with terminal states, s> and s⊥, and thresholds ε, δ ∈
[0, 1], find a ego-policy σego s.t. for every env-policy σenv:

1) (soft constraint) Pr(last(ξ) = s> | σ) ≥ pε
2) (randomness constraint) H(σ) ≥ hδ

where σ = 〈σego, σenv〉.

Finally, it is helpful to think about the Pareto front as a
function of randomization in this reparameterization. We define
a characteristic function which given a target performance ratio,
ε, yields the optimal randomness ratio, δ:

fS : [0, 1]→ [0, 1]

fS(δ) = max
ε
{hδ | 〈pε,hδ〉 ∈ S} (14)

Proposition 2. fS is continuous and (strictly) decreasing.

We shall temporarily postpone the proof of Prop. 2. For
now, one case observe that (non-strict) monotone decreasing
follows directly from convexity and using the adequate domains.
Finally, the set S is (in general) not a finite polytope – the
MDP in Fig. 3a serves as an example. Nevertheless, S can be
well approximated with finitely many vertices, see Ex. 8.

With these facts, we are now well-equipped to develop the
algorithms in Sec. V for MDPs and Sec. VI for SGs.

V. THE CONTROL IMPROVISATION PROBLEM FOR MDPS

We present an algorithm for the control improvisation
problem for MDPs, which in the next section, will serve as
a subroutine for an algorithm on SGs. Our goal shall be to
instantiate the approximation scheme from the previous section.
In particular, we seek to find points on the Pareto curve FS
and incrementally build up F ⊆ FS.

A. Rationality

To start, recall that an MDP is a stochastic game with
no action choices for the environment, i.e., the environment
is purely stochastic and the only degree of freedom is ego’s
policy. The key idea for finding points on the Pareto-curve is to
rephrase the trade-off between randomization and performance
as a degree in rationality λ of the policy. Formally, the
rationality corresponds to the following scalarization of our
multi-objective problem [37],

Jλ(σ)
def
=
〈

1, λ
〉
·
〈
hσ, pσ

〉
. (15)

 ���

In context of MDPs, the unique (ego-)policy that optimizes (15)
is given by a smooth variant of the Bellman equations [60,
57]. Namely, let smax denote the log-sum-exp operator, i.e.,
smax(X)

def
= log

(∑
x∈X e

x
)
. For each rationality λ ∈ [0,∞),

we define a policy σλ – using s = last(ξ) – as follows:

σλ(α | s) def
= exp(Qλ(s, α)− Vλ(s)) (16)

Vλ(s)
def
=

{
λ · [s = s>] if s ∈ {s>, s⊥},
smaxα∈A(s)Qλ(s, α) otherwise.

(17)

Qλ(s, α)
def
=
∑
s′

P (s, α, s′) · Vλ(s′). (18)

To ease notation, we denote xλ
def
= xσλ , pλ

def
= pσλ , hλ

def
= hσλ .

Intuitively, as λ→ 0, σλ approaches the uniform distribution
over all available actions. Note that this policy maximizes
(causal) entropy, and thus h∗ = h0. As λ → ∞, this variant
of the Bellman equations coincides with the standard Bellman
equations [47], where σλ selects (uniformly) from actions
that maximize performance. Furthermore, the monotonicity
and smoothness of the above Bellman equations yields the
following proposition.

Proposition 3. pλ is continuously (and strictly) increasing in
λ and hλ is smoothly (and strictly) decreasing in λ.

In terms of fS, we can define:

ελ
def
=
pλ − p0

p∞
+ p0 and δλ

def
=
hλ − h∞

h0
+ h∞. (19)

Then, because σλ maximizes randomness given a target
performance, one derives:

fS (δλ) = ελ. (20)

What remains is to instantiate the approximation scheme for
the Pareto front by varying the optimization direction 〈λ, 1〉.6 In
particular, we construct F = {xλ | λ ∈ {λ1, λ2, . . .}} until F
contains a witness to either realizability or unrealizability of the
ERCI instance. We notice that the scalarization in (15) means
that we may additionally exploit witnesses to unrealizability
as outlined in Remark 2. In the remainder of this section, we
improve upon randomly selecting values for λ.

B. Targeted Pareto-exploration

The key ingredient to improve upon arbitrarily selecting
λ1, . . . λi is to exploit additional structure of the rationality.

We propose a three staged sequence: (i) Compute xλ for
the end points λ ∈ {0,∞}. (ii) Double λ (starting at λ = 1)
until hλ ≤ h, yielding λ1 . . . λj . (iii) Binary search for λ ∈
[λj−1, λj]. We illustrate the idea in Fig. 4e.

The algorithm terminates almost surely, that is: the algorithm
halts if 〈p,h〉 is not on FS (or if we happen to exactly hit
〈p,h〉 by selecting some rationality λ). As the Pareto front has
measure 0, we argue that not halting is thus merely a technical
concern, as a small perturbation to the ERCI instance (i.e. a
smoothed analysis [53]) on G admits decidability.

