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Abstract—Many robotic applications involve interactions be-
tween multiple agents where an agent’s decisions affect the
behavior of other agents. Such behaviors can be captured by
the equilibria of differential games which provide an expressive
framework for modeling the agents’ mutual influence. However,
finding the equilibria of differential games is in general chal-
lenging as it involves solving a set of coupled optimal control
problems. In this work, we propose to leverage the special
structure of multi-agent interactions to generate interactive
trajectories by simply solving a single optimal control problem,
namely, the optimal control problem associated with minimizing
the potential function of the differential game. Our key insight is
that for a certain class of multi-agent interactions, the underlying
differential game is indeed a potential differential game for which
equilibria can be found by solving a single optimal control
problem. We introduce such an optimal control problem and
build on single-agent trajectory optimization methods to develop
a computationally tractable and scalable algorithm for planning
multi-agent interactive trajectories. We will demonstrate the
performance of our algorithm in simulation and show that
our algorithm outperforms the state-of-the-art game solvers. To
further show the real-time capabilities of our algorithm, we
will demonstrate the application of our proposed algorithm in
a set of experiments involving interactive trajectories for two
quadcopters.

I. INTRODUCTION

Many robotic applications involve interactions between
multiple agents. For instance, two quadcopters may need to
interact and implicitly coordinate to successfully navigate in a
shared three-dimensional space (Fig. 1). An autonomous car
may need to interact with human-driven cars or pedestrians to
navigate an intersection. Planning in such interactive settings
is in general challenging due to the feedback interactions
between the agents. An agent’s state and action will affect the
state and actions of the other agents, i.e., agents are coupled by
their intentions and actions. In this work, we demonstrate that
by leveraging the structure that is inherent in such interactive
settings, we can resolve these couplings, and agents can plan
interactive trajectories by solving an optimal control problem.

It has been shown that feedback interactions in interactive
settings can be captured by differential games [1, 2]. Every
agent is a utility maximizer seeking to maximize their own
utility over a horizon of time while an agent’s utility can
depend on the state and actions of all the agents. In such
settings, the mutual influence of the agents as well as the
outcome of the interaction is best represented by an equilib-
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Fig. 1. Demonstration of our interactive trajectory planning algorithm in an
experiment involving two quadcopters. The two quadcopters start at roughly
the same altitude and switch their positions such that the starting position of
one becomes the goal position of the other. The quadcopters exhibit intuitive
interactive trajectories and change altitudes for avoiding collisions with each
other.

rium of the underlying differential game. However, finding
the equilibrium strategies of such games is in general chal-
lenging as it involves solving a set of coupled optimal control
problems. Consequently, most differential games do not have
analytical solutions, and even their numerical solutions are not
scalable [3, 4].

In this work, we propose to leverage the special structure
of multi-agent interactions to generate interactive trajectories
by simply solving a single optimal control problem. Our key
insight is that for a certain class of multi-agent interactions, the
underlying differential game is indeed a potential differential
game. Potential games are a class of games for which a Nash
equilibrium always exists, and the Nash equilibrium can be
found by solving a single optimization problem [5]. Thus,



we can employ a standard single-agent trajectory optimization
method such as iLQR [6] for planning multi-agent interactive
trajectories.

We will prove that a class of multi-agent interactions,
namely, interactions where the mutual couplings between the
agents are symmetric, are indeed potential differential games.
For such games, we introduce the optimal control problem
associated with minimizing the potential of the game whose
solution is the equilibrium trajectory of the original interac-
tion game. Using this result, we develop a computationally
tractable algorithm for interactive trajectory planning. We will
compare the performance of our algorithm with the state-
of-the-art in interactive trajectory planning both in terms of
the quality of the trajectories as well as the computational
tractability. To further show the real-time capabilities of our
algorithm, we will demonstrate the application of our frame-
work in a set of experiments involving interactive trajectories
for two quadcopters.

