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Abstract—Deep learning has had a far reaching impact in
robotics. Specifically, deep reinforcement learning algorithms
have been highly effective in synthesizing neural-network con-
trollers for a wide range of tasks. However, despite this empirical
success, these controllers still lack theoretical guarantees on their
performance, such as Lyapunov stability (i.e., all trajectories of
the closed-loop system are guaranteed to converge to a goal state
under the control policy). This is in stark contrast to traditional
model-based controller design, where principled approaches (like
LQR) can synthesize stable controllers with provable guarantees.
To address this gap, we propose a generic method to synthesize
a Lyapunov-stable neural-network controller, together with a
neural-network Lyapunov function to simultaneously certify
its stability. Our approach formulates the Lyapunov condition
verification as a mixed-integer linear program (MIP). Our MIP
verifier either certifies the Lyapunov condition, or generates
counter examples that can help improve the candidate controller
and the Lyapunov function. We also present an optimization
program to compute an inner approximation of the region of
attraction for the closed-loop system. We apply our approach
to robots including an inverted pendulum, a 2D and a 3D
quadrotor, and showcase that our neural-network controller
outperforms a baseline LQR controller. The code is open sourced
at https://github.com/StanfordASL/neural-network-lyapunov,

I. INTRODUCTION

The last few years have seen sweeping popularity of apply-
ing neural networks to a wide range of robotics problems [48]],
such as perception [30, 140, [19], reasoning [[16] and planning
[25]. In particular, researchers have had great success train-
ing control policies with neural networks on different robot
platforms [32, |50, 23l 27]]. Typically these control policies
are obtained through reinforcement learning (RL) algorithms
[49, 44] 122]]. Although immensely successful, these neural-
network controllers still generally lack theoretical guarantees
on their performance, which could hinder their adoption in
many safety-critical applications.

A crucial guarantee currently missing for neural-network
controllers is the stability of the closed-loop system, especially
Lyapunov stability. A system is regionally stable in the sense
of Lyapunov if starting from any states within a region, the
system eventually converges to an equilibrium. This region is
called the region of attraction (ROA) [46]. Lyapunov stability
provides a strong guarantee on the asymptotic behavior of
the system for any state within the region of attraction. It is
well known that a system is Lyapunov stable if and only if
there exists a Lyapunov function [46] that is strictly positive
definite and strictly decreasing everywhere except at the goal
equilibrium state. Therefore, our goal is to synthesize a pair:
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Fig. 1: (left) Snapshots of stabilizing a 3D quadrotor with
our neural-network controller to the hovering position at the
origin (red snapshot) from different initial states. The green
curves are the paths of the quadrotor center. (right) value of
the neural-network Lyapunov functions along the simulated
trajectories. The Lyapunov function has positive values, and
decreases along the trajectories.

a neural-network controller to stabilize the system, and a
Lyapunov function to certify its stability.

In the absence of neural networks in the loop, a signif-
icant body of work from the control community provides
tools to synthesize Lyapunov-stable controllers [46) |9]. For
example, for a linear dynamical system, one can synthesize
a linear LQR controller to achieve Lyapunov stability (with
the quadratic Lyapunov function solved through the Riccati
equation). For a control-affine system with polynomial dy-
namics, Javis-Wloszek et al. [26] and Majumdar et al. [35]]
have demonstrated that a Lyapunov-stable controller together
with a Lyapunov function, both polynomial functions of the
state, can be obtained by solving a sum-of-squares (SOS)
program. Recently, for more complicated systems, researchers
have started to represent Lyapunov functions (but not their
associated controllers) using neural networks. For example,
Chang et al. synthesized linear controllers and neural network
Lyapunov functions for simple nonlinear systems [11]. In a
similar spirit, there is growing interest to approximate the
system dynamics with neural networks, such as for racing cars
[S6l], actuators with friction/stiction [24], perceptual measure-
ment like keypoints [36], system with contacts [41], and soft
robots [21], where an accurate Lagrangian dynamics model
is hard to obtain, while the neural-network dynamics model
can be extracted from rich measurement data. Hence we are
interested in systems whose dynamics are given as a neural
network.

Unlike previous work which is restricted to linear [9, [11]
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Fig. 2: (Left) The forward systewhich contains a neural
network) is given, and we aim at finding the controller
and a Lyapunov function to prove Lyapunov stability of the
closed-loop system. Both the controller and Lyapunov function
contain neural networks. (right) Visualization of a Lyapunov
function for a 2-dimensional system. The Lyapunov function is
usually a bowl-shaped function that is strictly positive except
at the goal state.

or polynomial controllers [26 I35]], our paper provides a novel
approach to synthesize a stable neural-network controller,
together with a neural-network Lyapunov function, for a given
dynamical system whose forward dynamics is approximated
by another neural network. The overall picture together with
a Lyapunov function is visualized in Fig. 2}