6Assuming p∗, h∗ 6= 0 (which would otherwise yield trivial S and FS)

s0 λ

s1s2

s3 s4

a b

a b

λ λ′ ≥ λ

λ

λ 7→ h3 λ 7→ h4 ≥ h3

λ 7→ h1λ 7→ h3

MDP MDP

MDP

Fig. 5. SG to illustrate entropy matching policies.

Our approximation scheme yields a semi-decision process
which halts iff either (a) 〈p,h〉 is bounded away from
FS or (b) 〈p,h〉 is dominated by xλi .

Next, observe that if we terminate the binary search when the
search region is smaller than ∆, this approximation scheme
becomes linear in the MDP size and logarithmic in the final
rationality, λ∗, and the resolution, ∆, i.e., the run-time is,

O
(
|G|︸︷︷︸

Evaluate xλ

·

Doubling Phase︷ ︸︸ ︷
log(λ∗) · log(1/∆)︸ ︷︷ ︸

Binary Search

)
(21)

Finally, before generalizing to stochastic games, we observe
that in practice, λ = 100 yields a nearly optimal policy, and
thus one can often assume λ∗ ≤ 100 in our run-time analysis.

VI. THE CONTROL IMPROVISATION PROBLEM FOR SGS

MDP algorithm in hand, we are now ready to provide an
algorithm for stochastic games.

Environment Policies. We begin with three observations about
the env-policies. First, for ERCI, we can assume an adversary
for env that aims to foil ego achieving both the performance
and randomization requirement. We call such a env-policy
violating. For a policy to be violating, it suffices to violate,
against every ego-policy independently, either performance or
randomization. Second, if there is a violating env-policy, there
is a deterministic env-policy that proves this. In particular, at
every state, σenv may choose to violate either constraint via
the appropriate action with no incentive to randomize. Third,
fixing an environment policy reduces G to a MDP G[σenv].

A Sufficient Class of Policies. For MDPs, we have seen that
varying rationality is sufficient to explore the Pareto curve.
We show that we can adapt that idea to a class we call
entropy matching policies, which may be indexed by the (initial)
rationality. In the initial state, we start by assuming that env
selects a (deterministic) policy, σλenv, that lexicographically min-
imizes the guaranteed randomness, followed by performance.
On the sub-graph, G[σλenv], ego employs the corresponding
entropy maximizing policy for the MDP G[σλenv]. Whenever
env diverges from the entropy minimizing policy (to decrease
the induced performance), we let ego increase its rationality
such that it still induces the same guaranteed randomness. We
refer to this idea as entropy matching. The idea is that the
rationality at the initial state induces a worst-case entropy, and

 ���

whatever env chooses to do, throughout the SG, we ensure
that we indeed obtain this entropy. The policy thus tracks
this entropy and if necessary adapts the rationality (which we
call replanning). Replanning ensures we obtain the optimal
performance from a particular point while still ensuring the
required randomness.

Example 9. We sketch an entropy matching policy in Fig. 5.
In particular, we show part of a SG. For some fixed rationality
λ, we annotate in red, on the left of the SG states, the entropy
obtained when assuming that env plays an entropy-minimizing
policy as outlined above. In particular, this means that in s2,
env selects action a. Now, our entropy-matching policy (in
blue, on the right) will play with rationality λ, unless state
s4 is reached. As this ensures a higher entropy, we may now
select a higher rationality, λ′.

Soundness and Completeness. Importantly, observe that
because fixing a policy for ego yields a verifiable point in
S, any witness for realizability we find is trivially sound. For
completeness, we can restrict ourselves to the case in which our
algorithm claims the ERCI instance unrealizable. Surprisingly,
the class of policies we consider suffices, and the algorithm is
thus sound and (whenever halting) complete (proof provided
in Sec X). That is, all guaranteed points are witnessed by an
entropy matching policy!

Further, observe that as a corollary of the entropy matching
family being complete, it must be the case that fS(hλ)
inherits continuity and (strict) monotonicity from the MDP
case. Namely, at each env state, the achievable points S are
necessarily the intersection of the achievable points of the sub-
graphs. By induction, (with the MDP base case), we obtain
continuity and strict monotonicity.

Algorithm: Memoizing Pareto Fronts. We propose approxi-
mating the Pareto front using the same three staged sequence
of exploring rationality coefficients (at the initial state) as the
MDP case: (1) endpoints, (2) doubling, (3) binary search.

To perform the above computations efficiently, we adopt
a geometric perspective. Namely, observe that each node of
G indexes a sub-graph, which has a corresponding Pareto
front for trading performance for randomness. Further, note
that the Pareto front at an env node is the intersection
of the Pareto fronts of its child nodes. Entropy matching
corresponds to “switching” between Pareto fronts and adjusting
the optimization direction by increasing the rationality. Thus, by
traversing the graph from the terminal states to the initial state,
approximating Pareto fronts along the way, one can memoize
how to trade performance for randomness at any given node.
This preprocessing enables determining the minimum entropy
response for any optimization direction and quickly replanning
via a convex combination of Pareto optimal policies.