II. RELATED WORK
A. Interactive Trajectory Planning

The common approach to interactive trajectory planning is
for a robot to make predictions of the future trajectories of
other agents and plan reactively [7, 8, 9, 10, 11]. Planning
reactively will make the agents decoupled and simplify the
control problem. Nevertheless, throughout this decoupling,
agents lose the capability to affect each other. To capture this,
it has been shown that interactive settings can be modeled
by equilibria of differential games [1, 2, 12]. Several methods
have been proposed for finding equilibria in interaction games.
In [1], a Stackelberg equilibrium was considered where one
agent is the leader, and the other agent is the follower. To find
Nash equilibria of the interaction game, in [13], a hierarchical
decomposition of the underlying game into strategic and
tactical games was proposed. Iterative best response algorithms
were developed for capturing interactions in racing problems
and autonomous driving settings [14, 15, 16]. In [17], iterative
dynamic programming in Gaussian belief space was used to
solve for equilibria of a game-theoretic continuous POMDP.

B. Approximate Solutions to Differential Games

To find equilibria of general differential games, sequential
linear-quadratic methods were proposed for two-player zero-
sum differential games [18, 19]. To enable scalable interactive
trajectory planning for a broad class of differential games,
recently, a local iterative algorithm was proposed in [20]
where the analytic solution to the Linear Quadratic games [4]
was exploited for approximating the equilibria of general-sum
differential games. This algorithm builds upon the iterative
linear-quadratic regulator (iLQR) [6], and at every iteration,
solves for the LQ game that results from linearizing the
system dynamics and finding a quadratic approximation of
the agents’ cost functions. A similar iterative method was
proposed in [21] for planning interactive trajectories in the
presence of uncertainties where equilibria of risk-sensitive
dynamic games were sought. In [22], a solver was developed

for interactive trajectory planning in the presence of general
nonlinear state and input constraints.

C. Potential Games

The literature on potential games is mostly focused on
static games. A class of static potential games with pure Nash
equilibria was identified in [23]. Later, potential games were
also introduced in [5]. Because of the appealing properties
of potential games, potential games have had applications
in various control and resource allocation problems [24, 25,
26, 27, 28, 29]. We argue that potential games, in the form
of potential differential games, can be further utilized for
trajectory planning in multi-agent settings.

III. PROBLEM FORMULATION

We assume that we have N agents. For each agent 7, 1 <
1 < N, the vector u;(t) € R™ represents the control input of
agent ¢ at time ¢, where m; is the dimension of the control
input of agent 7. Similarly, we let x;(¢) € R™ denote the state
of agent ¢ at time ¢, where n; is the dimension of the state
space of agent i. We let x(t) = (x1(t), -+ ,xn(t)) denote
the concatenated vector of all agents’ states at time ¢, and
n be the dimension of the state vector z(t). We further use
u(t) = (u1(t), - ,un(t)) to denote the vector of all agents’
control inputs at time ¢. The overall system dynamics are

2(t) = f(2(t), u(t),t). (1)

We consider open-loop control inputs, i.e., control inputs that
are only a function of the system’s initial state o and time ¢:

w;i(t) = ui(xo, t). 2)

Although the open-loop assumption may seem restrictive,
in many practical applications, open-loop trajectory planning
algorithms are applied in a receding-horizon fashion to ap-
proximate closed-loop feedback policies'. For each agent 4,
we let the set of Borel measurable functions U; := {u;| w; :
T — R™:i} represent the open-loop strategy space of player 4
that maps time to the player ¢’s control input. Moreover, we
let U_; :=Uy X -+ xU;—1 xUj11 X -+- x Uy represent the
open-loop strategy space of all agents except agent i. We write
(u;, u* ;) to denote the vector

(UTWH aujfhuhu;a»la'” >u*N)€U7 (3)

where U is the strategy space of all agents.

We assume that each agent ¢ minimizes a cost function J;(+),
where J; depends on the initial state x and the agents’ control
signals wuq,--- ,uy through the following

T
Ji (w0, s, un) = / Li(e(t), u(t), D)dt + S:(x(T)),
4)

'We acknowledge that in general, receding horizon application of open-loop
equilibrium strategies may not be enough for finding close-loop equilibrium
policies due to the difference between the information structure of open-loop
and closed-loop policies. However, for many interactive trajectory planning
settings, this is a valid approximation.



where 7' is a finite time horizon, and L; and S; are the running
and terminal costs of agent ¢ respectively.
In a compact form, we describe our differential game by

Fgo = (N7{Ui}i]i17{‘]i}£v:17 )7 &)

where z( is the initial state of the system. In a multi-agent
setting, since each agent ¢ seeks to optimize their own cost
Ji(.), the outcome of interaction is best represented via a
notion of equilibrium. Among the various notions of equilibria,
we look for Nash equilibria which characterize the interaction
outcome in non-cooperative multi-agent settings.