In order to synthesize neural-network controllers and Lya-
punov functions, one has to first be able to verify that the
neural-network functions satisfy the Lyapunov condition for
all states within a region. There are several techniques to
verify certain properties of neural network outputs for all
inputs within a range. These techniques can be categorized
by whether the verification is exact, e.g., using Satisfiability
Modulo Theories (SMT) solvers [29, 11} [1] or mixed-integer
programs (MIP) solvers [10} 52} [14} [12]], versus inexact veri-
fication by solving a relaxed convex problem [7} [17, |57, 45].
Another important distinction among these techniques is the
activation functions used in the neural networks. For example,
Abate et al. [1]] and Chang et al. [11] learn neural-network Lya-
punov functions with quadratic and tanh activation functions
respectively. On the other hand, the piecewise linear nature of
(leaky) ReL.U activation implies that the input and output of a
(leaky) ReLU network satisfy mixed-integer linear constraints,
and hence network properties can be exactly verified by MIP
solvers [52, [14]. In this work, due to its widespread use,
we choose the (leaky) ReLU unit for all neural networks.
This enables us to perform exact verification of the Lyapunov
condition without relaxation for safety-critical robot missions.

The verifiers (both SMT and MIP solvers) can either
definitively certify that a given candidate function satisfies
the Lyapunov condition everywhere in the region, or generate
counter examples violating the Lyapunov condition. In this
work, we solve MIPs to find the most adversarial counter

IThe quadrotor picture is taken from [g]).

examples, namely the states with the maximal violation of the
Lyapunov condition. Then, in order to improve the satisfaction
of the Lyapunov conditions, we propose two approaches to
jointly train the controller and the Lyapunov function. The first
approach is a standard procedure in counter-example guided
training, where we add the counter examples to the training
set and minimize a surrogate loss function of the Lyapunov
condition violation on this training set [1} [11} |42]]. The second
approach is inspired by the bi-level optimization community
[6, 131} [14], where we directly minimize the maximal violation
as a min-max problem through gradient descent.

Our contributions include: 1) we synthesize a Lyapunov-
stable neural-network controller together with a neural-
network Lyapunov function. To the best of our knowledge,
this is the first work capable of doing this. 2) We compute an
inner approximation of the region of attraction for the closed-
loop system. 3) We present two approaches to improve the
networks based on the counter examples found by the MIP
verifier. 4) We demonstrate that our approach can successfully
synthesize Lyapunov-stable neural-network controllers for sys-
tems including inverted pendulums, 2D and 3D quadrotors,
and that they outperform a baseline LQR controller.

II. PROBLEM STATEMENT
We consider a discrete-time system whose forward dynam-

ics is

(1a)
(1b)

Tpp1 = f(@e,ur) = Payn(Tt, ut) — Gagn (2™, u™) + 2~

Unin < U < Umax

where z; € R u; € R™, upni, and umax are the lower/upper
input limits. ¢gy, is a feedforward fully connected neural
network with leaky ReLU activation functions x* fu*
are the state/control at the goal equilibrium. By definition
the dynamics equation (Ta) guarantees that at the equilibrium
state/control z; = x*, uy = u”, the next state x4 ; remains the
equilibrium state x;,1 = z*. Due to the universal approxima-
tion theorem [33l], we can approximate an arbitrary smooth
dynamical system written as (Ta) with a neural network. Our
goal is to find a control policy u; = m(x¢) and a Lyapunov
function V'(z;) : R™» — R, such that the following Lyapunov
conditions are satisfied:

V(zy) > 0Vay € S,z # 2* (2a)
V(I’t+1) — V(Z’t) S *EQV(I’t) VI’t S S, Tt 7£ SC* (Zb)
Vi )=0 (2

where S is a compact sub-level set S = {z;|V (z;) < p}, and
ez > 0 is a given positive scalar. The Lyapunov conditions
in (2) guarantee that starting from any state inside S, the
state converges exponentially to the equilibrium state x*,
and S is a region of attraction of the closed-loop system.

2Since ReLU can be regarded as a special case of leaky ReLU, we present
our work with leaky ReLU for generality.

30ur approach can also handle other architectures such as convolution. For
simplicity of presentation we don’t discuss them in this paper.



a(y)

Y
Fig. 3: A leaky ReLU activation function.

In addition to the control policy and the Lyapunov func-
tion, we will find an inner approximation of the region of
attraction. Note that condition Zb) is a constraint on the
Lyapunov function V'(-) as well as the control policy (-),
since V(z¢y1) = V(f(a¢, w(x¢))) depends on both the control
policy to compute x;1; together with the Lyapunov function
V().

III. BACKGROUND ON RELU AND MIP

In this section we give a brief overview of the mixed-integer
linear formulation which encodes the input/output relationship
of a neural network with leaky ReLLU activation. This MIP
formulation arises from the network output being a piecewise-
affine function of the input, hence intuitively one can use
linear constraints for each affine piece, and binary variables for
the activated piece. Previously researchers have solved mixed-
integer programs (MIP) to verify certain properties of the
feedforward neural network in machine learning applications
such as verifying image classifiers [10, [52].

