Robotics: Science and Systems 2021
Held Virtually, July 12-16, 2021

HJB-RL: Initializing Reinforcement Learning with
Optimal Control Policies Applied to Autonomous
Drone Racing

Keiko Nagami
Department of Aeronautics and Astronautics
Stanford University
Stanford, CA
Email: knagami@stanford.edu

Abstract—In this work we present a planning and control
method for a quadrotor in an autonomous drone race. Our
method combines the advantages of both model-based optimal
control and model-free deep reinforcement learning. We consider
a single drone racing on a track marked by a series of gates,
through which it must maneuver in minimum time. Firstly we
solve the discretized Hamilton-Jacobi-Bellman (HJB) equation to
produce a closed-loop policy for a simplified, reduced order model
of the drone. Next, we train a deep network policy in a supervised
fashion to mimic the HJB policy. Finally, we further train this
network using policy gradient reinforcement learning on the full
drone dynamics model with a low-level feedback controller in
the loop. This gives a deep network policy for controlling the
drone to pass through a single gate. In a race course, this policy
is applied successively to each new oncoming gate to guide the
drone through the course. The resulting policy completes a high-
fidelity AirSim drone race with 12 gates in 34.89s (on average),
outracing a model-based HJB policy by 33.20s, a supervised
learning policy by 1.24s, and a trajectory planning policy by
12.99s, while a model-free RL policy was never able to complete
the race.

I. INTRODUCTION

In this paper, we build a deep Reinforcement Learning
(RL) policy from a model-based optimal control policy for
application to real-world robotics tasks. Our method seeks
to combine the best attributes of both model-based optimal
control and model-free RL. We demonstrate this method
specifically in the context of autonomous drone racing, a
problem involving complex nonlinear dynamics, and where
computational speed is essential in order to produce a safe and
fast racing policy. Specifically, we solve the Hamilton-Jacobi-
Bellman (HJB) partial differential equation for a reduced order
drone model to get a feedback policy for drone racing. We then
use the HJB policy to train a supervised network to imitate
this HIB policy. This network then serves as an initialization
for a policy gradient RL method, which uses roll-outs from a
full drone dynamics simulation (including drag and a low-level
feedback controller) to improve the racing policy. We call the
network resulting from this multi-stage training pipeline an
HIB-RL policy. Fig. [I] shows HJB-RL in action in a drone
race simulated in AirSim.

Mac Schwager
Department of Aeronautics and Astronautics
Stanford University
Stanford, CA
Email: schwager@stanford.edu

[Race 172
[Time. 1

drone_1 012
drone_2 oz

Fig. 1. A drone using our HIB-RL policy is shown traversing a gate in a
simulated race in AirSim. Our HIB-RL policy initializes policy gradient RL
with a model-based HJB policy, leading to a combined policy that significantly
outperforms either HIB or RL on its own, and also outperforms an MPC policy
based on trajectory optimization.

The motivation for this multi-stage training pipeline is
to leverage the benefits of each component method. HIB
methods require discretizing the state space to numerically
solve a partial differential equation (PDE). These methods give
discrete approximations to the optimal feedback policy, which
can be queried online with minimal computation. However,
these methods only give solutions on a restricted subset
of the state space and are limited to low-dimensional state
spaces. The coarse state space discretization and low state
space dimensionality make HIB methods impractical for high-
dimensional robotics problems. Conversely, a deep network
can represent a policy over a large region of the state space
and can apply to high-dimensional systems, but training that
policy through reinforcement learning may take a large number
of simulation rollouts, and may never result in an adequate
policy without a good initialization. Indeed, in our drone
racing example, we were not able to train an adequate policy
from scratch with the policy gradient RL method regardless
of the training time or number of rollouts.

Our proposed training pipeline bridges these two methods,
providing superior performance to either one alone. We train
the RL policy from roll-outs starting within a small region
of the state space where the HIB policy performs well. We

then expand this region over sequential training epochs to
encompass an ever increasing region in the state space. We
train the RL policy specifically for a drone to pass through a
single gate, then complete a full race by applying the policy
successively one gate at a time until the race is complete.
Furthermore, we show how to adapt the policy trained with
fixed gate dimensions to suit gates of arbitrary dimensions
through a fast, online re-scaling procedure. We assume the
relative pose between the drone and the gate is known, or can
be measured accurately on-line through an existing perception
stack, for example, the ones in [13} [14]. In future work, we
will consider including unknown gate pose within RL training
to produce an end-to-end deep racing policy.

In an ablation study, we show that our HIB-RL policy
strongly outperforms other policies derived from any subset
of the stages in our pipeline. We compare performance in a
high-fidelity, 12-gate drone race in AirSim, competing against
a model-based HJB policy, a supervised network policy trained
from the HJB policy, and a standard policy gradient RL policy
produced without our HJB initialization. We also compare
against a baseline Model Predictive Control (MPC) trajectory
planning policy. We find that our HIB-RL policy completes
the race in 34.89s (on average), which is 33.20s faster that the
HIJB policy alone, 1.24s faster than the supervised learning
policy, and 12.99s faster than the baseline MPC policy. By
contrast, we were not able to train a standard policy gradient
RL to complete a single race.

