
Robotics: Science and Systems 2021
Held Virtually, July 12–16, 2021

1

Adaptive-Control-Oriented Meta-Learning
for Nonlinear Systems

Spencer M. Richards∗, Navid Azizan∗†, Jean-Jacques Slotine†, and Marco Pavone∗
∗Department of Aeronautics & Astronautics, Stanford University, California, U.S.A.

†Department of Mechanical Engineering, Massachusetts Institute of Technology, Massachusetts, U.S.A.

Email: ∗{spenrich,pavone}@stanford.edu, †{azizan,jjs}@mit.edu

Abstract—Real-time adaptation is imperative to the control of
robots operating in complex, dynamic environments. Adaptive
control laws can endow even nonlinear systems with good
trajectory tracking performance, provided that any uncertain dy-
namics terms are linearly parameterizable with known nonlinear
features. However, it is often difficult to specify such features a
priori, such as for aerodynamic disturbances on rotorcraft or
interaction forces between a manipulator arm and various ob-
jects. In this paper, we turn to data-driven modeling with neural
networks to learn, offline from past data, an adaptive controller
with an internal parametric model of these nonlinear features.
Our key insight is that we can better prepare the controller
for deployment with control-oriented meta-learning of features
in closed-loop simulation, rather than regression-oriented meta-
learning of features to fit input-output data. Specifically, we meta-
learn the adaptive controller with closed-loop tracking simulation
as the base-learner and the average tracking error as the meta-
objective. With a nonlinear planar rotorcraft subject to wind,
we demonstrate that our adaptive controller outperforms other
controllers trained with regression-oriented meta-learning when
deployed in closed-loop for trajectory tracking control.

I. INTRODUCTION

Performant control in robotics is impeded by the complexity
of the dynamical system consisting of the robot itself (i.e., its
nonlinear equations of motion) and the interactions with its en-
vironment. Roboticists can often derive a physics-based robot
model, and then choose from a suite of nonlinear control laws
that each offer desirable control-theoretic properties (e.g., good
tracking performance) in known, simple environments. Even
in the face of model uncertainty, nonlinear control can still
yield such properties with the help of real-time adaptation
to online measurements, provided the uncertainty enters the
system in a known, structured manner.

However, when a robot is deployed in complex scenarios,
it is generally intractable to know even the structure of all
possible configurations and interactions that the robot may
experience. To address this, system identification and data-
driven control seek to learn an accurate input-output model
from past measurements. Recent years have also seen a dra-
matic proliferation of research in machine learning for control
by leveraging powerful approximation architectures to predict
and optimize the behaviour of dynamical systems. In general,
such rich models require extensive data and computation to
back-propagate gradients for many layers of parameters, and
thus usually cannot be used in fast nonlinear control loops.

Moreover, machine learning of dynamical system models
often prioritizes fitting input-output data, i.e., it is regression-

Fig. 1. While roboticists can often derive a model for how control inputs affect
the system state, it is much more difficult to model prevalent external forces
(e.g., from aerodynamics, contact, and friction) that adversely affect tracking
performance. In this work, we present a method to meta-learn an adaptive
controller offline from previously collected data. Our meta-learning is control-
oriented rather than regression-oriented; specifically, we: 1) collect input-
output data on the true system, 2) train a parametric adaptive controller in
closed-loop simulation to adapt well to each model of an ensemble constructed
from past input-output data, and 3) test our adaptive controller on the real
system. Our method contextualizes training within the downstream control
objective, thereby engendering good tracking results at test time, which we
demonstrate on a Planar Fully-Actuated Rotorcraft (PFAR) subject to wind.

oriented, with the rationale that designing a controller for
a highly accurate model engenders better closed-loop per-
formance on the real system. However, decades of work in
system identification and adaptive control recognize that, since
a model is often learned for the purpose of control, the
learning process itself should be tailored to the downstream
control objective. This concept of control-oriented learning
is exemplified by fundamental results in adaptive control
theory for linearly parameterizable systems; guarantees on
tracking convergence can be attained without convergence of
the parameter estimates to those of the true system.

 ���

Contributions: In this work, we acknowledge this distinc-
tion between regression-oriented and control-oriented learning,
and propose a control-oriented method to learn a parametric
adaptive controller that performs well in closed-loop at test
time. Critically, our method (outlined in Figure 1) focuses on
offline learning from past trajectory data. We formalize training
the adaptive controller as a semi-supervised, bi-level meta-
learning problem, with the average integrated tracking error
across chosen reference trajectories as the meta-objective. We
use a closed-loop simulation with our adaptive controller as a
base-learner, which we then back-propagate gradients through.
We discuss how our formulation can be applied to adaptive
controllers for general dynamical systems, then specialize it
to the case of nonlinear mechanical systems. Through our
experiments, we show that by injecting the downstream control
objective into offline meta-learning of an adaptive controller,
we improve closed-loop trajectory tracking performance at
test time in the presence of widely varying disturbances. We
provide code to reproduce our results at https://github.com/
StanfordASL/Adaptive-Control-Oriented-Meta-Learning.

II. RELATED WORK

In this section, we review three key areas of work related
to this paper: control-oriented system identification, adaptive
control, and meta-learning.

A. Control-Oriented System Identification
Learning a system model for the express purpose of closed-

loop control has been a hallmark of linear system identification
since at least the early 1970s [61]. Due to the sheer amount
of literature in this area, we direct readers to Ljung [43] and
Gevers [24]. Some salient works are the demonstrations by
Skelton [68] on how large open-loop modelling errors do not
necessarily cause poor closed-loop prediction, and the theory
and practice from Hjalmarsson et al. [30] and Forssell and
Ljung [22] for iterative online closed-loop experiments that
encourage convergence to a model with optimal closed-loop
behaviour. In this paper, we focus on offline meta-learning
targeting a downstream closed-loop control objective, to train
adaptive controllers for nonlinear systems.