For a general fully-connected neural network, the in-
put/output relationship in each layer is

Z; :J(Wizi,1+bi)7i:1,...,’[’L—1

Zn =Whnzn_1+ bnsz =,

(3a)
(3b)

where W, b; are the weights/biases of the i’th layer. The
activation function o(-) is the leaky ReLU function shown
in FigP| as a piecewise linear function o(y) = max(y, cy)
where 0 < ¢ < 1 is a given scalar. If we suppose that for one
leaky ReLLU neuron, the input y € R is bounded in the range
o < Y < yup (Where 31, < 0 and y,p > 0), then we can use
the big-M technique to write out the input/output relationship
of a leaky ReLU unit w = o(y) as the following mixed-integer
linear constraints

w>y, w>cy (4a)
w<ey—(c—Dywh, w<y—(c—Dyo(B—1) (4b)
B€{0,1}, (4o

where the binary variable ( is active when y > 0. Since the
only nonlinearity in the neural network (3)) is the leaky ReLU
unit o(-), by replacing it with constraints (@), the relationship
between the network output z,, and input z is fully captured
by mixed-integer linear constraints.

We expect bounded input to the neural networks since we
care about states within a neighbourhood of the equilibrium
so as to prove regional Lyapunov stability, and the system
input w; is restricted within the input limits (Eq. (Ib)). With a
bounded neural network input, the bound of each ReLU neuron

input can be computed by either Interval Arithmetic [57], by
solving a linear programming (LP) problem [52], or by solving
a mixed-integer linear programming (MILP) problem [13} [18].

After formulating neural network verification as a mixed-
integer program (MIP), we can efficiently solve MIPs to global
optimality with off-the-shelf solvers, such as Gurobi [39] and
CBC [20] via branch-and-cut method.

IV. APPROACH

In this section we present our approach to finding a pair
of neural networks as controller and the Lyapunov function.
We will first use the technique described in the previous
section [T, and demonstrate that one can verify the Lyapunov
condition (2)) through solving MIPs. Then we will present two
approaches to reduce the Lyapunov condition violation using
the MIP results. Finally we explain how to compute an inner-
approximation of the region of attraction.

A. Verify Lyapunov condition via solving MIPs

We represent the Lyapunov function with a neural network
¢y : R"™ — R as

V() = ov(ze) — v (z") + Rz — 7)1, S)

where R is a matrix with full column rank. |R(z;—x*)|; is the
I-norm of the vector R(xz; —x*). Eq. (B) guarantees V (z*) =
0, hence condition is trivially satisfied. Notice that even
without the term |R(z; — x*)|; in (@), the Lyapunov function
would still satisfy V(z*) = 0, but adding this 1-norm term
assists V(-) in satisfying the Lyapunov condition V'(x¢) >
0. As visualized in Fig 4l ¢y (z1) — v (z*) is a piecewise-
affine function of x; passing through the point (z*,0). Most
likely (z*,0) is in the interior of one of the linear pieces,
instead of on the boundary of a piece; hence locally around
x*, the term ¢y () — Py (2*) is a linear function of x;, which
will become negative away from x*, violating the positivity
condition V' (x;) > 0 ((2a)). To remedy this, we add the term
|R(z+ — x*)|1 to the Lyapunov function. Due to R being full-
rank, this 1-norm is strictly positive everywhere except at z*.
With sufficiently large R, we guarantee that at least locally
around z* the Lyapunov function is positive. Notice that V' (x;)
is a piecewise-affine function of x;.

Our approach will entail searching for both the neural
network ¢y and the full column-rank matrix R in (§). To
guarantee R being full column-rank, we parameterize it as

R=U (Z + diag(ri,....r2 ) VT, (6)

s Png

where U,V are given orthonormal matrices, ¥ is a given
diagonal matrix with strictly positive diagonal entries, and
scalars r1,...,7ry,, are free variables. The parameterization
(6) guarantees R being full column-rank since the minimal
singular value of R is strictly positive.

We represent the control policy using a neural network ¢, :
R™ — R™ as

Uy = W($t) = Clamp (d)ﬂ’(mt) - ¢ﬂ(x*) + U*auminaumax) 5

(7
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Fig. 4: The term ¢y (z;) — ¢y (z*) is a piecewise-affine
function that passes through (z, V(z¢)) = (z*,0). Most likely
z* is within the interior of a linear piece, but not at the
boundary between pieces. This linear piece will go negative in
the neighbourhood of z*. By adding the 1-norm |R(x; —x*)|;
(red lines), the Lyapunov function (blue lines) is at least locally

positive around x*.

where clamp(-) clamps the value ¢.(x¢) — ¢ (2*) + u*
elementwisely within the input limits [wmin, Umax], Damely

up if o > up
aiflo<a<u . ®)
loif a <lo

clamp(a, lo,up) =

The control policy is a piecewise-affine function of the
state x;. Notice that (/) guarantees that at the equilibrium state
x; = x*, the control action is u; = u*.

It is worth noting that our approach is only applicable to sys-
tems that can be stabilized by regular (e.g., locally Lipschitz
bounded) controllers. Some dynamical systems, for example
a unicycle, require non-regular controllers for stabilization,
where our approach would fail. The readers can refer to [47]]
for more background on regular controllers.

The Lyapunov condition (@), in particular, (2d), is a strict
inequality. To verify this through MIP which only handles non-
strict inequalities constraints > and <, we change condition
to the following condition with >

V(ze) > €1|R(zy — 2™)1 Vo € S, 9)

where 0 < ¢; < 1 is a given positive scalar. Since R is full
column-rank, the right-hand side is O only when z; = x*.
Hence the non-strict inequality constraint (9) is a sufficient
condition for the strict inequality constraint (Za). In Appendix
we prove that it is also a necessary condition.