We discuss related work in Sec. [[ll and formalize the drone
racing problem in Sec. We introduce our HJB-RL pipeline
in Sec. discuss the low-level controller in Sec. [V] and
describe our simulation results in Sec. Finally, we give
conclusions in Sec. [VII]

II. RELATED WORK

Our work brings together methods from both model-based
optimal control and deep RL. Both of these approaches,
in various forms, have been applied to autonomous drone
racing, as well as to many other problem in robotics. Within
optimal control, one can consider methods based on trajectory
optimization, versus methods based on solving the Hamilton-
Jacobi-Bellman equation. We review the literature in each of
these areas below.

Trajectory optimization methods, which plan paths online
repeatedly in a Model Predictive Control (MPC) loop, rep-
resent the standard method in motion planning for drones
[25} 126, (15} 2} |20]], and are common in many other problems in
robot motion planning. These are the most common methods
in autonomous drone racing [[13} [14} 32 135], however they
suffer from requiring significant online computation, which
leads to slower, less reactive policies. In this work, we show
that our HJB-RL based policy outperforms a more traditional
trajectory optimization based MPC approach.

Conversely, the Hamilton-Jacobi-Bellman (HJB) approach
to optimal control involves numerically solving a partial differ-
ential equation offline to find a feedback policy [3]]. This policy

can then be applied online quickly, as minimal online compu-
tation is required. The problem with this approach is the curse
of dimensionality: numerical solution of the HIB equation is
intractable for problems with more than 5-6 state-dimensions,
and solutions can only be found over a restricted portion of the
state space. Quadrotor dynamics are 12 dimensional, which is
far beyond the reach of a numerical HIB solution. However,
HJB methods have been incorporated into control and planning
methods for both drones and cars, usually through a reduced-
order approximation of the system dynamics. For example,
in [3]] the authors solve the HJB equation for a simplified car
model to pass through stochastic gates (similar to a drone race,
but in 2D). Similarly, [19] incorporates the solution of an HJ
equation for a reduced-order model of relative motion between
two cars, to enforce safety within a more traditional MPC
planning loop for autonomous driving. The paper [8] presents
a method to use an HIB controller derived from a low-order
model approximation to safely control the original higher-
order system. Methods to approximate the value function of
the HJB solution have also been explored, e.g., in [11l]. To
our knowledge, HIB solutions have not yet been applied to
autonomous drone racing.

As opposed to model-based optimal control, Reinforcement
Learning (RL) has the advantage that no explicit model
is required. Instead RL statistically tunes a control policy
(usually represented as a deep neural network) by repeatedly
rolling out trajectories in a simulation of the dynamics of
the system. The disadvantage is that RL is known to suffer
from poor sample complexity, typically requiring a very large
number of simulation roll-outs. Furthermore, there are no
general guarantees about whether an adequate policy can be
learned for a given problem, or whether a learned policy
will perform robustly or stably when transferred to a real
robot. Indeed, these are currently topics of vigorous research.
RL can be applied in the form of Q-learning [27, [21], or
policy gradient approaches, where the mapping between the
state input and the optimal action is learned directly. Several
forms of policy gradient methods have been studied [28]],
including natural policy gradient [12], and off-policy methods
[31L [7]. In this work, we focus on a basic policy gradient
approach that tunes parameters of a policy network directly
based on the policy gradient theorem [33, 4] from roll-outs
produced under the current policy. Other applications of policy
gradient techniques such as [30]] have further developed these
approaches, where changes to the natural policy gradient result
in monotonic improvement. Several works apply learning to
quadrotor platforms [[17, (10} 22, [34], where [10, 22| |34]]
develop algorithms using policy gradient techniques.

In this work, we focus on combining a model-based control
method with a learning-based approach. Other works have also
considered combining model-based control methods with RL.
For example, [36, 1] combine model-based control with RL
by learning residual corrections to the dynamics and controls
of the system. Other methods use a model-based controller
to train a network, as done in [37], where MPC is used in
guided policy search. In our method, we use the Hamilton-

Jacobi-Bellman equation to pre-train a network using model-
based information, and use reinforcement learning as a means
of improving the resulting policy. Somewhat similar to our
method, [23] computes a time-to-reach function from an HJ
PDE to improve data-efficiency in reinforcement learning. In
[6]], the authors bridge safety analysis techniques of Hamilton-
Jacobi methods to reinforcement learning. It is not clear how
either of these methods overcome the challenges of small
state space dimension and restricted state space regions that
are inherent in HJB methods. In contrast to these works,
our method computes the solution to the HIB equation for
a simplified low-order model restricted to a small part of the
state space, transfers the simplified policy to a deep network
through supervised training, then expands the state dimension
and state space region in phases through RL.