Definition 1. Given a differential game Ffo, a control signal
u* = (uf,--- ,uy) is an open-loop Nash equilibrium if for

every agent i, we have
Ji(xo, u*(+)) < Jizo, ws(-), u”;(+)). (6)

Intuitively, at Nash equilibrium, no agent has any incentive
for unilateral deviation from v (), i.e., when the control inputs
of all the other agents u* ,(-) are fixed, as (6) suggests, agent 4
will not benefit from changing its equilibrium control signal. In
general, finding Nash strategies u* satisfying (6) is challenging
since it involves solving N coupled optimal control problems.

IV. POTENTIAL DIFFERENTIAL GAMES

In this section, we introduce potential differential games,
and then in the next section, we discuss how we can leverage
potential differential games for tractable interactive trajectory
planning in multi-agent settings. While finding Nash equilibria
is in general challenging, there exists a class of differential
games called potential differential games to which we can
associate an optimal control problem (OCP) whose solutions
are open-loop Nash equilibria for the original game Ffo [29].

Definition 2. (c¢f. [29]) A differential game Fgo is a potential
differential game if there exists an optimal control problem
whose solutions are Nash equilibria of the game FZO.

This problem reduction allows us to benefit from the exist-
ing planning methods for solving single-player optimal control
problems to calculate Nash equilibria in interactive settings. In
interactive trajectory planning, agents’ dynamics are normally
decoupled, and each agent’s state update is governed by
its own control inputs and its own dynamics. The coupling
between the agents occurs due to the coupling between the
agents’ cost functions. For example, in navigation problems,
the coupling between the agents arises from the inter-agent
collision avoidance costs. We leverage this property, and in
the rest of this paper, assume that for each agent ¢, we have

@i(t) = fi(xi(t), wi(t), 1), @)

where f; is the dynamics of the iy, agent.

Under decoupled dynamics (7), it has been shown in [29]
that a differential game is a potential differential game if the
following holds.

Theorem 1. For a differential  game T'L =
(N AU AT AN, if for each agent i, the
running and terminal costs have the following structure

Li(x(t)7 u(t)7 t) = p(fL‘(t)7 u(t)7 t)""_ci(xfi(t)v u*i(t)’ t), (8

and
Si(x(T)) = 5(x(T)) + si(z—i(T)), )

then, the open-loop control input u* = (uf,---,uly) that
minimizes the following optimal control problem

min / p(@(t), u(t), )t + 5(2(T))
st &i(t) = fi(wi(t), ui(t),t),

is an open-loop Nash equilibrium of the differential game I'
ie., FZ;O is a potential differential game.

(10)

T
o’

Proof: See Appendix A. [ ]
Note that Theorem | requires the running cost of every
agent ¢ to be composed of a potential function p and a term
¢; which has no dependence on the state and action of agent
1. The potential function p may depend on the entire state and
input vector = and wu, but it is not agent-specific as it does
not have any dependence on the agent’s index ¢. On the other
hand, the agent-specific term c; must depend only on the states
and actions of all agents except agent 7. In the next section,
we will show how this decomposition can be achieved when
the coupling between agents occurs due to collision avoidance
cost terms. It is important to mention that in general, there are
less restrictive conditions under which a differential game is
a potential game, but we have only included the conditions
that are relevant to interactive trajectory planning. Interested
reader is referred to [29] for further details.

Note that while a solution to (10) is always a Nash equilib-
rium of the original game Ffo, there may exist other equilibria
for the game Ffﬂ which do not necessarily optimize (10). In
other words, solving optimal control (10) always provides a
set of equilibria which is a subset of all equilibria of the game.
Nevertheless, if a game is potential game, we are guaranteed
that an equilibrium exists.

V. INTERACTIVE TRAJECTORY PLANNING

In this section, we discuss how Theorem | and the spe-
cial structure of agents’ cost functions can be leveraged for
interactive trajectory planning. In multi-agent settings such
as navigation, the cost function of each agent 7 is typically
composed of two types of cost terms: (i) Cost terms which
are only dependent on the state and action of agent ¢ itself
such as input and state tracking costs, and (ii) cost terms that
capture the mutual couplings between the pairs of agents, such
as collision avoidance costs, which are dependent on the state
of the agent ¢ as well as other agents. For examples of these
cost structures, see [1, 20, 21, 13]. For instance, the agent-
specific tracking cost can be composed of a running cost C}"



and a terminal cost C’fTT in the following form
Cf (2 ug) =(xi — &) TQi(; — 23+
(ws — ) Ry (ui — uif),

Cfip(wiyus) =(ai(T) = 2(T))TQi(xs(T) — (1)),

K2

(1)

where (); and R; are weight matrices for penalizing state and
control deviations from a reference trajectory (2!, u*). In a
navigation setting, x;ef represents the goal state of agent ¢, and
urff is the zero input signal for agent ¢ to minimize its control
effort. Note that in general, the matrices (); and R; can be
time-variant.