In order to verify the Lyapunov condition (2] for a candidate
Lyapunov function and a controller, we consider verifying
the condition (9) and for a given bounded polytope B
around the equilibrium state. The verifier solves the following

optimization problems
max e1|R(xy — ™)1 — V(zy) (10a)
LS

max V(zry1) — Vixg) + eV (zy), (10b)
Tt

where the objectives are the violation of condition (9) and
(2D} respectively. If the optimal values of both problems are 0
(attained at xy = x*), then we certify the Lyapunov condition
(2). The objective in (I0a)) is a piecewise-affine function of the
variable x; since both V' (x;) and |R(z; —x*)|, are piecewise-
affine. Likewise in optimization problem (IODB), since the
control policy is a piecewise-affine functions of x;, and
the forward dynamics (Td) is a piecewise-affine function of
x¢ and uy, the next state x;y1 = f(a¢, w(xy)), its Lyapunov
value V' (x,41) and eventually the objective function in
are all piecewise-affine functions of x;. It is well known in the
optimization community that one can maximize a piecewise-
affine function within a bounded domain (B in this case)
through solving an MIP [55].. In section [[I]| we have shown the
MIP formulation on neural networks with leaky ReL.U units;
in Appendix we present the MIP formulation for the
I-norm in |R(z; —x*)|; and the clamp function in the control
policy.

By solving the mixed-integer programs in (I0), we either
verify that the candidate controller is Lyapunov-stable with the
candidate Lyapunov function V' (z;) as a stability certificate;
or we generate counter examples of x;, where the objective
values are positive, hence falsify the candidates. By maximiz-
ing the Lyapunov condition violation in the MIP (10), we find
not only a counter example if one exists, but the worst counter
example with the largest violation. Moreover, since the MIP
solver traverses a binary tree during branch-and-cut, where
each node of the tree might find a counter example, the solver
finds a list of counter examples during the solving process. In
the next subsection, we use both the worst counter example
and the list of all counter examples to reduce the Lyapunov
violation.

B. Trainer

After the MIP verifier generates counter examples violating
Lyapunov conditions, to reduce the violation, we use these
counter examples to improve the candidate control policy and
the candidate Lyapunov function. We present two iterative
approaches. The first one minimizes a surrogate function on
a training set, and the counter examples are appended to the
training set in each iteration. This technique is widely used
in the counter-example guided training [[11} 1} [12, 28]]. The
second approach minimizes the maximal Lyapunov condition
violation directly by solving a min-max problem through
gradient descent. In both approaches, we denote the parameters
we search for as 6, including

o The weights/biases in the controller network ¢ ;
« The weights/biases in the Lyapunov network ¢y ;

e T'1,...,Ty, in the full column-rank matrix R (Eq. @).

namely we optimize both the control policy and the Lyapunov
function simultaneously, so as to satisfy the Lyapunov condi-
tion on the closed-loop system.

1) Approach 1, growing training set with counter examples:
A necessary condition for satisfying the Lyapunov condition
for any state in B, is that the Lyapunov condition holds for
many sampled states within 3. Hence we could reduce a
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surrogate loss function on a training set X’ containing sampled
states. The training set X grows after each MIP solve by
appending the counter examples generated from the MIP solve.
Since the MIP and the MIP (IOD) generate different
counter examples, we keep two separate training sets X; and
X for MIP (I0a) and MIP (TOb) respectively.

We design a surrogate loss function for Xj, X5 to measure
the violation of the Lyapunov condition on the training set.
We denote the violation of condition (O) on a sample state
xi € Xy as mi(x}), and the violation of condition (2B) on a
sample state z% € X as 12(zh), defined as

ni(a}) =max(es|R(z} —2*)]y — V(2}),0) (11

n2(xy) =max(V(f(xzg, m(3))) — V(23) + €2V (23),0),
(11b)

We denote 7, (X)) and 72(X2) as the vectors whose i’th
entry is the violation on the i’th sample 7;(z¢) and 7 ()
respectively, then our surrogate function is defined as

lossg (X1, X2) = |n1(X1)]p + [m2(X2)lp, (12)

where | - |p denotes the p-norm of a vector, such as 1-norm
(mean of the violation), co—norm (maximal of the violation)
and 4—norm (a smooth approximation of the co— norm). The
subscript € in the loss function (I2)) emphasizes its dependency
on 6, the parameters in both the controller and the Lyapunov
function. We then minimize the surrogate loss function on the
training set via standard batched gradient descent on 6. The
flow chart of this approach is depicted in Fig. [5] Algorithm [I]
presents the pseudo-code.

Since the surrogate loss function is the Lyapunov condition
violation on just the sampled states, the batched gradient
descent will overfit to the training set, and potentially cause
large violation away from the sampled states. To avoid this
overfitting problem, we consider an alternative approach with-
out constructing the training sets.