III. PROBLEM SETUP

In this problem, we consider a single autonomous drone
racing through a track marked by a series of gates. This
problem setup will assume that the global ground truth pose
of each oncoming gate is known. Because the quadrotor will
be flying at high speeds, we consider body drag forces in the
dynamics model, which is given by

p=v ey

o1 1

v=—RT — —RDR" ||v||v — gz, 2

Soom m

R = R& 3)

w=T"11-wxlw), 4)
where p = [z y 2]7 is the position, v = [v, v, v,]T is the

velocity, T is the thrust control input T = [0 0 7|7, which
is always applied along the vertical body fixed axis, D is a
diagonal matrix of the drag coefficients, m is the mass of the
quadrotor, R is the orientation between the body frame and
the gate centered frame, which is defined as,

R =R.R,R,
Cy Sy 0] [Cop 0 St 0 0
=Sy cy oo 1 oo co -sef,

0 0 1|1]-Se 0 Co|lo so co

(&)

where ¢, 0, and 1) are the roll, pitch, and yaw angles and C-
and S- are cosine and sine operations. g is acceleration due
to gravity, z,, is the world frame z-axis, w is the vector of
angular rates in the body frame w = [p ¢ r]7, & is a skew
symmetric matrix of w, 7T is the input torque on the quadrotor
in the body frame applied by the rotors, and I is the inertia
matrix of the quadrotor. The control input vector for the 12D
system is uo = [T 7|7, the torque and total thrust magnitude
applied by the rotors. We assume limits on both control inputs,
where the maximum magnitude of the thrust vector is 77,4z
and the maximum angular acceleration in the body frame is
Wmaz = [Dmaz Gmaz Tmaz)® - The position, velocity, thrust,
and orientation are defined in a gate centered reference frame
as defined in Fig. 2]

Fig. 2. Definition of world frame (Xw, ¥, Zw) , quadrotor body frame (xp,
Yp> Zb), and gate frame (X, y, z).

In this problem, our objectives are to go through each
oncoming gate and to do so quickly. Since we will be using
a reduced order model to define our state input to the policy,
we formulate our cost function as

ty
J(u(t)) = Elg(s(t;)) + / 14 ©)
s(t;) e TUA %
s=[z y 2z vy vy UZ}T (8)
u=[7, 7, T.|", 9)

where g(s(ts)) is the terminal cost, our running cost is only
dependent on the time, and our state input s and control input
u are defined for a reduced order model described in the next
section. The terminal cost is defined at the terminal states,
which are defined to be the states with positions inside the
gate frame as the target set 7 and positions at the gate frame
as the avoid set A.

IV. HIB-RL

Our approach consists of three main segments. First, we
generate a control policy, u = fgsp(s), in the form of a
look-up table by formulating the HIB equation, and discretize
the problem to solve by value iteration. We then use a k-
nearest neighbor interpolation to generate a larger look-up
table that is used to generate state-input data pairs to train
a stochastic neural network policy (u,0%) = fsr.(s) using
supervised learning. Here we use a stochastic policy to allow
for exploration during training in the reinforcement learning
stage of our framework. The 6D state serves as the input to the
model, with a mean and fixed variance for the 3D thrust vector
as the output. Finally, this pretrained network is used to further
learn a better policy (p,02) = fysp—_rL(s) on the full 12D
state model through policy gradient reinforcement learning,
using simulated roll-outs of trajectories going through a gate.
When applying the control actions using this final policy, we
will execute the mean p as the control input, as having a
stochastic policy is unfavorable after training. Fig. [3| visualizes
the multiple stages in this training process, and Fig. [] shows
the block diagram of the final planning and control method
that we implement after all training stages. The block diagram

in Fig.] shows how the HIB-RL policy is applied to the
quadrotor system with the low level controllers for orientation.

HJB

Interpolation

look-up table

[Supervised Learning]
| (1, 0%) = [(s)

[Reinforcement Learning]

Fig. 3. HIB-RL multi-stage training procedure. First the state space in front
of a single gate is discretized for a lower dimensional model of a quadrotor
to obtain an optimal control policy using an HIB equation. This look-up table
is then used as training data for a neural network for a supervised learning
stage. Lastly, reinforcement learning is applied using the full 12D quadrotor
dynamics to further improve the policy.

—»’ kr H k., H Quadrotor k»

TyYy 2y Vs Uy, Uz

¢,0,9

p,q,7

‘T7y7 Z7vx7vy7vz7¢79’¢’p7 Q7T

Fig. 4. Block diagram of our policy acting on a quadrotor. The six-
dimensional state is used as input to our HJB-RL block, which outputs a
three-dimensional thrust vector in the gate centered coordinate frame. Two
low-level controllers are used to align the quadrotor with the desired thrust
vector.

A. Hamilton-Jacobi-Bellman Equation
To formulate the HIB equation, we first choose a lower

dimensional model, where we reduce equation (2)) and approx-
imate the quadrotor as a point-mass subject to drag forces,

dp = vdt (10)
1 d
dv = (—u— —||v||v — gzy,)dt + cdW
m m
= adt + odW, (11

where d is a scalar constant drag coefficient, a = [a, a, a,]”
is the acceleration, and u here is a thrust vector control
input that is defined in the gate centered coordinate frame.
In this reduced order model everything is defined either in
a gate centered frame or the world frame. Additionally, we
consider some uncertainty on the velocity of the quadrotor in
the gate frame since we are using a simplified model of the
full dynamics. In this reduced order dynamics model, we use
a 6D state vector expressed in equation ().