In nonlinear system identification, there is an emerging body
of literature on data-driven, constrained learning for dynamical
systems that encourages learned models and controllers to
perform well in closed-loop. Khansari-Zadeh and Billard [36]
and Medina and Billard [47] train controllers to imitate known
invertible dynamical systems while constraining the closed-
loop system to be stable. Chang et al. [18] and Sun et al. [73]
jointly learn a controller and a stability certificate for known
dynamics to encourage good performance in the resulting
closed-loop system. Singh et al. [66] jointly learn a dynamics
model and a stabilizability certificate that regularizes the
model to perform well in closed-loop, even with a controller
designed a posteriori. Overall, these works concern learning a
fixed model-controller pair. Instead, with offline meta-learning,
we train an adaptive controller that can update its internal
representation of the dynamics online. We discuss future work
explicitly incorporating stability constraints in Section VII.

B. Adaptive Control

Broadly speaking, adaptive control concerns parametric
controllers paired with an adaptation law that dictates how
the parameters are adjusted online in response to signals in a
dynamical system [71, 51, 41, 32]. Since at least the 1950s,
researchers in adaptive control have focused on parameter
adaptation prioritizing control performance over parameter
identification [7]. Indeed, one of the oldest adaptation laws,
the so-called MIT rule, is essentially gradient descent on the
integrated squared tracking error [46]. Tracking convergence
to a reference signal is the primary result in Lyapunov stability
analyses of adaptive control designs [52, 53], with parameter
convergence as a secondary result if the reference is persis-
tently exciting [5, 14]. In the absence of persistent excitation,
Boffi and Slotine [12] show certain adaptive controllers also
“implicitly regularize” [8, 9] the learned parameters to have
small Euclidean norm; moreover, different forms of implicit
regularization (e.g., sparsity-promoting) can be achieved by
certain modifications of the adaptation law. Overall, adaptive
control prioritizes control performance while learning param-
eters on a “need-to-know” basis, which is a principle that can
be extended to many learning-based control contexts [75].

Stable adaptive control of nonlinear systems often relies on
linearly parameterizable dynamics with known nonlinear basis
functions, i.e., features, and the ability to cancel these nonlin-
earities stably with the control input when the parameters are
known exactly [69, 70, 71, 44]. When such features cannot
be derived a priori, function approximators such as neural
networks [65, 33, 34] and Gaussian processes [25, 23] can be
used and updated online in the adaptive control loop. How-
ever, fast closed-loop adaptive control with complex function
approximators is hindered by the computational effort required
to train them; this issue is exacerbated by the practical need
for controller gain tuning. In our paper, we focus on offline
meta-training of neural network features and controller gains
from collected data, with well-known controller structures that
can operate in fast closed-loops.

C. Meta-Learning

Meta-learning is the tool we use to inject the downstream
adaptive control application into offline learning from data.
Informally, meta-learning or “learning to learn” improves
knowledge of how to best optimize a given meta-objective
across different tasks. In the literature, meta-learning has been
formalized in various manners; we refer readers to Hospedales
et al. [31] for a survey of them. In general, the algorithm
chosen to solve a specific task is the base-learner, while the
algorithm used to optimize the meta-objective is the meta-
learner. In our work, when trying to make a dynamical
system track several reference trajectories, each trajectory is
associated with a “task”, the adaptive tracking controller is the
base-learner, and the average tracking error across all of these
trajectories is the meta-objective we want to minimize.

Many works try to meta-learn a dynamics model offline that
can best fit new input-output data gathered during a particular

https://github.com/StanfordASL/Adaptive-Control-Oriented-Meta-Learning
https://github.com/StanfordASL/Adaptive-Control-Oriented-Meta-Learning

task. That is, the base- and meta-learners are regression-
oriented. Bertinetto et al. [11] and Lee et al. [42] back-
propagate through closed-form ridge regression solutions for
few-shot learning, with a maximum likelihood meta-objective.
O’Connell et al. [55] apply this same method to learn neural
network features for nonlinear mechanical systems. Harri-
son et al. [28, 27] more generally back-propagate through
a Bayesian regression solution to train a Bayesian prior
dynamics model with nonlinear features. Nagabandi et al.
[50] use a maximum likelihood meta-objective, and gradient
descent on a multi-step likelihood objective as the base-learner.
Belkhale et al. [10] also use a maximum likelihood meta-
objective, albeit with the base-learner as a maximization of
the Evidence Lower BOund (ELBO) over parameterized, task-
specific variational posteriors; at test time, they perform latent
variable inference online in a slow control loop.

Finn et al. [21], Rajeswaran et al. [58], and Clavera et al.
[20] meta-train a policy with the expected accumulated reward
as the meta-objective, and a policy gradient step as the base-
learner. These works are similar to ours in that they infuse
offline learning with a more control-oriented flavour. However,
while policy gradient methods are amenable to purely data-
driven models, they beget slow control-loops due to the sam-
pling and gradients required for each update. Instead, we back-
propagate gradients through offline closed-loop simulations to
train adaptive controllers with well-known designs meant for
fast online implementation. This yields a meta-trained adaptive
controller that enjoys the performance of principled design
inspired by the rich body of control-theoretical literature.

III. PROBLEM STATEMENT

In this paper, we are interested in controlling the continuous-
time, nonlinear dynamical system

ẋ = f(x, u, w), (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input,
and w(t) ∈ Rd is some unknown disturbance. Specifically, for
a given reference trajectory r(t) ∈ Rn, we want to choose u(t)
such that x(t) converges to r(t); we then say u(t) makes the
system (1) track r(t).