Approximate Pareto Fronts. Of course, by varying λ, one
can only construct approximate Pareto fronts F̂ ⊆ FS. We
propose the following high-level algorithm to adapt the above
algorithm to the case where each Pareto front approximation
introduces at most κ error along the performance axis.

1) Let τ denote the length of the longest path in G.
2) Let 0 < κ < 1 be some arbitrary initial tolerance.
3) Recursively compute κ-close Pareto fronts for each

successor state using replanning.
4) If the any minimum entropy action cannot be deter-

mined or p is within κ · τ distance to (but outside
of) F̂, halve κ and repeat.

5) Otherwise, perform the entropy matching algorithm
(with initial entropy h) using these Pareto fronts and
return the resulting policy (if on exists).

The soundness of this algorithm relies on the following critical
facts: (1) Given sufficient resolution, the minimum entropy env-
actions can be determined. (2) The resulting entropy depends
solely on the resulting sub-graph (and is independent of the
current Pareto approximation). (3) Thus, when querying points
on FS, error can only accumulate for p. (4) Next, observe that
p is computed using convex combinations of entropy matched
points on Pareto approximations. (5) Convex combinations of
an error interval cannot increase the error, i.e.,

q · [x, x+ κ] + q̄ · [y, y + κ] = [z, z + κ], (22)

where z = q ·x+q̄ ·y. Thus, so long as κ·τ is enough resolution
to answer pλ < p, one obtains a semi-decision procedure as
in the MDP case.

Termination and Run Time. First, as in the MDP case,
the algorithm terminates almost surely, with the exception
occurring only for a subset of the Pareto front. Below, we
give an output-sensitive analysis of the run time (assuming
it does halt). If κ∗ tolerance is required to terminate, then
the κ search introduces O(log(1/κ∗)) iterations. Next, observe
that each node need process a given rationality coefficient at
most once. Further, looking up which pair of rationalities are
need to upper and lower bound the performance for a given
randomness can be done in logarithmic time via binary search
on rationality coefficients. As the corresponding bounds and
convex combinations can be computed in constant time, this
means this algorithm runs in time:

O
(

log(1/κ∗) ·Nλ · log(Nλ) · |G|
)
, (23)

where, Nλ is the number of unique rationality coefficients
processed. If, as in the MDP case, one assumes a maximum
rationality coefficient λ∗ and a minimum rationality resolution
∆, one obtains:

O
(

log(1/κ∗)︸ ︷︷ ︸
κ search

· λ∗/∆ ·

Replanning︷ ︸︸ ︷
log(λ

∗
/∆) ·|G|︸ ︷︷ ︸

Evaluate λ

)
. (24)

The above however is very conservative and empirically we
observe Nλ bounded far away from λ∗/∆.

VII. IMPLEMENTATION AND EMPIRICAL EVALUATION

Setup. To experimentally validate the feasibility of our ERCI
algorithm for SGs, we implemented [56] our algorithm in
Python. Inspired by the recent work on compressing MDPs

 ���

2000 4000 6000 8000

BDD Nodes (≈ 2 · |G|)

0

50

100

150

200

250

300

350

Ti
m

e
to

sy
nt

he
si

ze
po

lic
y

(s
ec

)

Linear growth in game size

(a) Experimental times for computing Pareto front of a variety delivery
drone problems.

10 20 30

horizon (τ)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

B
D

D
si

ze

×105 BDD sizes track horizon

dim
4
5
6
7
8

(b) BDD graph size as a function of horizon for the problems in our
benchmark suite. Distribution of problems, non-uniform in horizon to avoid
small horizon artifacts.

Fig. 6. Plots to illustrate scalability

for specification inference [57], each SG was represented as
a Binary Decision Diagram (BDD) [9] using the dd and
py-aiger python packages [38, 55].

We investigate the motivating example. Specifically, our
experiments used a k × k grid discretization of the workspace
(cf. Fig. 1), for k ∈ {4, 5, 6, 7} where the four target houses lie
in {bk/3c, b2k/3c}2, and the drones Dtest and Dnew are initially at
in the bottom left corner and top right house resp. Furthermore,
for simplicity, we embedded the avoid crash condition as
part of the soft constraint, rather than a hard constraint7. We
took ego’s dynamics to be deterministic and modeled env
as visiting each house in either clock-wise or counter-wise
order, where the orientation can switch with (a potentially
state dependent) probability p ∈ [1/100, 1/50] whenever a house
is visited. Next, we considered an alternation between ego
and env to be a single logical time step, and (non-uniformly)
instantiate problem instances with horizons ranging from 6 to
18, i.e., paths ranged from length 12 to 36.

Results. First and foremost, we succeed in synthesizing
controllers in the mentioned setup. The controller randomizes
its behavior while meeting the specification, which is not
surprising as the algorithm yields a correct-by-construction
policy.