To formulate the HIB problem we use the cost function as
defined in equation (6), and define the target set as the discrete
states inside the gate frame and the avoid set as the discrete

states at the gate frame. We account for the arm lengths of the
drone and also include discretized states inside the gate frame
in the avoid set as shown in Fig. [5] The cost at these terminal
states are low in the target set and high in the avoid set,

0, S(tf) eT
s(t = 12
96U =110, s(ty) € A (12)

-20 -15 -10 -05 00 0.5 1.0 15 2.0

Fig. 5. Front view of gate definition and target and avoid sets. Color bar
indicates values associated with discretized points of target set and avoid set.
Pink lines mark the inner and outer dimensions of the gate.

For all states not in the target and avoid sets, the optimal
control is found through the HIB equation,

inf[£"V(s)+1] =0 (13)
u

where V(s) is the value function, and £" is a differential
operator as described in [5]] to account for the uncertainty in
the relative velocity between the gate frame and the quadrotor,

u % % oV
L V(S):vmﬂ +vy@+vzg
% oV oV
+azgw+ay% —l—azm
e A
2 v 2 o0vZ 2 dv?

From here we discretize the problem to find the discrete
value function as described in [5] and use value iteration to
find a policy which minimizes the value at each point in the
state space.

B. Supervised Learning

Once the solution to the HIB equation is obtained in the
form of a look-up table, additional data is generated using a k-
nearest neighbor interpolation. The network is then pretrained
by using the input output pairs of the 6D state vector and
3D thrust vector at each of the discretized points of the HIB
policy so that the network represents the function (p,0%) =
fsr(s), where p is a mean vector and o? are the diagonal
elements of a covariance matrix, X = diag(0'2), that are used
to parameterize a Gaussian distribution of the control input.
The network is comprised of four ReLU activation layers each

with 50 nodes for the mean, and one sigmoid activation layer
with 50 nodes for the variance. While the mean is trained
by using data from the HJB policy, the variance is trained
to be 0.5. We choose this initial variance value of 0.5 so that
during the reinforcement learning training, the policy will draw
actions that are close to the mean, while still allowing for
exploration during training. We use a Huber loss function [9]
to compute the loss,

w;)?, for |w; —w; |< 6
Ls(w,w
(W M Z {5 | w; — ;| —162, otherwise ,
15)

where w is the vector of target values, W is a vector of the
outputs from fgz(s), so that w = [u; 02|, M is the dimension
of the thrust control input vector, j is the index of vectors w
and w, and the parameter ¢§ is set to a value of 1. This loss
is minimized using the Adam optimizer [16] with a learning
rate of 10~

C. Reinforcement Learning

The reinforcement learning portion of this algorithm uses
the network that results from supervised learning as an initial
policy, and improves the policy through reinforcement learning
by training the network using a 12D quadrotor dynamics
model. Here we use the policy gradient theorem to approx-
imate the gradient from roll-outs of the dynamics,

N tf

% Z Z Vologmg(u;, | 8;¢)x

i=1 t=1

VoJ(8) =

ty

Z T(Si,t’,ui,t’),

t'=t

(16)

where N is the number of trajectory roll-outs, and 6 repre-
sents the parameters of the network. With this approximation
of the gradient, we perform gradient ascent to maximize the
objective

0+ 0+ aVeJ(0), (17)

where « is the learning rate. In this problem, our objective is
to pass through the gate and to do so quickly. Thus, we use
the reward function,

+5, ifs(t) € T
=5, if s(t) € A
—At, otherwise ,

r(s(t) = (18)

so that a reward of +5.0 is obtained for passing through the
gate and a reward of —5.0 is charged for hitting the gate at
the terminal states, while a reward of —A¢ will be applied at
every state in the trajectory so that the objective will minimize
the time length of the trajectories.

The policy resulting from the supervised learning stage is
able to bring the quadrotor through the gate, however, our goal
is to see if the number of gates that the quadrotor could enter
would increase after training with reinforcement learning, and

if the time length of the trajectories could simultaneously be
decreased. In our training process, we execute ten roll-outs in
simulation for each batch. The control inputs used are drawn
from a Gaussian distribution parameterized by the mean and
variance output of the model. Each of these trajectories are
generated by using a random initial state within a sub-region
of the full state space. This specified region of the state space
then grows when all ten trajectories in a batch reach the target
set (or once a maximum number of iterations is reached), and
continues to grow until the state space with bounds defined by
the HJB problem is explored. A visualization of this procedure
is shown in Fig. [

V. Low LEVEL CONTROL

The HIB-RL policy gives a desired 3D thrust control input
for each discrete state in the state space. To align the body-z
axis of the quadrotor with the desired thrust vector, a lower
level controller must be used to obtain a desired angular rate
of the quadrotor. In this work, proportional control will be
used on the rotation error between the desired orientation and
the current orientation. We express the attitude tracking error
er as used in [18],

1
er = 5(RgR —R™TRy)Y,

(19)
where (-)v is the vee operator, Ry is the desired thrust vector
orientation and R is the current orientation. The desired body
angular rates control input is then wy; = krer where kg is a
proportional constant. In the AirSim simulation environment,
wq along with a normalized thrust magnitude are used as
inputs to an AirSim controller API. In our 12D quadrotor
simulation, we implement another lower level proportional
controller to achieve the desired angular rates using the current
body rates of the quadrotor.