Since w(t) is unknown and possibly time-varying, we want
to design a feedback law u = π(x, r, a) with parameters a(t)
that are updated online according to a chosen adaptation law
ȧ = ρ(x, r, a). We refer to (π, ρ) together as an adaptive
controller. For example, consider the control-affine system

ẋ = f0(x) +B(x)(u+ Y (x)w), (2)

where f0, B, and Y are known, possibly nonlinear maps. A
reasonable feedback law choice would be

u = π0(x, r)− Y (x)a, (3)

where π0 ensures ẋ = f0(x) + B(x)π0(x, r) tracks r(t),
and the term Y (x)a is meant to cancel Y (x)w in (2). For
this reason, Y (x)w is termed a matched uncertainty in the
literature. If the adaptation law ȧ = ρ(x, r, a) is designed
such that Y (x(t))a(t) converges to Y (x(t))w(t), then we can

use (3) to make (2) track r(t). Critically, this is not the same
as requiring a(t) to converge to w(t). Since Y (x)w depends
on x(t) and hence indirectly on the target r(t), the roles of
feedback and adaptation are inextricably linked by the tracking
control objective. Overall, learning in adaptive control is done
on a “need-to-know” basis to cancel Y (x)w in closed-loop,
rather than to estimate w in open-loop.

IV. BI-LEVEL META-LEARNING

We now describe some preliminaries on meta-learning akin
to Finn et al. [21] and Rajeswaran et al. [59], so that we can
apply these ideas in the next section to the adaptive control
problem (1) and in Section VI-A to our baselines.

In machine learning, we typically seek some optimal param-
eters ϕ∗ ∈ arg minϕ `(ϕ,D), where ` is a scalar-valued loss
function and D is some data set. In meta-learning, we instead
have a collection of loss functions {`i}Mi=1, training data
sets {Dtrain

i }Mi=1, and evaluation data sets {Deval
i }Mi=1, where

each i corresponds to a task. Moreover, during each task i, we
can apply an adaptation mechanism Adapt : (θ,Dtrain

i) 7→ ϕi
to map so-called meta-parameters θ and the task-specific
training data Dtrain

i to task-specific parameters ϕi. The crux
of meta-learning is to solve the bi-level problem

θ∗ ∈ arg min
θ

1

M

(
M∑
i=1

`i(ϕi,Deval
i) + µmeta‖θ‖22

)
s.t. ϕi = Adapt(θ,Dtrain

i)

, (4)

with regularization coefficient µmeta ≥ 0, thereby producing
meta-parameters θ∗ that are on average well-suited to being
adapted for each task. This motivates the moniker “learning
to learn” for meta-learning. The optimization (4) is the meta-
problem, while the average loss is the meta-loss. The adapta-
tion mechanism Adapt is termed the base-learner, while the
algorithm used to solve (4) is termed the meta-learner [31].

Generally, the meta-learner is chosen to be some gradi-
ent descent algorithm. Choosing a good base-learner is an
open problem in meta-learning research. Finn et al. [21]
propose using a gradient descent step as the base-learner, such
that ϕi = θ − η∇θ `i(θ,Dtrain

i) in (4) with some learning
rate η > 0. This approach is general in that it can be applied
to any differentiable task loss functions. Bertinetto et al. [11]
and Lee et al. [42] instead study when the base-learner can be
expressed as a convex program with a differentiable closed-
form solution. In particular, they consider ridge regression with
the hypothesis ŷ = Ag(x; θ), where A is a matrix and g(x; θ)
is some vector of nonlinear features parameterized by θ. For
the base-learner, they use

ϕi = arg min
A

∑
(x,y)∈Dtrain

i

‖y−Ag(x; θ)‖22 +µridge‖A‖2F , (5)

with regularization coefficient µridge > 0 for the Frobenius
norm ‖A‖2F , which admits a differentiable, closed-form solu-
tion. Instead of adapting θ to each task i with a single gradient
step, this approach leverages the convexity of ridge regression
tasks to minimize the task loss analytically.

 ���

V. ADAPTIVE CONTROL AS A BASE-LEARNER

We now present the key idea of our paper, which uses
meta-learning concepts introduced in Section IV to tackle the
problem of learning to control (1). For the moment, we assume
we can simulate the dynamics function f in (1) offline and that
we have M samples {wj(t)}Mj=1 for t ∈ [0, T] in (1); we will
eliminate these assumptions in Section V-B.

A. Meta-Learning from Feedback and Adaptation

In meta-learning vernacular, we treat a reference trajec-
tory ri(t) ∈ Rn and disturbance signal wj(t) ∈ Rd to-
gether over some time horizon T > 0 as the training data
Dtrain
ij = {ri(t), wj(t)}t∈[0,T] for task (i, j). We wish to learn

the static parameters θ := (θπ, θρ) of an adaptive controller

u = π(x, r, a; θπ),

ȧ = ρ(x, r, a; θρ),
(6)

such that (π, ρ) engenders good tracking of ri(t) for t ∈ [0, T]
subject to the disturbance wj(t). Our adaptation mechanism is
the forward-simulation of our closed-loop system, i.e., in (4)
we have ϕij = {xij(t), aij(t), uij(t)}t∈[0,T], where

xij(t) = xij(0) +

∫ T

0

f(xij(t), uij(t), wj(t)) dt,

aij(t) = aij(0) +

∫ T

0

ρ(xij(t), uij(t), wj(t); θρ) dt,

uij(t) = π(xij(t), ri(t), aij(t); θπ),

(7)

which we can compute with one of many Ordinary Differ-
ential Equation (ODE) solvers. For simplicity, we always set
xij(0) = ri(0) and aij(0) = 0. Our task loss is simply the
average tracking error for the same reference-disturbance pair,
i.e., Deval

ij = {ri(t), wj(t)}t∈[0,T] and

`ij(ϕij ,Deval
ij) =

1

T

∫ T

0

(
‖xij(t)− ri(t)‖22 + α‖uij(t)‖22

)
dt,

(8)
where α ≥ 0 regularizes the control effort 1

T

∫ T
0
‖uij(t)‖22 dt.