Next, we consider the practical run time of our algorithm.
As Fig 6a demonstrates, the empirical time to estimate the
Pareto front seemed to increase linearly with our SG encoding
– which is consistent with our complexity analysis. Moreover,
our encoding seems to linearly track with the horizon for
all k (Fig. 6b), suggesting that the overall run time grows
linearly in the horizon within our parameterization. When
combined with the potential to parallelize across the rationality
coefficients, these results suggest that practical optimizations
to our ERCI algorithm may admit usage on other more

7Note that counter-intuitively, only using soft constraints generally results
in harder instances as the compressed SGs are larger.

complicated benchmarks. Finally, we remark that the use of a
decision diagram encoding did indeed dramatically decrease
the size of the SG (with negligible overhead).8

VIII. DISCUSSION AND RELATED WORK

A. Control Improvisation in the Literature
In this section, we briefly compare ERCI with other forms of

control improvisation. Firstly, we observe that general Control
Improvisation has been proposed in stochastic environments for
lane changing [22] and imitating power usage in households [2].
However, in those both settings, the randomness constraint is
phrased as an upper-bound on the probability of indefinitely-
long paths. Consequently, those randomness constraints are
trivially satisfied. In comparison, we consider the synthesis of
policies that necessarily randomize in presence of stochastic
behavior in the environment. The closest prior work is to ours
is Reactive Control Improvisation (RCI) for (deterministic)
2-player games [19]. As in ERCI, RCI features three kinds of
constraints; hard, soft, and randomness. As in ERCI, RCI can
be preprocessed resulting in the following core problem.

The Core RCI Problem: Given a finite acyclic (deter-
ministic) SG G, with terminal states, s> and s⊥, and
thresholds p ∈ (0, 1) and h ∈ [0,∞), find a ego-policy
σego such that for every env-policy σenv

1) (soft constraint) Pr(last(ξ) = s> | σ) ≥ p,
2) (randomness) maxξ Pr(ξ | σ) ≤ d,

where σ = 〈σego, σenv〉.

While RCI is only applied to deterministic SGs in [19], there
is nothing in the definition that prevents its application to the
general class of SGs.9 We observe that then, the only difference

8For example, the (k = 8, horizon = 18) case is encoded using a 505,100
node BDD (|G| = 6, 861 nodes). Compare with the direct encoding |G| =
|S| · τ · |monitor state| = (8× 8)2 · (2 · 18) · (24 · 2) ≈ 37, 000.

9However, this does not mean that the algorithm to compute a solution
carries over to the general case

 ���

s0

s2

s1

...

sn

t1 . . . tm

u
v1

v2

. . .

. . .

1 1

1/n

1/n

1/n

1

1

1

a 1

b 1

Fig. 7. Example Illustrating the problem with RCI in stochastic environments.

between ERCI and RCI is that we use causal entropy rather
than an upper bound on the probability of a path to enforce
randomness. Below we address two problems with bounding
the maximum probability of a trace.

First, RCI fails to account for causality when measuring
randomness. In deterministic systems, for which RCI was
conceived, this distinction is unnecessary, but stochastic systems
must deal with counter-factuals. In practice, RCI encodes an
agent model that is systematically overly optimistic regarding
the outcomes of dynamics transitions [37]. This results in
policies with worse performance given a fixed randomness
target. In the context of our motivating drone example, applying
RCI thus results in a policy that is both quantitatively and
qualitatively less random than the ERCI.

Second, RCI fails to enforce randomization if there exists any
path with sufficiently high probability. The next (pathological)
example illustrates.

Example 10. Consider the SG (actually, an MDP where we
omit the env-states) in Fig. 7. First consider that under each
scheduler, the path from s0 to tm has probability 1/n. In
particular, this means that a feasible RCI instance (applied
to an SG) must have d ≥ 1/n. At the same time, every path
in the SG already has probability at most 1/n, and thus, every
scheduler that satisfies the randomness constraint for δ = 1
satisfies it for any d ≥ 1/n. Thus, for this MDP, the RCI
formulation fails to enforce any randomization in the ego-
policy. By contrast, a causal entropy constraint from ERCI will
continuously trade-off randomness for performance.

On the other hand, one can observe that in reality, proposed
algorithms for solving RCI equally distribute probability
mass across the maximum number of paths that ego can
guarantee [19]. We remark that because (1) causal entropy
reduces to non-causal entropy in deterministic dynamics and (2)
uniform distributions maximize entropy, our proposed entropy
matching family exactly agrees with existing RCI algorithms on
deterministic SGs. Thus, we observe the following proposition.

Proposition 4. There exists a computable function,

f : (d,G) 7→ h,

such that, for any deterministic SG, G, and performance
threshold p, there exists an ego-policy solving the RCI problem
with threshold d iff there exists a ego-policy solving the ERCI
problem with threshold h = f(d,G).