2) Approach 2, minimize the violation via min-max pro-
gram: Instead of minimizing a surrogate loss function on a
training set, we can minimize the Lyapunov condition violation

Algorithm 1 Train controller/Lyapunov function on training
sets constructed from verifier

1. Start with a candidate neural-network controller 7, a
candidate Lyapunov function V, and training sets X7, Xs.

2: while not converged do
3:  Solve MIPs (I0a) and (TOb).
4:  if MIP (10a) or MIP (I0B) has maximal objective > 0
then
if MIP maximal objective > 0 then
Add the counter examples from MIP to Aj.
end if
if MIP (I0b) maximal objective > 0 then
Add the counter examples from MIP (T0b) to Xo.
end if
Perform batched gradient descent on the parameters
6 to reduce the loss function (I2) on the training
set X7, Xa. Stop until either lossg(X7, X2) = 0, or
reaches a maximal epochs.
12:  else
13: converged = true.
14:  end if
15: end while

e R

—_ -

directly through the following min-max problem

min | max e |R(x: — 2|1 — V()
T €EB

MIP (T02) (13)

+mz€néV(:ct+1) —V(xe) + eV(xy) |,

Tt

MIP (10B)

where 6 are the parameters in the controller and the Lyapunov
function, introduced at the beginning of this subsection [[V-B]
Unlike the traditional optimization problem, where the ob-
jective function is a closed-form expression of the decision
variable 6, in our problem (I3) the objective function is the
result of other maximization problems, whose coefficients and
bounds of the constraint/cost matrices depend on 6. In order to
solve this min-max problem, we adopt an iterative procedure.
In each iteration we first solve the inner maximization problem
using MIP solvers, and then compute the gradient of the
MIP optimal objective w.r.t the variables 6, finally we apply
gradient descent along this gradient direction, so as to reduce
the objective in the outer minimization problem.

To compute the gradient of the maximization problem
objective w.r.t 0, after solving the inner MIP to optimality,
we fix all the binary variables to their optimal solutions, and
keep only the active linear constraints. The inner maximization



problem can then be simplified to
(14a)
(14b)

7(0) = max chs+dp
s.t Ags = bo,

where the problem coefficients/bounds cg, dy, Ag, by are all
explicit functions of . s contains all the continuous variables
in the MIP, including z; and other slack variables. The
optimal cost of (I4) can be written in the closed form as
v(0) = ¢} A, by + dy, and then we can compute the gradient
0v(0)/06 by back-propagating this closed-form expression.
Note that this gradient is well defined if a tiny perturbation on
f changes only the optimal value of the continuous variables
s, but not the set of active constraints or the optimal binary
variable values (changing them would make the gradient
ill-defined). This technique to differentiate the optimization
objective w.r.t neural network parameters is becoming increas-
ingly popular in the deep learning community. The interested
readers can refer to [4} |2] for a more complete treatment on
differentiating an optimization layer.

Algorithm 2] shows pseudo-code for this min-max optimiza-
tion approach.

Algorithm 2 Train controller/Lyapunov function through min-
max optimization

1: Given a candidate control policy 7 and a candidate Lya-
punov function V.
2: while not converged do
3:  Solve MIP (T0a) and (TOB).
4:  if Either of MIP (I0a) of (I0b) has maximal objective
> 0 then
5: Compute the gradient of the MIP objectives w.r.t 6,
denote this gradient as Jv/00.
6: 6 = 0 — StepSize * 9v/06.
7. end if
8: end while

C. Computing region of attraction

After the training process in section [IV-B| converges to
satisfy the Lyapunov condition for every state inside the
bounded polytope B, we compute an inner approximation of
the region of attraction for the closed-loop system. (Notice
that the verified region B is not a region of attraction, since
it’s not an invariant set, while the sub-level sets of V are
guaranteed to be invariant). One valid inner approximation is
the largest sub-level set S = {z:|V (z:) < p} contained inside
the verified region B, as illustrated in Fig. [f] Since we already
obtained the Lyapunov function V' (z;) in the previous section,
we only need to find the largest value of p such that S C B.
Equivalently we can find p through the following optimization
problem

p= min V(zy),

€08 (as)

where the compact set 05 is the boundary of the polytopic
region 3, and the constraint x; € OB can be formulated as

40

30

20

. 0 (radian/s)

10

0 (radian)

Fig. 6: An inner approx-
imation of the region of
attraction S is the largest
sub-level set V(xy) < p
contained inside the veri-
fied region B, where the
Lyapunov function is pos-
itive definite and strictly
decreasing.

Fig. 7: Heatmap of the Lyapunov
function for the inverted pen-
dulum. The red contour is the
boundary of the verified inner
approximation of the region of
attraction, as the largest sub-level
set contained in the verified box
region 0 < 0 < 27, —5 < 0 <b.

mixed-integer linear constraints (with one binary variable for a
face of the polytope 5). As explained previously, the Lyapunov
function V'(x;) is a piecewise-affine function of z;, hence the
optimization problem (T3) is again an MIP, and can be solved
efficiently by MIP solvers.

It is worth noting that the size of this inner approximation of
the region of attraction can be small, as we fix the Lyapunov
function and only search for its sub-level set. To verify a larger
inner approximation, one possible future research direction
is to search for the Lyapunov function and the sub-level set
simultaneously, as in [43]].