This loss is inspired by the Linear Quadratic Regulator
(LQR) from optimal control, and can be generalized to
weighted norms. Assume we construct N reference trajecto-
ries {ri(t)}Ni=1 and sample M disturbance signals {wj(t)}Mj=1,
thereby creating NM tasks. Combining (7) and (8) for all
(i, j) in the form of (4) then yields the meta-problem

min
θ

1

NMT

 N∑
i=1

M∑
j=1

∫ T

0

cij(t) dt+ µmeta‖θ‖22

s.t. cij = ‖xij − ri‖22 + α‖uij‖22

ẋij = f(xij , uij , wj), xij(0) = ri(0)

uij = π(xij , ri, aij ; θπ)

ȧij = ρ(xij , ri, aij ; θρ), aij(0) = 0

(9)

Solving (9) would yield parameters θ = (θπ, θρ) for the
adaptive controller (π, ρ) such that it works well on average
in closed-loop tracking of {ri(t)}Ni=1 for the dynamics f ,

subject to the disturbances {wj(t)}Mj=1. To learn the meta-
parameters θ, we can perform gradient descent on (9). This
requires back-propagating through an ODE solver, which can
be done either directly or via the adjoint state method after
solving the ODE forward in time [57, 19, 6, 49]. In addition,
the learning problem (9) is semi-supervised, in that {wj(t)}Mj=1

are labelled samples and {ri(t)}Ni=1 can be chosen freely. If
there are some specific reference trajectories we want to track
at test time, we can use them in the meta-problem (9). This is
an advantage of designing the offline learning problem in the
context of the downstream control objective.

B. Model Ensembling as a Proxy for Feedback Offline
In practice, we cannot simulate the true dynamics f or

sample an actual disturbance trajectory w(t) offline. Instead,
we can more reasonably assume we have past data collected
with some other, possibly poorly tuned controller. In particular,
we make the following assumptions:
• We have access to trajectory data {Tj}Mj=1, such that

Tj =
{(
t
(j)
k , x

(j)
k , u

(j)
k , t

(j)
k+1, x

(j)
k+1

)}Nj−1
k=0

, (10)

where x(j)k ∈ Rn and u(j)k ∈ Rm were the state and control
input, respectively, at time t(j)k . Moreover, u(j)k was applied
in a zero-order hold over [t

(j)
k , t

(j)
k+1), i.e., u(t) = u(t

(j)
k) for

all t ∈ [t
(j)
k , t

(j)
k+1) along each trajectory Tj .

• During the collection of trajectory data Tj , the distur-
bance w(t) took on a fixed, unknown value wj .

The second point is inspired by both meta-learning literature,
where it is usually assumed the training data can be segmented
according to the latent task, and adaptive control literature,
where it is usually assumed that any unknown parameters are
constant or slowly time-varying. These assumptions can be
generalized to any collection of measured time-state-control
transition tuples that can be segmented according to some
latent task; in (10) we consider when such tuples can be
grouped into trajectories, since this is a natural manner in
which data is collected from dynamical systems.

Inspired by Clavera et al. [20], since we cannot simulate
the true dynamics f offline, we propose to first train a
model ensemble from the trajectory data {Tj}Mj=1 to roughly
capture the distribution of f(·, ·, w) over possible values of the
disturbance w. Specifically, we fit a model f̂j(x, u;ψj) with
parameters ψj to each trajectory Tj , and use this as a proxy
for f(x, u, wj) in (9). The meta-problem (9) is now

min
θ

1

NMT

 N∑
i=1

M∑
j=1

∫ T

0

cij(t) dt+ µmeta‖θ‖22

s.t. cij = ‖xij − ri‖22 + α‖uij‖22

ẋij = f̂j(xij , uij ;ψj), xij(0) = ri(0)

uij = π(xij , ri, aij ; θπ)

ȧij = ρ(xij , ri, aij ; θρ), aij(0) = 0

(11)

This form is still semi-supervised, since each model f̂j is
dependent on the trajectory data Tj , while {ri}Ni=1 can be

 ���

chosen freely. The collection {f̂j}Mj=1 is termed a model
ensemble. Empirically, the use of model ensembles has been
shown to improve robustness to model bias and train-test
data shift of deep predictive models [40] and policies in
reinforcement learning [58, 39, 20]. To train the parameters ψj
of model f̂j on the trajectory data Tj , we do gradient descent
on the one-step prediction problem

min
ψj

1

Nj

Nj−1∑
k=0

∥∥x(j)k+1 − x̂
(j)
k+1

∥∥2
2

+ µensem‖ψj‖22

s.t. x̂

(j)
k+1 = x

(j)
k +

∫ t
(j)
k+1

t
(j)
k

f̂j(x(t), u
(j)
k ;ψj) dt

(12)

where µensem > 0 regularizes ψj . Since we meta-train θ in
(12) to be adaptable to every model in the ensemble, we only
need to roughly characterize how the dynamics f(·, ·, w) vary
with the disturbance w, rather than do exact model fitting of f̂j
to Tj . Thus, we approximate the integral in (12) with a single
step of a chosen ODE integration scheme and back-propagate
through this step, rather than use a full pass of an ODE solver.