B. Additional Related Work

Synthesis in MDPs with multiple hard and soft constraints
(often over indefinite horizons) is a well-studied problem [11,
16, 18, 49]. In this setting, one generates deterministic policies
and their convex combinations. Put differently, some degree
of randomization is not an objective, but rather a consequence.
Interestingly, in [15] the optimal policies in absence of random-
ization are investigated. Along similar lines, [8] trades average
performance for less variance, thereby implicitly trading off
the average and the worst-case performance. The original
results sparked interest in different extension to MDPs and the
type of soft constraints, such as continuous MDPs [25] and
continuous-time MDPs [48], cost-bounded reachability [26],
or mean-payoff properties [7]. The algorithms have also been
extended towards stochastic games [13, 35]. Finally, notions
of lexicographic multi-objective synthesis [12] – in which one
optimizes a secondary criterion among all policies that are
optimal with respect to a first criterion bare some resemblance
with the algorithm we consider. The aforementioned algorithms
have been put in a robotics context in [36]. Finding policies
that optimize reward objectives is well-studied in the field
of reinforcement learning, and has been extended to generate
Pareto fronts for multiple objectives [41, 44].

Next, our core ERCI instance can be seen as a multi-objective
path problem [4, 42, 59]. The literature on multi-object path
finding differs prominently from ERCI in two aspects: they
do not trade-off randomization and performance, and they
do not trade-off declarative and formal constraints with the
accompanying formal guarentees, but are more search-based.

Another related domain is the problem of (randomly)
patrolling a perimeters and points of interest [1, 5, 46]. Closest
to our work are formalisms rooted in game-theory, such as
Stackelberg games [51, 45]. Stackelberg games have been
extending to Stackelberg planning [52] in which a trade-off
between the cost for the defender and the attacker can be
investigated. Most related are the zero-sum patrolling games
introduced in [3], which has led to numerous practical solu-
tions [54]. Patrolling games are explicitly games between an
intruder and a defender, and there is no stochastic environment.
Adding additional objectives makes solving these problems
harder [34] and in general, the obtained policies are no longer
applicable. To overcome this, a specific set of fixed objectives
has been added to these games recently [34]. The large common
aspect in all of this work is that optimal strategies do randomize.
As in the synthesis work above, this is a consequence of the
objectives rather than an objective in itself. In comparison,
we provide a general framework and in particular support
stochastic environments.

Finally, entropy as an optimization objective for MDPs with
fixed rewards has been well studied [50], particularly in the
context of regularizing (robustifying) inverse and reinforcement
learning [60, 23]. The primary distinction from our work (in the
MDP setting) is the unspecified (performance/entropy) trade-
off. Nevertheless, as previously discussed, the specification
varient of this literature served as the basis for our MDP

 ���

subroutine [57]. Beyond Markov models, the (uniform) ran-
domization over languages in finite automata [29, 32] or over
propositional formulae [31, 6, 10] has received quite some
attention, however neither of those approaches support the
notion of soft constraints or the related trade-offs.

IX. CONCLUSION

This paper presented ERCI, a framework to control impro-
visation in stochastic games. Our results show that ERCI can
be used to synthesize policies that besides meeting temporal
logic specifications induce varying behavior, e.g., to test and
certify the correctness of other robots. Future work includes
applying the framework to a broader spectrum of applications
and extending the theory to games with imperfect information.

Acknowledgments: This work is partially supported by NSF
grants 1545126 (VeHICaL), 1646208 and 1837132, by the
DARPA contracts FA8750-18-C-0101 (Assured Autonomy)
and FA8750-20-C-0156 (SDCPS), by Berkeley Deep Drive,
and by Toyota under the iCyPhy center.

REFERENCES

[1] Noa Agmon, Sarit Kraus, and Gal A. Kaminka. Multi-
robot perimeter patrol in adversarial settings. In ICRA,
pages 2339–2345. IEEE, 2008.

[2] Ilge Akkaya, Daniel J. Fremont, Rafael Valle, Alexandre
Donzé, Edward A. Lee, and Sanjit A. Seshia. Control
improvisation with probabilistic temporal specifications.
In IoTDI, pages 187–198. IEEE Computer Society, 2016.

[3] Steve Alpern, Alec Morton, and Katerina Papadaki.
Patrolling games. Oper. Res., 59(5):1246–1257, 2011.

[4] Francesco Amigoni and Alessandro Gallo. A multi-
objective exploration strategy for mobile robots. In ICRA,
pages 3850–3855. IEEE, 2005.

[5] Francesco Amigoni, Nicola Basilico, and Nicola Gatti.
Finding the optimal strategies for robotic patrolling with
adversaries in topologically-represented environments. In
ICRA, pages 819–824. IEEE, 2009.

[6] Mihir Bellare, Oded Goldreich, and Erez Petrank. Uni-
form generation of np-witnesses using an np-oracle. Inf.
Comput., 163(2):510–526, 2000.

[7] Tomás Brázdil, Václav Brozek, Krishnendu Chatterjee,
Vojtech Forejt, and Antonı́n Kucera. Two views on
multiple mean-payoff objectives in Markov decision
processes. Log. Methods Comput. Sci., 10(1), 2014.