VI. SIMULATION EXPERIMENTS

In this section, we compare the performance of our policy to
a model-based planning method that we refer to as Move-On-
Spline (MOS), an HIB policy (HJB), a policy learned through
reinforcement learning without any pretraining or priors (RL),
and the network resulting from the supervised learning step
described in this work (SL). The model-based planning method
MOS is based on [29] and is made available in the AirSim
environment as an API [24]. The HJB policy used in these
tests will use a k-nearest neighbor interpolation between each
discretized state point to find the appropriate thrust vector con-
trol input. The policy learned through reinforcement learning
is trained using a the standard policy gradient method used in
our work.

A. 12D Quadrotor Simulation

To test our method, we execute each policy from a set of
initial states in the region in front of a single gate. 1000
of these trajectories of each policy were run, from a set
of 1000 initial states. The thrust control inputs that were
used in all simulation tests were the mean output of the
model. Additionally, we consider how our approach varies

20 L
25

‘15
5.0 4035 30 y

s
5.0 4035 30

2.
25
35 30 y

Lo

20 -
2524 s
=20 40

Fig. 6. Visualization of reinforcement learning training procedure. Region from which trajectories are initialized during training grows are trajectories become
more successful. Blue cube marks the region within the state space from which trajectories are randomly initialized. Lines mark roll-outs of the quadrotor

dynamics.

— H|B-RL(az=1e-35)
HJB-RL (@ =5e—5)

2.0 .
: — RL
15 — HB
10
0.5
Z 00
-0.5
-1.0
-15
2.0 ==
0.0 05 10 15 2.0 2.5 30 35 40
y

Fig. 7.

—— HB-RL(a=1e-5)
HJB-RL (a = 5e — 5)
sL
RL
HB
—1.0
—0.5
0.0 %
05
1.0
15
2.0

'M(‘).O 05 1.0 15 2).,() 2.5 3.0 35 4.0

Trajectories of different policies from same initial state. Comparing HIB-RL, Reinforcement Learning Only (RL), Supervised Learning (SL), HIB

Only. The HIB-RL policy is able to get through the gate more quickly than the other policies. The HIB policy takes a safer path, while the RL policy is
unable to make it through the gate. (Left) Side view of trajectories of different policies. (Right) Top view of different policies.

TABLE I
COMPARISON OF WINS BETWEEN HJB-RL AND OTHER METHODS IN 12D QUADROTOR SIMULATION

HIB-RL (oo = 5e — 5) vs. HIB-RL Faster/Success

Other Method Faster/Success

Avg. Time Difference to Gate (s) Neither Finishes

Supervised Learning 62.48% 10.11% 0.0438 38.7%
HIB 56.03% 29.73% 0.2808 36.1%
Reinforcement Learning Only 80.91% 7.67% 0.0443 38.7%

TABLE I
PERCENTAGE OF INITIAL STATES FROM WHICH EACH POLICY PASSES
THROUGH A SINGLE GATE IN 12D QUADROTOR SIMULATION

Method Percentage of Gates Passed
HIJB-RL (o = 1le — 5) 61.0%
HIB-RL (o = 5e — 5) 61.2%
Supervised Learning 61.2%
HIB 63.1%
Reinforcement Learning Only 12.4%

with different learning rates «. Fig. [/| shows a sample set
of trajectories of each policy from one initial state. While
the trajectories are not constrained to go through the center
point of the gate, the resulting HIB-RL policy does produce
trajectories that favor entering the gate closer to the center,
likely as a result of training with a stochastic policy. Table
[outlines the performance of the HIB-RL method in racing
against other methods when the trajectories started from the
same initial state. The percentages listed in the second column
mark the frequency with which our method with a learning rate

of a = 5e — 5 either entered the gate before the other method,
or when our method entered the gate while the other did not,
normalized by the number of races for which at least one
policy did enter the target set. The third column indicates the
same metric for the method that is listed in the first column.
These columns do not sum to 100% because there were cases
in which the methods tied. The fourth column lists the average
time difference between the methods when the HIB-RL policy
was faster, and the final column lists the number of trials from
which neither of the methods are able to pass through the gate.