In addition to tracking cots, each agent ¢ has coupling cost
terms too that create mutual impact between the agents such as
avoiding collisions with other agents. For each agent i, we let
the collision avoidance cost term C{* be composed of pairwise
collision avoidance costs Cf’; for all j # . For each j # i, C};
penalizes agent ¢ for colliding with or getting close to agent j.
We assume that pairwise collision avoidance terms Cf; have
the following structure

Cij (@i, x5) = aij (d(wi, z5))

: (12)
where «;; is a function of the distance d between the agents.
Note that d depends only on the states of agent ¢ and j. Hence,
for agent ¢, the running and terminal costs become
N
Li(z,u;) = CI" (2, u;) + ZC’%(@,%)
J#i

(13)

and

Si(x:(T)) = Ciip(wi(T)). (14)

The above cost structures can be more general. For example,
CY can encode any other objective that agent ¢ cares about
such as minimum time to reach, minimum fuel, etc. Similarly,
the inter-agent coupling terms can be more complicated than
collision avoidance costs. But for simplicity, in the presen-
tation of the paper, we specifically consider tracking and
collision avoidance costs. Our key insight is that if the inter-
agent collision avoidance costs (12) are symmetric for any two
agents i and j, i.e., Cf(zi, x;) = Cf;(x;, ;) for all pair of
agents; then, the game I‘;{O is a potential differential game.
In other words, if any two agents penalize for collisions with
each other similarly, the game is a potential game. Note that
this does not imply that all agents penalize collisions similarly.
We only need any two agents to penalize for getting close to
each other similarly. In other words, the agents’ sensitivity to
collisions with each other should be symmetric.

We first show this through an example. Consider a differen-
tial game with three agents (see Fig. 2), and cost structure (13)
and (14). We show that the game is potential if inter-agent cost
terms are symmetric. We let p and 5 in Theorem 1 be

p(z,u) = CF (x1,u1) + CF (22, ug) + C§' (3, us)
+ Cla(w1, 22) + Ci3(21, v3) + Co3(x2, 73),

§(x,T) = Cip(21(T)) + Colp(22(T)) + Cylp(x3(T)).
(16)

15)

Czal = IgQTZ

Fig. 2. Agent 1 penalizes for collision with agent 2 the same way that agent
2 penalizes for collision with agent 1. For example, if collision avoidance
costs are in the form of the quadratic of the distance between the two agents,
we must have Cf, = C§; = Bd? where d is the distance between agents
1 and 2 and S is the weight for avoiding collisions. Agents 1 and 2 are
symmetric in how they penalize for collisions. If collision avoidance costs
are symmetric for all pair of agents, then the underlying game is a potential
differential game.

For each agent ¢, we define the term c¢; in (8) to be

c1(w2, T3, u2,u3) =
— OF (w2, u) — CE (23, u3) — Cls(wa, 23),
62(171,1‘3#1,”3) =
— Of' (x1,u1) — CF (w3, u) — Cfs (a1, 23),
63($1,$2,u17U2) =
— Cl" (w1, u1) — O (29, us) — Cfy (21, 12).

a7

Likewise, for each agent ¢, we define the s; term in (9) to be:

s1(22(T), 23(T)) = —Cyp(22(T)) — Cilp(w3(T)),
s2(21(T), 23(T)) = —=Cip(21(T)) — C5lp (w3(T)),
s3(21(T), 22(T)) = —Ci'p(21(T)) — Colp (w2(T).