[8] Tomás Brázdil, Krishnendu Chatterjee, Vojtech Forejt,
and Antonı́n Kucera. Trading performance for stability
in Markov decision processes. J. Comput. Syst. Sci., 84:
144–170, 2017.

[9] Randal E. Bryant. Symbolic boolean manipulation with
ordered binary-decision diagrams. ACM Comput. Surv.,
24(3):293–318, 1992.

[10] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y.
Vardi. Balancing scalability and uniformity in SAT
witness generator. In DAC, pages 60:1–60:6. ACM, 2014.

[11] Krishnendu Chatterjee, Rupak Majumdar, and Thomas A.
Henzinger. Markov decision processes with multiple

objectives. In STACS, volume 3884 of LNCS, pages
325–336. Springer, 2006.

[12] Krishnendu Chatterjee, Joost-Pieter Katoen, Maximilian
Weininger, and Tobias Winkler. Stochastic games with
lexicographic reachability-safety objectives. In CAV (2),
volume 12225 of LNCS, pages 398–420. Springer, 2020.

[13] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska,
Aistis Simaitis, and Clemens Wiltsche. On stochastic
games with multiple objectives. In MFCS, volume 8087
of LNCS, pages 266–277. Springer, 2013.

[14] Anne Condon. On algorithms for simple stochastic
games. In Advances In Computational Complexity Theory,
volume 13 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 51–71. DI-
MACS/AMS, 1990.

[15] Florent Delgrange, Joost-Pieter Katoen, Tim Quatmann,
and Mickael Randour. Simple strategies in multi-objective
MDPs. In TACAS (1), volume 12078 of LNCS, pages
346–364. Springer, 2020.

[16] Kousha Etessami, Marta Z. Kwiatkowska, Moshe Y. Vardi,
and Mihalis Yannakakis. Multi-objective model checking
of Markov decision processes. In TACAS, volume 4424
of LNCS, pages 50–65. Springer, 2007.

[17] Benjamin Eysenbach and Sergey Levine. If maxent RL is
the answer, what is the question? CoRR, abs/1910.01913,
2019.

[18] Vojtech Forejt, Marta Z. Kwiatkowska, and David Parker.
Pareto curves for probabilistic model checking. In ATVA,
volume 7561 of LNCS, pages 317–332. Springer, 2012.

[19] Daniel J. Fremont and Sanjit A. Seshia. Reactive control
improvisation. In CAV (1), volume 10981 of LNCS, pages
307–326. Springer, 2018.

[20] Daniel J. Fremont, Alexandre Donzé, Sanjit A. Seshia,
and David Wessel. Control improvisation. In FSTTCS,
volume 45 of LIPIcs, pages 463–474. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2015.

[21] Jie Fu, Nikolay Atanasov, Ufuk Topcu, and George J.
Pappas. Optimal temporal logic planning in probabilistic
semantic maps. In ICRA, pages 3690–3697. IEEE, 2016.

[22] Jin I. Ge and Richard M. Murray. Voluntary lane-change
policy synthesis with control improvisation. In CDC,
pages 3640–3647. IEEE, 2018.

[23] Matthieu Geist, Bruno Scherrer, and Olivier Pietquin.
A theory of regularized Markov decision processes. In
ICML, volume 97 of PMLR, pages 2160–2169. PMLR,
2019.

[24] Giuseppe De Giacomo and Moshe Y. Vardi. Linear
temporal logic and linear dynamic logic on finite traces.
In IJCAI, pages 854–860. IJCAI/AAAI, 2013.

[25] Sofie Haesaert, Petter Nilsson, and Sadegh Soudjani. For-
mal multi-objective synthesis of continuous-state MDPs.
IEEE Control. Syst. Lett., 5(5):1765–1770, 2021.

[26] Arnd Hartmanns, Sebastian Junges, Joost-Pieter Katoen,
and Tim Quatmann. Multi-cost bounded tradeoff analysis
in MDP. J. Autom. Reason., 64(7):1483–1522, 2020.

[27] Keliang He, Morteza Lahijanian, Lydia E. Kavraki, and

 ���

Moshe Y. Vardi. Reactive synthesis for finite tasks under
resource constraints. In IROS, pages 5326–5332. IEEE,
2017.

[28] Keliang He, Andrew M. Wells, Lydia E. Kavraki, and
Moshe Y. Vardi. Efficient symbolic reactive synthesis for
finite-horizon tasks. In ICRA, pages 8993–8999. IEEE,
2019.

[29] Timothy J. Hickey and Jacques Cohen. Uniform random
generation of strings in a context-free language. SIAM J.
Comput., 12(4):645–655, 1983.

[30] Matanya B. Horowitz, Eric M. Wolff, and Richard M.
Murray. A compositional approach to stochastic optimal
control with co-safe temporal logic specifications. In
IROS, pages 1466–1473. IEEE, 2014.

[31] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani.
Random generation of combinatorial structures from a
uniform distribution. Theor. Comput. Sci., 43:169–188,
1986.

[32] Sampath Kannan, Z. Sweedyk, and Stephen R. Mahaney.
Counting and random generation of strings in regular
languages. In SODA, pages 551–557. ACM/SIAM, 1995.