C. Incorporating Prior Knowledge About Robot Dynamics

So far our method has been agnostic to the choice of
adaptive controller (π, ρ). However, if we have some prior
knowledge of the dynamical system (1), we can use this to
make a good choice of structure for (π, ρ). Specifically, we
now consider the large class of Lagrangian dynamical systems,
which includes robots such as manipulator arms and drones.
The state of such a system is x := (q, q̇), where q(t) ∈ Rnq

is the vector of generalized coordinates completely describing
the configuration of the system at time t ∈ R. The nonlinear
dynamics of such systems are fully described by

H(q)q̈ + C(q, q̇)q̇ + g(q) = fext(q, q̇) + τ(u), (13)

where H(q) is the positive-definite inertia matrix, C(q, q̇) is
the Coriolis matrix, g(q) is the potential force, τ(u) is the
generalized input force, and fext(q, q̇) summarizes any other
external generalized forces. The vector C(q, q̇)q̇ is uniquely
defined, and the matrix C(q, q̇) can always be chosen such
that Ḣ(q, q̇)−2C(q, q̇) is skew-symmetric [71]. Slotine and Li
[69] studied adaptive control for (13) under the assumptions:
• The system (13) is fully-actuated, i.e., u(t) ∈ Rnq and
τ : Rnq → Rnq is invertible.

• The dynamics in (13) are linearly parameterizable, i.e.,

H(q)v̇+C(q, q̇)v+g(q)−fext(q, q̇) = Y (q, q̇, v, v̇)a, (14)

for some known matrix Y (q, q̇, v, v̇) ∈ Rnq×p, any vectors
q, q̇, v, v̇ ∈ Rnq , and constant unknown parameters a ∈ Rp.

• The reference trajectory for x := (q, q̇) is of the form
r = (qd, q̇d), where qd is twice-differentiable.

Under these assumptions, the adaptive controller

q̃ := q − qd, s := ˙̃q + Λq̃, v := q̇d − Λq̃,

u = τ−1(Y (q, q̇, v, v̇)â−Ks),
˙̂a = −ΓY (q, q̇, v, v̇)Ts,

(15)

ensures x(t) = (q(t), q̇(t)) converges to r(t) = (qd(t), q̇d(t)),
where (Λ,K,Γ) are chosen positive-definite gain matrices.

The adaptive controller (3) requires the nonlinearities in the
dynamics (13) to be known a priori. While Niemeyer and Slo-
tine [54] showed these can be systematically derived for H(q),
C(q, q̇), and g(q), there exist many external forces fext(q, q̇) of
practical importance in robotics for which this is difficult to do,
such as aerodynamic and contact forces. Thus, we consider the
case when H(q), C(q, q̇), and g(q) are known and fext(q, q̇) is
unknown. Moreover, we want to approximate fext(q, q̇) with
the neural network

f̂ext(q, q̇;A, θy) = Ay(q, q̇; θy), (16)

where y(q, q̇; θ) ∈ Rp consists of all the hidden layers of the
network parameterized by θy , and A ∈ Rnq×p is the output
layer. Inspired by (15), we consider the adaptive controller

q̃ := q − qd, s := ˙̃q + Λq̃, v := q̇d − Λq̃,

u = τ−1(H(q)v̇+C(q, q̇)v+g(q)−Ay(q, q̇; θy)−Ks),
Ȧ = Γsy(q, q̇; θy)T,

(17)

If fext(q, q̇) = f̂ext(q, q̇;A, θy) for fixed values θy and A,
then the adaptive controller (17) guarantees tracking con-
vergence [69]. In general, we do not know such a value
for θy , and we must choose the gains (Λ,K,Γ). Since (17) is
parameterized by θ := (θy,Λ,K,Γ), we can train (17) with the
method described in Sections V-A–V-B. While for simplicity
we consider known H(q), C(q, q̇), and g(q), we can extend to
the case when they are linearly parameterizable, e.g., H(q)v̇+
C(q, q̇)v+g(q) = Y (q, q̇, v, v̇)a with Y (q, q̇, v, v̇) a matrix of
known features systematically computed as by Niemeyer and
Slotine [54]. In this case, we would then maintain a separate
adaptation law ˙̂a = −PY (q, q̇, v, v̇)Ts with adaptation gain
P � 0 in our proposed adaptive controller (17).

VI. EXPERIMENTS

We evaluate our method in simulation on a Planar
Fully-Actuated Rotorcraft (PFAR) with degrees of freedom
q := (x, y, φ) governed by the nonlinear equations of motionẍÿ

φ̈

+ g =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

︸ ︷︷ ︸

=:R(φ)

u+ fext, (18)

where (x, y) is the position of the center of mass in the inertial
frame, φ is the roll angle, g = (0, 9.81, 0) m/s2 is the gravi-
tational acceleration in vector form, R(φ) is a rotation matrix,
fext is some unknown external force, and u = (u1, u2, u3) are
the normalized thrust along the body x-axis, thrust along the
body y-axis, and torque about the center of mass, respectively.
We depict an exemplary PFAR design in Figure 1 inspired by
thriving interest in fully- and over-actuated multirotor vehicles
in the robotics literature [64, 35, 16, 77, 60]. The simplified
system in (18) is a fully-actuated variant of the classic Planar
Vertical Take-Off and Landing (PVTOL) vehicle [29]. In our
simulations, fext is a mass-normalized quadratic drag force,

 ���

due to the velocity of the PFAR relative to wind blowing at a
velocity w ∈ R along the inertial x-axis. Specifically,

v1 = (ẋ− w) cosφ+ ẏ sinφ,

v2 = −(ẋ− w) sinφ+ ẏ cosφ,

fext = −

[
cosφ − sinφ
sinφ cosφ

0 0

](
β1v1|v1|
β2v2|v2|

)
,

(19)

where β1, β2 > 0 are aggregate coefficients; we use β1 = 0.1
and β2 = 1 in all of our simulations.