(18)

The potential function (15) consists of the sum of the running
costs of all agents and the sum of all pair-wise collision
avoidance costs of agents with unordered pairs of distinct
indices {4, j}. Similarly, § is the sum of the terminal costs of
all agents. It is easy to show that if Cf;(z;, z;) = Cf;(z;, z;)
for any two agents ¢ and j, we have:

Li(z(t), u(t),t) = p(z,u,t) + ci(x—s,u_,t), 1<i<3,
(19)
Si(z(T)) = 5(x(T)) + si(z_i(T)), 1<i<3.
(20

Thus, using Theorem 1, our game is a potential game. We can
generalize this intuition through the following theorem:

Theorem 2. Under dynamics (7), and cost structures (13)
and (14), if for any two agents 1 and j, we have

Cii(xi, w5) = Cfy(x5,1;),

; b3

T
zo

the underlying differential game T, is a potential differential
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Fig. 3. The snapshots of the trajectories found by our algorithm for an intersection scenario. Agents move from their start positions (denoted by circles) and
move towards their goal positions (denoted by cross signs). The agents manage to successfully avoid collisions and resolve conflicts when they get close to
each other. Dashed lines represent the planned trajectories over the receding horizon while the solid lines represent the final resulting trajectories

game with the following potential functions p and §

E Cii(wi, xj),

1<i<yj

N

ZC’” iy U;)
i=1
Z Cz T(wl)

where the second summation in p is over all unordered pairs
of distinct agents’ indices.

p(z,u,t) =
(22)

Proof: We prove this by showing that under assump-
tion (21), cost structures (13) and (14) satisfy the condi-
tions (8) and (9) in Theorem 1. Let p, and § be defined as
introduced in (22). For each agent i, we define the agent-
specific term ¢; in (8) to be

ci(w_i,u_s,t) = — ZC’” i, uj)
i

Z Ch(xj, 21),

1<j<k
J#i, kFi
(23)

si(z—i(T)) = = Y Cr(xy), (24)
J#i

where the first term in ¢; is the negative of the sum of
the tracking costs of all agents except for agent ¢, and the
second term is the sum of all pairwise inter-agent costs for
the unordered pairs of agents {j # i,k # i}. Similarly, s;
is the summation over all agents’ terminal costs except for
the agent ¢’s terminal cost. Note that in the above, ¢; and s;
are only a function of the states and inputs of agents other
than agent 7. Using the potential function (22) and the cost
functions (23) and (24), it is easy to verify that for each agent
1, we have

N
= Cfr(x“ul) + ZC%(.’L’Z',.TJ‘)

Li (.’17, Ul) (25)
J#i
:p(l',U,t) +ci(x7i7u7i7t)7 (26)
and further
Si(z(T)) = 5(x(T)) + si(x—i(T)). 27)

Hence, using Theorem 1, our game is a potential differential
game. ]
Using Theorem 2, under assumption (21), for finding equi-
libria of the game I'T ,» instead of solving a set of coupled
optimal control problems (1), we can simply solve the optimal
control problem (10). Consequently, we propose to solve
the following optimal control problem in a receding horizon
fashion:
T
min / p(a(t), u(t), t)dt + 5((T))
u(- 0
st @(t) = f(a(t),ult),t),
z(0) = xo.

(28)

where the potential functions p and 5 are as defined in (22).
The significance of this result is that now we can use standard
single-agent trajectory optimization algorithms to solve (28).
For robots with general nonlinear dynamics, we can utilize any
nonlinear trajectory optimization algorithm. We use iterative
Linear Quadratic Regulator (iLQR) derived in [6, 30] for
solving (28). We choose iLQR because of its success across

different robotic applications [31, 32, 33].
Algorithm 1 Potential iLQR
1: Inputs
2: system dynamics (7), potential functions (22)
3: Initialization
4: initialize the control input using u;(.) =0,1 <i < N
5. forward simulate (7) to obtain nominal trajectories n =

{z(),u1(t), -, un(t) e, 1)
while not converged do
linear approximation of (7) around 7
quadratic approximation of (22) around 7
solve the backward recursion through Ricatti equation
and obtain new control policies.
10: forward simulate the controls and obtain the new
nominal trajectories 7.

R

—_—

1: return control input u;(.) for every agent i.

We start with initializing our controller. Then, starting



from an initial condition, we integrate the system dynam-
ics (7) forward in time to obtain a nominal trajectory n =
{2(t),a1(t),- -+ ,Un(t) }reo,r)- We linearize the the system
dynamics (1) around 7 and further compute a quadratic
approximation of the potential function in (28) around 7. We
use Ricatti equation to solve the resulting approximate Linear
Quadratic Regulator problem to obtain a new nominal trajec-
tory and repeat this process until convergence. The outline of
our interactive trajectory planning algorithm is summarized in
Algorithm 1.