[33] Yiannis Kantaros, Matthew Malencia, Vijay Kumar, and
George J. Pappas. Reactive temporal logic planning for
multiple robots in unknown environments. In ICRA, pages
11479–11485. IEEE, 2020.

[34] David Klaska, Antonı́n Kucera, and Vojtech Rehák.
Adversarial patrolling with drones. In AAMAS, pages
629–637. IFAAMAS, 2020.

[35] Marta Kwiatkowska, David Parker, and Clemens Wiltsche.
Prism-games: verification and strategy synthesis for
stochastic multi-player games with multiple objectives.
Int. J. Softw. Tools Technol. Transf., 20(2):195–210, 2018.

[36] Bruno Lacerda, Fatma Faruq, David Parker, and Nick
Hawes. Probabilistic planning with formal performance
guarantees for mobile service robots. Int. J. Robotics
Res., 38(9), 2019.

[37] Sergey Levine. Reinforcement learning and control
as probabilistic inference: Tutorial and review. CoRR,
abs/1805.00909, 2018. URL http://arxiv.org/abs/1805.
00909.

[38] Scott C. Livingston. Binary Decision Diagrams (BDDs)
in pure Python and Cython wrappers of CUDD, Sylvan,
and BuDDy.

[39] James Massey. Causality, feedback and directed informa-
tion. In ISITA, pages 303–305, 1990.

[40] Salar Moarref and Hadas Kress-Gazit. Automated
synthesis of decentralized controllers for robot swarms
from high-level temporal logic specifications. Auton.
Robots, 44(3-4):585–600, 2020.

[41] Sriraam Natarajan and Prasad Tadepalli. Dynamic
preferences in multi-criteria reinforcement learning. In
ICML, volume 119 of ACM International Conference
Proceeding Series, pages 601–608. ACM, 2005.

[42] Milad Nazarahari, Esmaeel Khanmirza, and Samira
Doostie. Multi-objective multi-robot path planning in
continuous environment using an enhanced genetic algo-

rithm. Expert Syst. Appl., 115:106–120, 2019.
[43] Andrew Y. Ng and Stuart J. Russell. Algorithms for

inverse reinforcement learning. In ICML, pages 663–670.
Morgan Kaufmann, 2000.

[44] Simone Parisi, Matteo Pirotta, Nicola Smacchia, Luca
Bascetta, and Marcello Restelli. Policy gradient ap-
proaches for multi-objective sequential decision making:
A comparison. In ADPRL, pages 1–8. IEEE, 2014.

[45] Praveen Paruchuri, Jonathan P. Pearce, Milind Tambe,
Fernando Ordóñez, and Sarit Kraus. An efficient heuristic
approach for security against multiple adversaries. In
AAMAS, page 181. IFAAMAS, 2007.

[46] David Portugal, Charles Pippin, Rui P. Rocha, and
Henrik I. Christensen. Finding optimal routes for multi-
robot patrolling in generic graphs. In IROS, pages 363–
369. IEEE, 2014.

[47] Martin L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley Series in
Probability and Statistics. Wiley, 1994.

[48] Tim Quatmann, Sebastian Junges, and Joost-Pieter Katoen.
Markov automata with multiple objectives. In CAV (1),
volume 10426 of LNCS, pages 140–159. Springer, 2017.

[49] Mickael Randour, Jean-François Raskin, and Ocan Sankur.
Percentile queries in multi-dimensional Markov decision
processes. Formal Methods Syst. Des., 50(2-3):207–248,
2017.

[50] Yagiz Savas, Melkior Ornik, Murat Cubuktepe, Mustafa O.
Karabag, and Ufuk Topcu. Entropy maximization for
Markov decision processes under temporal logic con-
straints. IEEE Trans. Autom. Control., 65(4):1552–1567,
2020.

[51] Marwaan Simaan and Jose B Cruz. On the stackelberg
strategy in nonzero-sum games. Journal of Optimization
Theory and Applications, 11(5):533–555, 1973.

[52] Patrick Speicher, Marcel Steinmetz, Michael Backes, Jörg
Hoffmann, and Robert Künnemann. Stackelberg planning:
Towards effective leader-follower state space search. In
AAAI, pages 6286–6293. AAAI Press, 2018.

[53] Daniel A. Spielman and Shang-Hua Teng. Smoothed
analysis: an attempt to explain the behavior of algorithms
in practice. Commun. ACM, 52(10):76–84, 2009.

[54] Milind Tambe. Security and Game Theory - Algorithms,
Deployed Systems, Lessons Learned. Cambridge Univer-
sity Press, 2012.

[55] Marcell Vazquez-Chanlatte. mvcisback/py-aiger, 2018.
URL https://doi.org/10.5281/zenodo.1326224.

[56] Marcell Vazquez-Chanlatte. Improvisers: A python library
for synthesizing entropic reactive control improvisers
for stochastic games., 2021. URL https://github.com/
mvcisback/improvisers.