V. RESULTS

We synthesize stable controllers and Lyapunov functions on
pendulum, 2D and 3D quadrotors. We use Gurobi as the MIP
solver. All code runs on an Intel Xeon CPU. The sizes of the
neural networks are shown in Table [[II] in Appendix

A. Inverted pendulum

We first test our approach on an inverted pendulum. We
approximate the pendulum Lagrangian dynamics using a
neural network, by first simulating the system with many
state/action pairs, and then approximating the simulation data
through regression. To stabilize the pendulum at the top
equilibrium 6 = 60 = 0, we synthesize a neural-network
controller and a Lyapunov function using both Algorithm [I]
and [2] We verify the Lyapunov condition in the box region
0<0<2m,-5< 6 < 5. The Lyapunov function V' is shown
in Fig. [7]

We simulate the synthesized controller with the original
pendulum Lagrangian dynamics model (not the neural network
dynamics ¢gyn). The result is shown in Fig. @ Although
the neural network dynamics ¢qy, has approximation error,
the simulation results show that the neural-network controller
swings up and stabilizes the pendulum for not only the ap-
proximated neural network dynamics, but also for the original
Lagrangian dynamics. Moreover, starting from many states
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Fig. 8: (left) phase plot of simulating the pendulum Lagrangian
dynamics with the neural-network controller. The red contour
is the boundary of the verified region of attraction, as the
largest level set within the verified box region B (black dashed
box). All the simulated trajectories (even starting outside of
the dashed box) converge to the goal state. (right) Lyapunov
function value along the simulated trajectories. The Lyapunov
function decreases monotonically along the trajectories.
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Fig. 9: Snapshots of the 2D quadrotor simulation (with
the original Lagrangian dynamics) using our neural-network
controller from different initial states. The red lines are the
trajectories of the quadrotor body frame origin.

outside the verified region of attraction, and even outside
our verified box region, the trajectories still converge to the
equilibrium. This suggests that the controller generalizes well.
The small verified region of attraction suggests that in the
future we can improve its size by searching over the Lyapunov
function and the sub-level set simultaneously.

We start with a small box region 0.87 < 0 < 1.27,—1 <
6 < 1, and then gradually increase the verified region. We
initialize the controller/Lyapunov network as the solution in
the previous iteration on a smaller box region (at the first
iteration, all parameters are initialized arbitrarily). For the
smaller box 0.87 < 0 < 1.2r,—1 < # < 1, both algorihm
[T] and 2] converge within a few minutes. For the larger box
0 <0 <2, —5 <60 <5, both algorithms converge within 3
hours.

B. 2D quadrotor

We synthesize a stabilizing controller and a Lyapunov
function for the 2D quadrotor model used in [51f]. Again
we first train a neural network ¢gyn to approximate the
Lagrangian dynamics. Our goal is to steer the quadrotor
to hover at the origin. In Fig[9] we visualize the snap-
shots of the quadrotor stabilized by our neural-network con-
troller. We verified the Lyapunov conditions in the region
[-0.75,—0.75, —0.5m, —4, —4, —2.75] < [z,z,0,%,2,0] <
[0.75,0.75,0.5m, 4, 4, 2.75].

NN succeeds | NN fails
8078 0
1918 4

LQR succeeds
LQR fails
TABLE I: Number of success/failure for 10, 000 simulations of
2D quadrotor with the neural network (NN) controller and an
LQR controller. The simulation uses the Lagrangian dynamics.

We sample 10000 initial states uniformly in the box
[-0.9,-0.9, —0.57,—4.5,-4.5,-3] < [z,2,0,2,2,0] <
[0.9,0.9,0.57,4.5,4.5, 3]. For each initial state we simulate
the Lagrangian dynamics with the neural network and an LQR
controller. We summarize the result in table [Il on whether the
simulation converges to the goal state or not. More states
can be stabilized by the neural-network controller than the
LQR controller. Moreover, the off-diagonal entries in TableE]
demonstrates that the set of sampled states that are stabilized
by the neural-network controller is a strict super-set of the set
of states stabilized by the LQR controller. We believe there
are two factors contributing to the advantage of our neural-
network controller against an LQR: 1) the neural-network
controller is piecewise linear while the LQR controller is
linear; the latter can be a special case of the former. 2) the
neural-network controller is aware of the input limits while
the LQR controller is not.

We then focus on certain two dimensional slices of the state
space, and sample many initial states on these slices. For each
sampled initial state we simulate the Lagrangian dynamics
using both the neural-network and the LQR controller. We
visualize the simulation results in Fig. [I0} Each dot represents
a sampled initial state, and we color each initial state based
on whether the neural-network (NN)/LQR controllers succeed
in stabilizing that initial state to the goal

o Purple: NN succeeds but LQR fails.
e Green: both NN and LQR succeed
« Red: both NN and LQR fail.

Evidently the large purple region suggests that the region of
attraction with the neural-network controller is a strict super-
set of that with the LQR controller. We observe that for the
initial states where LQR fails, the LQR controller requires
thrusts beyond the input limits. If we increase the input limits
then LQR can stabilize many of these states. Hence by taking
input limits into consideration, the neural-network controller
achieves better performance than the LQR.