A. Baselines
We compare our meta-trained adaptive controller in trajec-

tory tracking tasks for (18) against two baseline controllers:
PID Control: Our simplest baseline is a Proportional-

Integral-Derivative (PID) controller with feed-forward, i.e.,

u = R(φ)T
(
g + q̈d −KP q̃ −KI

∫ t

0

q̃(ξ) dξ −KD
˙̃q

)
, (20)

with gains KP ,KI ,KD � 0. For fext(q, q̇) ≡ 0, this
controller feedback-linearizes the dynamics (18) such that the
error q̃ := q− qd is governed by an exponentially stable ODE.
The integral term must compensate for fext(q, q̇) 6≡ 0.

Adaptive Control via Meta-Ridge Regression (ACMRR):
This baseline is a slightly modified1 version of the approach
taken by O’Connell et al. [55], which applies the work
on using ridge regression as a base-learner from Bertinetto
et al. [11], Lee et al. [42] and Harrison et al. [28] to learn
the parametric features y(q, q̇; θy). Specifically, for a given
trajectory Tj and these features, the last layer A is specified
as the best ridge regression fit to some subset of points
in Tj . The features y(q, q̇; θy) are then used in the adaptive
controller (17).

To clarify, we describe ACMRR with the meta-learning
language from Section IV, specifically for the PFAR dynamics
in (18). Let Kridge

j ⊂ {k}|Tj |−1k=0 denote the indices of transition
tuples in some subset of Tj . The Euler approximation

ˆ̇q
(j)
k+1(A) := q̇

(j)
k +∆t

(j)
k

(
R(φ

(j)
k)u

(j)
k +Ay(q

(j)
k , q̇

(j)
k ; θy)

)
(21)

with ∆t
(j)
k := t

(j)
k+1 − t

(j)
k is used in the task loss

`j(Aj , Tj) =
1

|Tj |

|Tj |−1∑
k=0

‖q̇(j)k+1 − ˙̂q
(j)
k+1(Aj)‖22 (22)

alongside the adaptation mechanism

Aj = arg min
A

∑
k∈Kridge

j

‖q̇(j)k+1− ˆ̇q
(j)
k+1(A)‖22+µridge‖A‖2F . (23)

The adaptation mechanism (23) can be solved and differ-
entiated in closed-form for any µridge > 0 via the normal

1Unlike O’Connell et al. [55], we do not assume access to direct mea-
surements of the external force fext. Also, they use a more complex form
of (15) with better parameter estimation properties when the dynamics are
linearly parameterizable with known nonlinear features [70]. While we could
use a parametric form of this controller in place of (17), we forgo this in
favour of a simpler presentation, since we focus on offline control-oriented
meta-learning of approximate features.

equations, since ˆ̇q
(j)
k+1(A) is linear in A; indeed, only lin-

ear integration schemes can be substituted into (21). The
meta-problem for ACMRR takes the form of (4) with meta-
parameters θy for the features y(q, q̇; θy), the task loss (22),
and the adaptation mechanism (23). The meta-parameters θy
are trained via gradient descent on this meta-problem, and then
deployed online in the adaptive controller (17).

ACMRR suffers from a fundamental mismatch between
its regression-oriented meta-problem and the online problem
of adaptive trajectory tracking control. The ridge regression
base-learner (23) suggests that A should best fit the input-
output trajectory data in a regression sense. However, as we
mentioned in Section III, adaptive controllers such as the
one in (17) learn on a “need-to-know” basis for the primary
purpose of control rather than regression. As we discuss in
Section VI-D, since our control-oriented approach uses a meta-
objective indicative of the downstream closed-loop tracking
control objective, we achieve better tracking performance than
this baseline at test time.

B. Data Generation and Training

To train the meta-parameters θours := (θy,Λ,K,Γ) in
our method, and the meta-parameters θACMRR := θy in the
ACMRR baseline, we require trajectory data {Tj}Mj=1 of the
form (10). To this end, we synthesize Tj as follows:
1) Generate a uniform random walk of six (x, y, φ) points.
2) Fit a 30-second, smooth, polynomial spline trajec-

tory qd(t) ∈ R3 to the random walk with minimum snap
in (x, y) and minimum acceleration in φ, according to the
work by Mellinger and Kumar [48] and Richter et al. [63].

3) Sample a wind velocity w ∈ R from the training distribu-
tion in Figure 2, and simulate the dynamics (18) with the
external force (19) and the Proportional-Derivative (PD)
tracking controller

u = R(φ)T
(
g − kP q̃ − kD ˙̃q

)
(24)

in a zero-order hold at 100 Hz, with kP = 10 and
kD = 0.1. This controller represents a “first try” at con-
trolling the system (18) in order to collect data. We record
time, state, and control input measurements at 100 Hz.

We record 500 such trajectories and then sample M of them to
form the training data {Tj}Mj=1 for various M to evaluate the
sample efficiency of our method and the ACMRR baseline. We
present hyperparameter choices and training details for each
method in Appendix A. We highlight here that:
• To train the positive-definite gains (Λ,K,Γ) via gradient-

based optimization in our method, we use an unconstrained
log-Cholesky parameterization for each gain2.