From the same set of 1000 initial states, we also compared
the percentage of trials for which each method was able to
pass through a single gate, shown in Table [} From this data,
we see that there is a slight reduction in the number of gates
that the HIB-RL policy is able to pass through with a learning
rate of @ = le —5 compared to the supervised learning model
and the HJB policy. The initial states from which each of
these trajectories were executed were chosen randomly from
velocity ranges —5m/s < v, < 5m/s, —15m/s < v, <
5m/s,—5m/s < v, < bm/s. These high velocity initial states

TABLE III
PERFORMANCE OF PLANNING METHODS IN AIRSIM SOCCER FIELD ENVIRONMENT

Avg. and Standard Deviation

Avg. and Standard Deviation ~ Avg. and Standard Deviation

Method Races Finished Gates per Race Race time (sec) Collision Counts
HIB-RL (o = 5e — 5) 8 11.38 £0.52 30.36 £2.67 1.10 £1.79
HIB-RL (o = le — 5) 9 11.89 £+0.33 34.89 £8.76 2.56 £3.50
Supervised Learning 10 11.70 £0.48 36.14 +£13.32 2.90 £6.10
Move-On-Spline API 10 12.0 47.88 £7.39 3.60 £1.43
HIB 8 12.0 68.10 £26.74 9.38 £7.21
Reinforcement Learning Only 0 - - -

are likely the source of the lower percentages shown in Table
[However, as shown in Table [, the frequency with which
the HIB-RL policy is able to pass through the gate faster than
the other policies is higher.

B. Full AirSim Drone Race

In order to test the performance of this policy on a full race
track, the same policies were tested on tracks with multiple
gates along with a planning API called Move-On-Spline that is
available in the AirSim environment [24]], which is described
to use [29] as the trajectory planning backend. Ten races of
each method were conducted and the average performance
of each method compared in Table The first performance
metric we compare in this table is the number of races finished
by each method out of ten. In some cases, the quadrotor would
be unable to recover from collisions. We also compare the
average number of gates the quadrotor is able to pass through
out of the 12 on the race track. The collision counts only
consider the number of collisions made with the gates, and do
not consider collisions with other objects in the environment.

Fig. 8. Top view of Soccer Field Track in AirSim environment, where the
HJB-RL policy is tested in simulation. At each oncoming gate, the HIB-RL
policy is applied using the relative state of the quadrotor in a gate centered
frame as input.

In the HJB-RL, HJB-Only, RL-Only, and the supervised
learning methods, the policy is only defined in a specified
domain ahead of each oncoming gate. In the regions between
each gate, the controller used here switches to a position
controller that holds the same speed of the quadrotor directed
toward the next gate. Additionally, each of these methods
are given the position of each next gate, only after it passes
through the previous gate. For this reason, we test the Move-
On-Spline API in the same way, so that the quadrotor only
has access to the pose of the next oncoming gate. The results
are shown in Table [l

From the results of the full track races and the single gate
trajectories, we can see that the HIB-RL method seems to
prioritize increasing speed over consistently entering gates.
While the average race times for the HIB-RL policy that was
trained with a learning rate of 5e — 5 was lower, the policy
does so by missing a gate more frequently than the other
methods when racing on a full track. This is likely attributed to
applying reinforcement learning on a single gate as opposed to
a sequence of gates. The drone will speed through each gate
as fast as possible without considering how this speed will
affect its ability to enter the following gate. In future work we
will address this issue by training on a sequence of gates.

In Fig. 0] we show the trajectories for the best races of
each method, and also give the race statistics of each. In
all trajectories shown, all 12 gates are passed through. In
some trajectories, the drone makes contact with the ground
and recovers, however these collisions are not added to the
collision counts as the policies do not account for obstacles
other than the gate frames. The HJB-RL policy plotted in
Fig. 9| was trained using a learning rate of o = le — 5.

—— HJB-RL: time = 28.991, collisions = 0

——— SL: time = 30.127, collisions = 0

—— HJB: time = 39.670, collisions = 3
MOS: time = 47.100, collisions = 2

)
L\ D[
e, A o

10

-20 -10 0 20 30

Fig. 9. Top view of trajectories with lowest collision count and time for each
method. HIB-RL has the fastest best race with no gate collisions. The model-
based methods HJB and MOS have longer race times with gate collisions.

C. Generalization to Different Gate Sizes

In this section, we also consider the generalizability of this
method to race track cases where the gates along the track
vary in size. Assuming that the gates are rectangular, and only
their height and width change, we can scale the z, z, v,, and
v, dimensions of the state space according to the gate size
and apply the corresponding control input returned from the

model to the system. In Fig.[I0] we show a trajectory resulting
from using this scaling method with the HIB-RL policy that
was trained using a learning rate of @ = le — 5.

L
0.0 25 50 75 1?(012.515.017.5200

Fig. 10. Trajectory passing through gates of different sizes. (Left) Top view of
trajectory for multiple gates of different sizes. (Right) Trajectory for multiple
gates of different sizes.

VII. CONCLUSION

In this paper, we proposed a method of obtaining a policy
that could leverage information from a model-based controller
and the adaptability of a reinforcement learning policy. We
show through simulation that this method is able to outrace
a model-based HJB policy, a supervised learning policy, a
model-free RL policy and a trajectory planning policy in
a race track environment with 12 gates. We also note a
reduction in the number of states from which the gate is able to
successfully enter the gate, suggesting a priotization of speed
over entering a gate. In future work we consider applying
reinforcement learning to a sequence of gates so that the policy
can anticipate how passing through gates affects the ability
to pass through the following gates. Additionally, we plan to
apply other variations of reinforcement learning methods to
this framework, and extend the method to be applied to local
coordinate frames of dynamic obstacles or to opponents in a
race. Finally, this framework could be extended to cases where
a perception module must be used to find the next gate along
the track.