Both algorithm [I] and [2] find the stabilizing controller. For
a small box region [-0.1,—0.1,—0.17, —0.5,—0.5, —0.3] <
[x,2,0,%, 2, 9] <[0.1,0.1,0.17,0.5,0.5,0.3], both algorithms
converge in 20 minutes. For the larger box used in Table
the algorithms converge in 1 day.

C. 3D quadrotor

We apply our approach to a 3D quadrotor model with 12
states [38]]. Again, our goal is to steer the quadrotor to hover
at the origin. As visualized in Fig[TI] our neural-network
controller can stabilize the system. Training this controller
took 3 days.
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Fig. 10: We sample 2500 initial states within the box re-
gion [—8,-8] < [#,2] < [8,8], with [z,z,0,0] fixed to
[-0.75,0.3,0.3m, 2] (left), and [0.75,0.5, —0.4m, 2] (right).
We simulate from each initial state with the neural-network
controller (NN) and the LQR controller, and color each initial
state based on whether the simulation converges to the goal.
All red dots (where the NN controller fails) are outside of
the black box region within which we verified the Lyapunov
conditions.
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Fig. 11: Snapshots of simulating the quadrotor using our
neural-network controller with the Lagrangian dynamics. The
quadrotor converge to the hovering state at the origin (red).

The quadrotor Lagrangian dynamics is approximated by a
neural network ¢4y, with comparatively large mean-squared
error (MSE) around 10~* (reducing MSE would require a
neural network too large for our MIP solver), while other
examples in this paper have MSE in the order of 10~°. Hence
there are noticeable discrepancies between the simulation with
Lagrangian dynamics and with the neural network dynamics
@dyn- In Fig we select some results to highlight the dis-
crepancy, that the Lyapunov function always decreases along
the trajectories simulated with neural-network dynamics, while
it could increase with Lagrangian dynamics. Nevertheless,
the quadrotor eventually always converges to the goal state.
We note that the same phenomenon would also happen if
we took a linear approximation of the quadrotor dynamics
and stabilized the quadrotor with an LQR controller. If we
were to plot the quadratic Lyapunov function (which is valid
for the LQR controller and the linearized dynamics), that
Lyapunov function could also increase along the trajectories
simulated with the nonlinear Lagrangian dynamics (see Fig[T4]
in the Appendix). Analogous to approximating the nonlinear
dynamics with a linear one and stabilizing it with a linear LQR
controller, our approach can be regarded as approximating the
nonlinear dynamics with a neural network and stabilizing it
with another neural-network controller.

Finally we compare the performance of Algorithm [I] which
appends counter examples to training sets, against Algorithm

Simulated with @g4y, dynamics

Simulated with Lagrangian dynamics
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Fig. 12: 3D quadrotor Lyapunov function value along the
simulated trajectories with our neural-network controller. The
quadrotor is simulated with Lagrangian dynamics (left) vs the
dynamics approximated by a neural network ¢gyn (right). In
both left and right sub-plots, the initial states are the same.

Algorithm [1] Algorithm [2]
Pendulum 8.4s 224s
2D quadrotor 948.3s 1004.7s
3D quadrotor | Time out after 5 days 65.7hrs

TABLE 1II: Average computation time of 10 runs for both
algorithms. To speed up the computation, the verified region
B is relatively small.

2] with min-max optimization. We take 10 runs of each
algorithm, and report the average computation time for each
algorithm in Table El For the small-sized task (pendulum
with 2 states), Algorithm [I] is orders of magnitude faster
than Algorithm [2] and they take about the same time on
the medium-sized task (2D quadrotor with 6 states). On the
large-sized task (3D quadrotor with 12 states), Algorithm [I]
doesn’t converge while Algorithm [2] can find the solution. We
speculate this is because Algorithm [T] overfits to the training
set. For a small-sized task the overfitting is not a severe
problem as a small number of sampled states are sufficient
to represent the state space; while for a large-sized task it
would require a huge number of samples to cover the state
space. With the limited number of counter examples Algorithm
[T] overfits to these samples while causing large Lyapunov
condition violation elsewhere. This is evident from the loss
curve plot in FiglT3| for a 2D quadrotor task. Although both
algorithms converge, the loss curve decreases steadily with
Algorithm [2] while it fluctuates wildly with Algorithm [I]
We believe that the fluctuation is caused by overfitting to
the training set in the previous iteration. Nevertheless, this
comparison is not yet conclusive, and we are working to
improve the performance of Algorithm[T|on the large-size task.

VI. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate a method to synthesize a
neural-network controller to stabilize a robot system, as well
as a neural-network Lyapunov function to prove the resulting
stability. We propose an MIP verifier to either certify Lyapunov
stability, or generate counter examples that can be used to
improve the candidate controller and the Lyapunov function.

4There are 2 failed runs with Algorithm |1|on the 2D quadrotor example,
that they time out after 6 hours, and are not included in Table |m For the 3D
quadrotor we only include 3 runs as they are too time-consuming
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Fig. 13: Loss curves on the 2D quadrotor task for Algorithm

E]and@

We present another MIP to compute an inner approximation
of the region of attraction. We demonstrate our approach on
an inverted pendulum, 2D and 3D quadrotors, and showcase
that it can outperform a baseline LQR controller.