• To compute the integral in the meta-problem (11) for our
method, we use a fourth-order Runge-Kutta scheme with
a fixed time step of 0.01 s. We back-propagate gradients

2Any n×n positive-definite matrixQ can be uniquely defined by 1
2
n(n+1)

parameters. For n = 2, the log-Cholesky parameterization of Q is Q = LLT

with L =

[
exp(θ1) 0
θ2 exp(θ3)

]
and unconstrained parameters θ ∈ R3 [56].

 ���

0 2 4 6 8 10
w [m/s]

0.0

0.1

0.2

0.3

0.4

0.5
sa

m
pl

in
g

pr
ob

ab
ili

ty
ptrain(w)

ptest(w)

Fig. 2. Training distribution ptrain and test distribution ptest for the wind
velocity w along the inertial x-axis. Both are scaled beta distributions; ptrain
is supported on the interval [0, 6] m/s with shape parameters (α, β) = (5, 9),
while ptest is supported on the interval [0, 10] m/s with shape parame-
ters (α, β) = (5, 7). The normalized histograms show the distribution of the
actual wind velocity samples in the training and test data for a single seed,
and highlight the out-of-distribution samples (i.e., relative to ptrain) that occur
during testing.

through this computation in a manner similar to Zhuang
et al. [78], rather than using the adjoint method for neural
ODEs [19], due to our observation that the backward pass
is sensitive to any numerical error accumulated along the
forward pass during closed-loop control simulations.

C. Testing with Distribution Shift

For testing, we simulate tracking of 200 smooth, 10-second
reference trajectories different from those in the training
data, using our meta-parameters θours := (θy,Λ,K,Γ) with
the adaptive controller (17), the ACMRR meta-parameters
θACMRR := θy with the adaptive controller (17), and the PID
controller (20); each controller is implemented at 100 Hz. As
shown in Figure 2, we sample wind velocities at test time
from a distribution different from that used for the training
data {Tj}Mj=1; in particular, the test distribution has a higher
mode and larger support than the training distribution, thereby
producing so-called out-of-distribution wind velocities at test
time. This ensures the generalizability of each approach is
tested, which is a particularly important concept in meta-
learning literature [31].

A strength of our method is that it meta-learns both fea-
tures y(q, q̇; θy) and gains (Λ,K,Γ) offline, while both the
PID and ACMRR baselines require gain tuning in practice
by interacting with the real system. However, for the sake
of comparison, we test every method with various manually
chosen gains and our method with our meta-learned gains,
on the same set of test trajectories. In particular, for the
PID controller (20), we set KP = KΛ + Γ, KI = ΓΛ, and
KD = K + Λ, which makes it equivalent to the adaptive
controller (17) for the dynamics (18) with y(q, q̇; θy) ≡ 1
(i.e., constant features), q̃(0) = 0 (i.e., zero initial position
error), and A(0) = 0 (i.e., adapted parameters are initially
zero). We always set initial conditions for the system such
that q̃(0) = ˙̃q(0) = 0, and A(0) = 0.

0 2 4
x [m]

0

1

2

3

4

5

6

y
[m
]

w = 6 .5 m /s

0.0

0.5

1.0

√ ‖q̃
‖2 2
+
‖˙ q̃
‖2 2

0 5 10
t [s]

10

20

30

40

50

‖u
‖ 2

reference
PID
ACMRR

ours
ours, (Λ , K, Γ) = (Λ m e t a , K m e t a , Γ m e t a)

Fig. 3. Tracking results for the PFAR on a test trajectory with w = 6.5 m/s,
M = 10, and (Λ,K,Γ) = (I, 10I, 10I). We also apply our meta-
learned features and our meta-learned gains (Λmeta,Kmeta,Γmeta). All
of the methods expend similar control efforts. However, with our meta-

learned features, the tracking error ‖x− r‖2 =
√
‖q̃‖22 + ‖ ˙̃q‖22 (where x

is overloaded to denote both position x ∈ R and state x = (q, q̇)) quickly
decays after a short transient, while the effect of the wind pushing the vehicle
to the right is more pronounced for the baselines.

D. Results and Discussion

We first provide a qualitative plot of tracking results for
each method on a single test trajectory in Figure 3, which
clearly shows that our meta-learned features induce better
tracking results than the baselines, while requiring a similar
expenditure of control effort. For our method, the initial
transient decays quickly, thereby demonstrating fast adaptation
and the potential to handle even time-varying disturbances.

For a more thorough analysis, we consider the Root-Mean-
Squared (RMS) tracking error and control effort for each test
trajectory {ri}Ntest

i=1 ; for any vector-valued signal h(t) and
sampling times {tk}Nk=0, we define

RMS(h) :=

√√√√ 1

N

N∑
k=0

‖h(tk)‖22. (25)

We are interested in RMS(xi−ri) and RMS(ui), where
xi(t) = (qi(t), q̇i(t)) and ui(t) are the resultant state and
control trajectories from tracking ri(t) = (qd,i(t), q̇d,i(t)). In
Figure 4, we plot the averages 1

Ntest

∑Ntest

i=1 RMS(xi−ri) and
1

Ntest

∑Ntest

i=1 RMS(ui) across Ntest = 200 test trajectories
for each method. For our method and the ACMRR baseline,
we vary the number of training trajectories M , and thus the
number of wind velocities from the training distribution in Fig-
ure 2 implicitly present in the training data. From Figure 4,
we observe the PID controller generally yields the highest
tracking error, thereby indicating the utility of meta-learning

 ���

0.0

0.5

1.0

1.5

2.0
1

N
te

st

N
te

st ∑ i
=

1
R

M
S
(x

i−
r i

)

(Λ, K,Γ) = (I, I, I)

0.0

0.5

1.0

1.5
(Λ, K,Γ) = (I, I, 10I)