ACKNOWLEDGMENTS

Toyota Research Institute (“TRI”) provided funds to assist
the authors with their research but this article solely reflects
the opinions and conclusions of its authors and not TRI
or any other Toyota entity. This work was also supported
in part by the Stanford Ford Alliance, by DARPA grant
HRO001120C0107, and by ONR grant N00014-18-1-2830.

REFERENCES

[1] Anurag Ajay, Jiajun Wu, Nima Fazeli, Maria Bauza,
Leslie P. Kaelbling, Joshua B. Tenenbaum, and Al-
berto Rodriguez. Augmenting physical simulators with
stochastic neural networks: Case study of planar pushing
and bouncing. In 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages
3066-3073, 2018. doi: 10.1109/IROS.2018.8593995.

[2] Anil Aswani, Humberto Gonzalez, S Shankar Sastry, and
Claire Tomlin. Provably safe and robust learning-based
model predictive control. Automatica, 49(5):1216-1226,
2013.

[3] Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J.
Tomlin. Hamilton-jacobi reachability: A brief overview
and recent advances. In 2017 IEEE 56th Annual Confer-
ence on Decision and Control (CDC), pages 2242-2253,
2017. doi: 10.1109/CDC.2017.8263977.

[4] Jonathan Baxter and Peter L Bartlett. Infinite-horizon
policy-gradient estimation. Journal of Artificial Intelli-
gence Research, 15:319-350, 2001.

[5] Marco A. Carmona, Alexey A. Munishkin, Megan
Boivin, and Dejan Milutinovi¢. Stochastic optimal ap-
proach to the steering of an autonomous vehicle through
a sequence of roadways. In 2019 American Control
Conference (ACC), pages 3279-3284, 2019. doi: 10.
23919/ACC.2019.8814762.

[6] Jaime F. Fisac, Neil F. Lugovoy, Vicen¢ Rubies-Royo,
Shromona Ghosh, and Claire J. Tomlin. Bridging
hamilton-jacobi safety analysis and reinforcement learn-
ing. In 2019 International Conference on Robotics
and Automation (ICRA), pages 8550-8556, 2019. doi:
10.1109/ICRA.2019.8794107.

[7] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic
actor. In International Conference on Machine Learning,
pages 1861-1870, 2018.

[8] Sylvia L. Herbert, Mo Chen, SooJean Han, Somil Bansal,
Jaime F. Fisac, and Claire J. Tomlin. Fastrack: A modular
framework for fast and guaranteed safe motion planning.
In 2017 IEEE 56th Annual Conference on Decision and
Control (CDC), pages 1517-1522, 2017. doi: 10.1109/
CDC.2017.8263867.

[9] Peter J Huber. Robust estimation of a location parameter.

In Breakthroughs in statistics, pages 492-518. Springer,

1992.

Jemin Hwangbo, Inkyu Sa, Roland Siegwart, and Marco

Hutter. Control of a quadrotor with reinforcement learn-

ing. IEEE Robotics and Automation Letters, 2(4):2096—

2103, 2017. doi: 10.1109/LRA.2017.2720851.

Frank Jiang, Glen Chou, Mo Chen, and Claire J Tomlin.

Using neural networks to compute approximate and guar-

anteed feasible hamilton-jacobi-bellman pde solutions.

arXiv preprint arXiv:1611.03158, 2016.

Sham M Kakade. A natural policy gradient. In Advances

in neural information processing systems, pages 1531-

1538, 2002.

Elia Kaufmann, Antonio Loquercio, Rene Ranftl, Alexey

Dosovitskiy, Vladlen Koltun, and Davide Scaramuzza.

Deep drone racing: Learning agile flight in dynamic

environments. In Conference on Robot Learning, pages

133-145. PMLR, 2018.

Elia Kaufmann, Mathias Gehrig, Philipp Foehn, René

Ranftl, Alexey Dosovitskiy, Vladlen Koltun, and Davide

(10]

(11]

[12]

(13]

(14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Scaramuzza. Beauty and the beast: Optimal methods
meet learning for drone racing. In 2019 International
Conference on Robotics and Automation (ICRA), pages
690-696, 2019. doi: 10.1109/ICRA.2019.8793631.

H Jin Kim, David H Shim, and Shankar Sastry. Nonlinear
model predictive tracking control for rotorcraft-based
unmanned aerial vehicles. In Proceedings of the 2002
American control conference (IEEE Cat. No. CH37301),
volume 5, pages 3576-3581. IEEE, 2002.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Nathan O. Lambert, Daniel S. Drew, Joseph Yaconelli,
Sergey Levine, Roberto Calandra, and Kristofer S. J.
Pister. Low-level control of a quadrotor with deep
model-based reinforcement learning. [EEE Robotics
and Automation Letters, 4(4):4224-4230, 2019. doi:
10.1109/LRA.2019.2930489.