In the next two sections, we demonstrate the success of our
approach in generating intuitive interactive trajectories in both
simulations and experiments.

VI. SIMULATION STUDIES

In this section, we demonstrate the performance of our
algorithm in a planar navigation setting involving three agents
at an intersection where each agent wants to reach its goal
while avoiding collisions with other agents (See Fig. 3).

For each agent i, we use the following unicycle dynamics
to model our vehicle dynamics:

Dz, = Vi cosly, Py = v;sinb;,

0; = wi, v = a;,

(29)

where p; ;, and p; , are the x and y coordinates of the position
of agent ¢ in the 2D plane, v; is the forward velocity for agent
i, and 0; is the heading of vehicle 7. For each agent i, the
state vector is ; = [Py, Px.i» 0i, v;], and the input vector is
u; = |wy,a;]. We assume that each agent has a tracking cost
CY¥ in the form of (11) where we let the @ and R matrices
be diagonal matrices with different weights on each diagonal
entry, and each diagonal entry in Q and R matrices acts as a
scaling weight for penalizing the corresponding state or control
input. Following [20], we choose the inter-agent costs C;’ to
be the following for any two agents ¢ and j:

(d'l_] - dprox)2 if dij < dprox

CZ (i, xj) - 0 else

(30)
where d;; is the distance between vehicles ¢ and j, and dprox
is the threshold distance above which no collision cost is
incurred. We keep djox to be 2.4 meters in our simulations.

We run Algorithm [ in a receding horizon fashion. Although
we presented our algorithm in continuous time, we solved the
backward and forward recursions of Algorithm [ in discrete
time for our implementation. We set our discrete time intervals
to be 0.1 second. We further let the planning horizon for the
receding horizon controller be 1 second. Fig. 3 illustrates the
trajectories found by our planning algorithm.

We further compare the performance of our algorithm with
the game solver iLQGames [20] by running a Monte Carlo
study for the intersection problem. We consider 1000 random
initial conditions and evaluate the solution times for both al-
gorithms. We solve for trajectories with a 5-second prediction
horizon. Fig. 4 shows the histograms of the results of our
Monte Carlo study. For 1000 samples, the average convergence

Potential iLQR iLQGames
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Fig. 4. Histogram data of our Monte Carlo study with 1000 random initial
conditions. Potential-iLQR yields an average solution time of 14 ms with a
standard deviation of 8 ms. For iLQGames, the average solution time is 89
ms with a standard deviation of 50 ms. Our approach is more than 6 times
faster than iLQGames.

time of our algorithm is 14 ms with a standard deviation
of 8 ms, whereas iLQGames has the average convergence
time of 89 ms with a standard deviation of 50 ms. We also
expect our algorithm to be more scalable in the number of
agents. Since we solve a single optimal control problem using
iLQR, we inherit its O(n3) complexity that only scales with
the dimension of the state space whereas the iLQGames has
O(N3n3) complexity that scales with both the state-space
dimension and the number of agents.

VII. EXPERIMENTS

To demonstrate the real-time capabilities of our framework,
we set up an experiment in hardware on two Crazyflie
2.0 quadcopters within the Robot Operating System (ROS)
framework [34]. To obtain the state information, we use a
Vicon motion capture system. To send waypoint commands
to the quadcopters within the ROS environment, we use the
Crazyswarm repository [35].

We use a 6D kinematic quadrotor model for quadcopters
(see [36] for further information). Our state state vector is

Xq = [Pr,mpy,mpz,m ®is 9i7¢z‘]7

where p,. ;,py.i, P2, represent the position of the quadcopter
body frame origin and ¢;, 6;,¥; represent the roll, pitch, and
yaw angles describing the orientation of the body frame of
the quadcopter with respect to the inertial frame. For each
quadcopter, the control inputs are

— [0 b b
U; = [vx,ia /Uy,v',a Uz7i7pi7 iy ri]v

where fuzﬁi, vz’i, and vgi are the translational velocities ex-
pressed in the body frame. Similarly, p;, ¢;, and r; represent
the components of the angular velocities expressed in the body
frame.