0.0

0.1

0.2

0.3

0.4

(Λ, K,Γ) = (I, 10I, I)

0.0

0.1

0.2

0.3

0.4

(Λ, K,Γ) = (I, 10I, 10I)

0 10 20 30 40 50
M

10.5

11.0

11.5

12.0

12.5

1
N

te
st

N
te

st ∑ i
=

1
R

M
S
(u

i)

0 10 20 30 40 50
M

10.5

11.0

11.5

12.0

12.5

0 10 20 30 40 50
M

10.5

11.0

11.5

12.0

12.5

0 10 20 30 40 50
M

10.5

11.0

11.5

12.0

12.5

PID ACMRR ours ours, (Λ, K,Γ) = (Λmeta, Kmeta,Γmeta)

Fig. 4. Line plots of the average RMS tracking error 1
Ntest

∑Ntest
i=1 RMS(xi−ri) and average control effort 1

Ntest

∑Ntest
i=1 RMS(ui) across Ntest = 200

test trajectories versus the number of trajectories M ∈ {2, 5, 10, 20, 30, 40, 50} in the training data. For each method, we try out various control gains
(Λ,K,Γ). With our method, we also use our meta-learned gains (Λmeta,Kmeta,Γmeta). The results for the PID controller do not vary with M since it
does not require any training. Dots and error bars denote means and standard deviations, respectively, across 10 random seeds. Our experiments are done in
Python using NumPy [26] and JAX [15]. We use the explicit nature of Pseudo-Random Number Generation (PRNG) in JAX to set a seed prior to training,
and then methodically branch off the associated PRNG key as required throughout the train-test experiment pipeline. Thus, all of our results can be easily
reproduced; code to do so is provided at https://github.com/StanfordASL/Adaptive-Control-Oriented-Meta-Learning.

features y(q, q̇; θy) to better compensate for fext(q, q̇). We
further observe in Figure 4 that, regardless of the control gains,
using our features y(q, q̇; θy) in the adaptive controller (17)
yields the lowest tracking error. Moreover, using our fea-
tures with our meta-learned gains yields the lowest tracking
error in all but one case. Our features induce a slightly
higher control effort with a greater standard deviation across
random seeds, especially when used with our meta-learned
gains (Λmeta,Kmeta,Γmeta). This is most likely since the
controller can better match the disturbance fext(q, q̇) with our
features, and is an acceptable trade-off given that our primary
objective is trajectory tracking. In addition, when using our
features with manually chosen or our meta-learned gains, the
tracking error remains relatively constant over M ; conversely,
the tracking error for the ACMRR baseline is higher for
lower M , and only reaches the performance of our method
with certain gains for large M . Overall, our results indicate:

• The features y(q, q̇; θy) meta-learned by our control-oriented
method are better conditioned for closed-loop tracking con-
trol across a range of controller gains, particularly in the face
of a distributional shift between training and test scenarios.

• The gains meta-learned by our method are competitive with-
out manual tuning, and thus can be deployed immediately
or serve as a good initialization for further fine-tuning.

• Our control-oriented meta-learning method is sample-
efficient with respect to how much system variability is
implicitly captured in the training data.

We again stress these comparisons could only be done by
tuning the control gains for the baselines, which in practice
would require interaction with the real system and hence
further data collection. Thus, the fact that our control-oriented
method can meta-learn good control gains offline is a key
advantage over regression-oriented meta-learning.

VII. CONCLUSIONS & FUTURE WORK

In this work, we formalized control-oriented meta-learning
of adaptive controllers for nonlinear dynamical systems, offline
from trajectory data. The procedure we presented is general
and uses adaptive control as the base-learner to attune learning
to the downstream control objective. We then specialized our
procedure to the class of nonlinear mechanical systems, with
a well-known adaptive controller parameterized by control
gains and nonlinear model features. We demonstrated that
our control-oriented meta-learning method engenders better
closed-loop tracking control performance at test time than
when learning is done for the purpose of model regression.

There are a number of exciting future directions for this
work. In particular, we are interested in control-oriented
meta-learning with constraints, such as for adaptive Model
Predictive Control (MPC) [1, 17, 72, 38, 67] with state and
input constraints. Back-propagating through such a controller
would leverage recent work on differentiable convex optimiza-
tion [4, 2, 3]. We could also back-propagate through parameter
constraints; for example, physical consistency of adapted in-
ertial parameters can be enforced as Linear Matrix Inequality
(LMI) constraints that reduce overfitting and improve param-
eter convergence [76]. In addition, we want to extend our
meta-learning approach to adaptive control for underactuated
systems. Underactuation is a fundamental challenge for adap-
tive control since model uncertainties must satisfy certain
matching conditions so that they can be cancelled stably by
the controller [44, 67]. To this end, we want to explore how
meta-learning can be used to learn adaptive controllers defined
in part by parametric stability and stabilizability certificates,
such as Lyapunov functions and Control Contraction Metrics
(CCMs) [45]. This could build off of existing work on learning
such certificates from data [62, 66, 13, 74].

 ���

https://github.com/StanfordASL/Adaptive-Control-Oriented-Meta-Learning

	Introduction
	Related Work
	Control-Oriented System Identification
	Adaptive Control
	Meta-Learning

	Problem Statement
	Bi-Level Meta-Learning
	Adaptive Control as a Base-Learner
	Meta-Learning from Feedback and Adaptation
	Model Ensembling as a Proxy for Feedback Offline
	Incorporating Prior Knowledge About Robot Dynamics

	Experiments
	Baselines
	Data Generation and Training
	Testing with Distribution Shift
	Results and Discussion

	Conclusions & Future Work
	Appendix A: Training Details