Taeyoung Lee, Melvin Leok, and N. Harris McClam-
roch. Geometric tracking control of a quadrotor uav
on se(3). In 49th IEEE Conference on Decision and
Control (CDC), pages 5420-5425, 2010. doi: 10.1109/
CDC.2010.5717652.

Karen Leung, Edward Schmerling, Mengxuan Zhang,
Mo Chen, John Talbot, J Christian Gerdes, and Marco
Pavone. On infusing reachability-based safety assurance
within planning frameworks for human-robot vehicle
interactions. The International Journal of Robotics Re-
search, 39(10-11):1326-1345, 2020.

Weiwei Li and Emanuel Todorov. Iterative linear
quadratic regulator design for nonlinear biological move-
ment systems. In ICINCO (1), pages 222-229, 2004.
Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforce-
ment learning, 2019.

Sergei Lupashin, Angela Schoéllig, Michael Sherback,
and Raffaello D’ Andrea. A simple learning strategy for
high-speed quadrocopter multi-flips. In 2010 IEEE Inter-
national Conference on Robotics and Automation, pages
1642-1648, 2010. doi: 10.1109/ROBOT.2010.5509452.
Xubo Lyu and Mo Chen. Ttr-based reward for reinforce-
ment learning with implicit model priors. arXiv preprint
arXiv:1903.09762, 2019.

Ratnesh Madaan, Nicholas Gyde, Sai Vemprala, Matthew
Brown, Keiko Nagami, Tim Taubner, Eric Cristofalo,
Davide Scaramuzza, Mac Schwager, and Ashish Kapoor.
Airsim drone racing lab. In NeurIPS 2019 Competition
and Demonstration Track, pages 177-191. PMLR, 2020.
Daniel Mellinger and Vijay Kumar. Minimum snap
trajectory generation and control for quadrotors. In
2011 IEEE International Conference on Robotics and
Automation, pages 2520-2525, 2011. doi: 10.1109/
ICRA.2011.5980409.

Daniel Mellinger, Nathan Michael, and Vijay Kumar.
Trajectory generation and control for precise aggressive

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

maneuvers with quadrotors. The International Jour-
nal of Robotics Research, 31(5):664-674, 2012. doi:
10.1177/0278364911434236.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep rein-
forcement learning. nature, 518(7540):529-533, 2015.
Jan Peters and Stefan Schaal. Reinforcement learning of
motor skills with policy gradients. Neural networks, 21
(4):682-697, 2008.

Charles Richter, Adam Bry, and Nicholas Roy. Polyno-
mial trajectory planning for aggressive quadrotor flight in
dense indoor environments. In Robotics Research, pages
649-666. Springer, 2016.

John Schulman, Sergey Levine, Pieter Abbeel, Michael
Jordan, and Philipp Moritz. Trust region policy optimiza-
tion. In International Conference on Machine Learning,
pages 1889-1897, 2015.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris,
Daan Wierstra, and Martin Riedmiller. Deterministic
policy gradient algorithms. In International Conference
on Machine Learning, pages 387-395. PMLR, 2014.
Riccardo Spica, Eric Cristofalo, Zijian Wang, Eduardo
Montijano, and Mac Schwager. A real-time game the-
oretic planner for autonomous two-player drone racing.
IEEE Transactions on Robotics, 36(5):1389-1403, 2020.
doi: 10.1109/TR0O.2020.2994881.

Richard S Sutton, David A McAllester, Satinder P Singh,
and Yishay Mansour. Policy gradient methods for rein-
forcement learning with function approximation. In NIPs,
volume 99, pages 1057-1063. Citeseer, 1999.

Yuanda Wang, Jia Sun, Haibo He, and Changyin Sun.
Deterministic policy gradient with integral compensator
for robust quadrotor control. [EEE Transactions on
Systems, Man, and Cybernetics: Systems, 50(10):3713—
3725, 2020. doi: 10.1109/TSMC.2018.2884725.

Zijian Wang, Tim Taubner, and Mac Schwager. Multi-
agent sensitivity enhanced iterative best response: A
real-time game theoretic planner for drone racing in 3d
environments. Robotics and Autonomous Systems, 125:
103410, 2020.

Andy Zeng, Shuran Song, Johnny Lee, Alberto Ro-
driguez, and Thomas Funkhouser. Tossingbot: Learning
to throw arbitrary objects with residual physics. IEEE
Transactions on Robotics, 36(4):1307-1319, 2020. doi:
10.1109/TR0O.2020.2988642.

Tianhao Zhang, Gregory Kahn, Sergey Levine, and Pieter
Abbeel. Learning deep control policies for autonomous
aerial vehicles with mpc-guided policy search. In 2016
IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 528-535, 2016. doi: 10.1109/ICRA.
2016.7487175.

	Introduction
	Related Work
	Problem Setup
	HJB-RL
	Hamilton-Jacobi-Bellman Equation
	Supervised Learning
	Reinforcement Learning

	Low Level Control
	Simulation Experiments
	12D Quadrotor Simulation
	Full AirSim Drone Race
	Generalization to Different Gate Sizes

	Conclusion