We run experiments with 2 different scenarios. In the
first scenario, the two quadcopters start at the same height
and switch their positions such that the starting position of
one quadcopter becomes the goal position of the other (see
Fig. 1). We set the xyz coordinate of the start position of

one of the quadcopters to be (0,1,2) while the start position
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Fig. 5. The snapshots of the interactive trajectories found by our algorithm for two quadcopters. The start and goal positions of the quadcopters are set such
that they need to avoid collisions while traversing their trajectories in 3D. Our algorithm generates intuitive trajectories where quadcopters manage to change
altitudes for avoiding collisions. The plots in the first row were generated using the real-time data collected during the experiment. The second row includes
the matching video frames of the same experiment. Each column represents the same time instance.

of the other quadcopter is (1.5,0,2). To reach their goal
positions, quadcopters need to avoid collisions and coordinate
their motion. In the second scenario, the start position of
the quadcopters is similar to the first scenario, but their goal
positions are in different altitudes. The quadcopters need to
traverse three-dimensional trajectories to reach their goals (see
Fig. 5). In this experiment, one quadcopter starts at (0,1, 1.5)
and reaches (1.5,0,2.5) while the other quadcopter starts at
(1.5,0,1.5) and reaches (0, 1, 2.5). We let our time step be 0.2
second and set the horizon length to be 1s for our receding
horizon planner. With this setting, we are able to generate
waypoints with 20 Hz update rate.

Fig. 1 demonstrates the trajectories of the quadcopters in the
first scenario, and Fig. 5 shows the trajectories in the second
scenario. As the figures illustrate, the quadcopters successfully
avoid collisions and exhibit intuitive trajectories in three-
dimensional space. In particular, as Fig. 1 and Fig. 5 show,
the quadcopters change altitudes to avoid collisions with each
other. These are indeed an extension of the planar interactive
trajectories to the three-dimensional space where the agents
can also change altitudes to avoid collisions. Note that both
quadcopters maintain their nominal trajectories initially in both
scenarios. However, as they get closer than the distance dprox,
the coupling between the cost functions becomes effective and
the algorithm generates collision-free trajectories.

VIII. CONCLUSION

Summary. We showed that interactive trajectories can be
found by solving a single optimal control problem instead
of solving a set of coupled optimal control problems. In
particular, for a class of multi-agent settings where agents
have symmetric mutual cost couplings, we proved that the
differential game underlying the interaction is a potential
differential game whose equilibrium can be found by solving
a single optimal control problem. We further showcased the
applicability of our framework on a set of simulations and
experiments in hardware.

Limitations and Future Work. The idea of reducing equilib-
ria finding to solving a single-agent optimal control problem
is achieved under symmetric pairwise couplings. However, it

is unclear whether interaction remains a potential game under
general asymmetric pairwise couplings. We plan to investigate
this further. We believe that for the asymmetric settings,
the current algorithm still provides a very fast warm-starting
method which provides a feasible relevant initial trajectory.
We expect this to address one of the challenges in interactive
trajectory planning using game solvers which are sensitive to
proper initialization of trajectories.

Our proposed algorithm is a centralized planning algorithm.
Ideally, in a game-theoretic setting such as interactions, we
want the agents to be the decision makers. Thus, ultimately, we
would like to achieve decentralized interactive planning. We
expect that our proposed reduction to a single-agent optimal
control problem enables us to address this problem by investi-
gating the applications of decentralized control algorithms for
minimizing the potential function of the interaction game.

APPENDIX A
PROOF OF THEOREM 1

This theorem was originally proved in [29]. For complete-
ness, we are including our proof here. Let u* be the solution
to (10) and z* be the corresponding optimal trajectory of the
system state. Fix an agent ¢. Let u; # u] be an open-loop
control signal for agent 7. Let x be the state trajectory that
corresponds to the control signals (u;,u*;) in the original
differential game. Since the state-input trajectory x=* and u*
are optimal for (10), we have

T
/0 p (& (), u* (£), ) dt + 5 (" (T)

. 31)
< [ p () (o). (1) O dt+ 5w (D),
0
If we add
T
/ ¢ (it (0),8) dt + si(a—i(T)),  (32)
0
to both sides, we have
J;(m07U*) S Ji(‘r07ui7uii)' (33)

It is important to note that because the dynamics (7) are
decoupled, z_; in (32) depends only on u*;. Once u*; is



fixed, (32) becomes a constant term added to both sides.
Equation (33) holds for any agent ¢ which is the definition
of (6) which proves our theorem.
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