[57] Marcell Vazquez-Chanlatte and Sanjit A. Seshia. Maxi-
mum causal entropy specification inference from demon-
strations. In CAV (2), volume 12225 of LNCS, pages
255–278. Springer, 2020.

[58] Kai Weng Wong, Rüdiger Ehlers, and Hadas Kress-Gazit.
Correct high-level robot behavior in environments with

 ���

http://arxiv.org/abs/1805.00909
http://arxiv.org/abs/1805.00909
https://doi.org/10.5281/zenodo.1326224
https://github.com/mvcisback/improvisers
https://github.com/mvcisback/improvisers

unexpected events. In Robotics: Science and Systems,
2014.

[59] Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela Rus,
Shinjiro Sueda, and Wojciech Matusik. Prediction-guided
multi-objective reinforcement learning for continuous
robot control. In ICML, volume 119 of PMLR, pages
10607–10616. PMLR, 2020.

[60] Brian D Ziebart. Modeling purposeful adaptive behavior
with the principle of maximum causal entropy. PhD thesis,
2010.

X. PROOFS

A. Convexity of ERCI solution set

Proof Sketch Prop 1: Recall that a set is convex, if it
is closed under convex-combinations10. Consider two points
〈p, h〉, 〈p′, h′〉 ∈ S achieved by σego and σ′ego respectively.
Consider the new policy, π, defined by employing σego with
probability q and σ′ego with probability q̄

def
= 1 − q. Because

each policy guarantees its corresponding performance, this
new policy has performance at least q · p + q̄ · p′. Similarly,
by viewing π as a random variable and applying chain rule
yields,

Hτ (σ) ≥ q ·H(Aego
1:τ ′ || S1:τ | π = σego) +

q̄ ·H(Aego
1:τ ′ || S1:τ | π = σ′ego)

= q · h+ q̄ · h′.
(25)

Thus, any convex combination of guaranteed points is guaran-
teed by a convex combination of the corresponding ego policies.

B. Completeness of Entropy Matching for SGs

Proof Sketch of SG Completeness: We prove the statement
by induction over the (acyclic) SG. First, observe that on games
with only terminal nodes, completeness follows directly. Next,
suppose the entropy matching family is complete on all sub-
graphs of G. To simplify our proof, observe that w.l.o.g., we
can restrict our attention to ERCI instances on the Pareto front,
〈p,h〉 ∈ FS. Next, for the sake of contradiction, we shall
assume that no entropy matching policy achieves 〈p,h〉, but
σ∗ego does:

∀σego ∈ {σλego}λ . xσego ≺ 〈p,h〉 (26)

∃σ∗ego /∈ {σλego}λ . 〈p,h〉 � xσ∗ego . (27)

Indeed, we may reformulate (27) to

∃σ∗ego /∈ {σλego}λ . 〈p,h〉 = xσ∗ego (28)

as we assumed that 〈p,h〉 is Pareto-optimal.
Note that because the entropy matching family contains

the maximizers and minimizers of entropy (λ = ∞ and
λ = 0 resp.), and because increasing rationality monotonically
decreases entropy, there must exist some rationality, λ, such
that σλego induces entropy h:

hσλego = h = hσ∗ego , (29)

where the second equality follows from (28). Next, let σλenv
denote the min-entropy env-policy given σλego, i.e., the policy
that minimizes entropy in G[σλego]. Because σ∗ego witnesses
〈p,h〉, it must be the case that:

h〈σ∗ego,σλenv〉 ≥ h and p〈σ∗ego,σλenv〉 ≥ p (30)

Recalling that for MDPs, the maximum entropy policies as
defined in (16)–(18) are the unique maximizers of entropy
(given p), it must be the case that:

h = h〈σλegoσλenv〉 ≥ h〈σ∗ego,σλenv〉 ≥ h, (31)

and thus,
h〈σλegoσλenv〉 = h〈σ∗ego,σλenv〉. (32)

Thus, from uniqueness on MDPs, σλego and σ∗ego must exactly
match on G[σλenv] and must differ on some other subgraph.
Applying the inductive hypothesis, we know that the entropy
matching family is complete on these subgraphs, and thus if
σ∗ego achieves a given 〈p,h〉 on this subgraph, there must be
an entropy matching that does so as well. Thus,

xσ∗ego � xσλ∗ , (33)

contradicting assumptions (26) and (27). Thus, entropy match-
ing must be complete. ���

	Introduction
	Motivating Example
	Problem Statement
	Stochastic Games
	Paths and Path Properties
	Control Improvisation

	ERCI as multi-objective optimization
	Preprocessing
	Geometric Perspective
	Regret-Based ERCI

	The Control Improvisation Problem for MDPs
	Rationality
	Targeted Pareto-exploration

	The Control Improvisation Problem for SGs
	Implementation and Empirical Evaluation
	Discussion and Related work
	Control Improvisation in the Literature
	Additional Related Work

	Conclusion
	Proofs
	Convexity of ERCI solution set
	Completeness of Entropy Matching for SGs