Currently, the biggest challenge of our approach is scal-
ability. The speed bottleneck lies in solving MIPs, where
the number of binary variables scales linearly with the total
number of neurons in the networks. In the worst case, the
complexity of solving an MIP scales exponentially with the
number of binary variables, when the solver has to check
every node of a binary tree. However, in practice, the branch-
and-cut process significantly reduces the number of nodes to
explore. Recently, with the growing interest from the machine
learning community, many approaches were proposed to speed
up verifying neural networks through MIP by tightening the
formulation [5) 54]. We plan to explore these approaches in
the future.

Our proposed MIP formulation works for discrete-time
dynamical systems. For continuous-time dynamical systems,
neural networks have been previously used either to approxi-
mate the system dynamics [34], or to synthesize optimal con-
trollers [15]. We plan to extend our approach to continuous-
time dynamical systems. Moreover, we can readily apply our
approach to systems whose dynamics are approximated by
piecewise-affine dynamical systems, such as soft robots [53]
and hybrid systems with contact [37], since piecewise-affine
dynamic constraints can easily be encoded into MIP.

Many safety-critical missions also require the robot to avoid
unsafe regions. We can readily extend our framework to
synthesize barrier functions [3]] so that the robot certifiably
stays within the safe region.
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VII. APPENDIX
A. Network structures in each example

For each task in the result section, we use three fully
connected feedforward neural networks to represent forward
dynamics, the control policy and the Lyapunov function
respectively. All the networks use leaky ReLU activation
function. The size of the network is summarized in Table
Each entry represents the size of the hidden layers. For
example (3,4) represents a neural network with 2 hidden
layers, the first hidden layer has 3 neurons, and the second
hidden layer has 4 neurons.

B. MIP formulation for l1 norm and clamp function

For the [; norm constraint on x € R"

y = lzh (16)

where x is bounded elementwisely as | < z < u, we
convert this constraint (T6) to the following mixed-integer
linear constraint

y=z1+...+ 2, (17a)

2i 2 Ty % 2 —T (17b)

zi < a4 2(a; — 1), 2 < w0 — x4 (17¢)
acf{0,1}  (17d)



where we assume [ < 0,u > 0 (the case when [ > 0 or u <0
is trivial).
For a clamp function
I, if x <1
r, ifl<z<u

u, if x > u

y= (18)

This clamp function can be rewritten in the following form
using ReLU function

y=u— ReLU(u— (ReLU(xz — 1) +1)) (19)

As explained in @) in section we can convert ReLU
function to mixed-integer linear constraints, hence we obtain
the MIP formulation of (T8).

C. Necessity of condition (9)

Lemma 7.1: There exists a piecewise-affine function V' (z) :
R™ — R satisfying

V(z*)=0,V(z) >0Vx #z* (20)

if and only if for a given positive scalar € > 0 and a given full
column-rank matrix R, there exists another piecewise-affine
function V(z) : R™ — R satisfying

V(z*) =0,V(z) > e|R(x — 2%)|y Vx # z* (21)

Proof: The “only if” part is trivial, if such V() exists,
then just setting V(z) = V(z) and 20) holds. To prove
the “if” part, assume that V(z) exists, and we will show
that there exists a positive scalar, such that by scaling V()
we get V(-). Intuitively this scalar could be found as the
smallest ratio between V(x) and €|R(z — z*)|;. Formally,
given a unit length vector d € R™, we define a scalar function
@a(t) = V(z* + td), this scalar function ¢(-) : R — R is
also piecewise-affine, as it is just the value of V() along
the direction d. Likewise we define another scalar function
Ya(t) = €|R(td)|1 which is just the value of the right-hand
side of (ZI) along the direction d. Since both ¢4(t), ¥ (t)
are piecewise-affine and positive definite, the minimal ratio
¢(d) = mingxo ¢q(t)/1a(t) is strictly positive. Moreover,
consider the value x = mingry—; {(d), since the domain
{d|d"d = 1} is a compact set, and the minimal of a positive
function ((d) on a compact set is still positive, hence x > 0.
As a result, setting V(-) = V(-)/x will satisfy 1), because
Vz) = V(z* +td) = V(@* +td)/k = ¢alt)/k >
6a(6)/C(d) > 6a(t)(Balt) /oa(t)) = walt) = e[ R(z - 2*)],

where we choose d = (x — z*)/|x —2*| and t = |z — z*|. W

D. LQOR simulation on 3D quadrotor

We simulate the 3D quadrotor with an LQR controller, and
plot its Lyapunov function z? Sz (where S is the solution
to the Riccati equation) along the simulated trajectories in
Fig. If the dynamics were linear, then this quadratic
Lyapunov function would always decrease; on the other hand,
with the actual nonlinear dynamics the Lyapunov function
(for the linear dynamical system) can increase. For our neural

LQR Lyapunov function value along simulated trajectories
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Fig. 14: Value of the Lyapunov function V = 27 Sz for an
LQR controller on a 3D quadrotor.

network dynamics, the discrepancy between the approximated
dynamics and the actual dynamics will likewise cause the
Lyapunov function to increase on the actual dynamical system.

E. Termination tolerance

In practice, due to solver’s numerical tolerance, we declare

convergence of Algorithm [I] and [2] when the MIPs (10a)
has optimal cost in the order of 1075,
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