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Abstract—Complex mission specifications can be often specified
through temporal logics, such as Linear Temporal Logic and its
syntactically co-safe fragment, scLTL. Finding trajectories that
satisfy such specifications becomes hard if the robot is to fulfil
the mission in an initially unknown environment, where neither
locations of regions or objects of interest in the environment
nor the obstacle space are known a priori. We propose an al-
gorithm that, while exploring the environment, learns important
semantic dependencies in the form of a semantic abstraction,
and uses it to bias the growth of an Rapidly-exploring random
graph towards faster mission completion. Our approach leads
to finding trajectories that are much shorter than those found
by the sequential approach, which first explores and then plans.
Simulations comparing our solution to the sequential approach,
carried out in 100 randomized office-like environments, show
more than 50% reduction in the trajectory length.

I. INTRODUCTION

Motion planning with Linear Temporal Logic (LTL) mission
specifications aims for consideration of richer objectives than
the traditional A-to-B motion planning. Examples of such
objectives include periodic surveillance, request-response, or
sequencing. Successful approaches to the problem range
from using various cell decomposition techniques, to creat-
ing roadmaps abstracting the environment and to sampling-
based motion planning. Motion planning with LTL missions
is, however, much more challenging in a priori unknown
environments: efficient treatment of LTL specifications may
require exploiting semantic and spatio-temporal dependencies
between features of the environment, which are typically
unknown beforehand. As an example, consider that we would
like a robot to check all waste bins in all offices in an office
environment. When finding the first bin, the robot may realize
it was next to a desk. While looking for the bin in the next
office, it is most natural that the robot starts exploring again
next to the desk. At the same time, due to the potential
complexity of the environment, it is not desirable to stick
fully to all of the observed semantic and spatio-temporal
correlations as not all of them are relevant for the specification
satisfaction.

In this paper, we focus on sampling-based motion planning
with missions specified with the syntactically co-safe fragment
of LTL (scLTL), and with the robot deployed in a priori
unknown environments. The key idea of our approach is,
on the conceptual level, to make the sampling guided by a
semantic abstraction of the system and by the specification.
The overview of our algorithm is depicted in Fig. [l We ex-

scLTL property System
RRG graph
Bias
Automaton Learn
Semantic abstraction
Product
Figure 1.  Scheme of our model-checking-inspired approach with novel

elements drawn thickly.

tend the Rapidly-exploring Random Graphs (RRG) algorithm
with learning and biasing; we iteratively learn a semantic
abstraction of the system from the gradually growing RRG
graph and compose it with an automaton representation of the
specification into a so-called product. The product is used to
bias sampling in RRG, i.e. to exploit the semantic and spatio-
temporal dependencies of features in the environment as well
as their relation to satisfying the desired specification.
Compared to the naive two-step approach, which first ex-
plores the environment and then plans a trajectory that satisfies
the mission, our approach (i) performs both tasks at once and,
moreover, (ii) allows mutual exchange of information between
the two tasks. We show that these two improvements shorten
the length of the executed path significantly. We achieve this
while maintaining similar computation time, which will, in
reality, be negligible as the robot can execute the algorithm in
real-time while navigating in the environment. Our contribu-
tion can be summarized as follows:
« We propose a method to learn a semantic abstraction of
the system, suitable for planning with scLTL missions.
o We exploit the learned semantic abstraction and, together
with consideration of the specification, we bias the growth
of the RRG graph towards promising regions (in terms of
making progress towards the specification satisfaction).
o We experimentally show that the loop between sampling
and learning leads to better planning in terms of shorter
trajectories when compared to the naive two-step ap-
proach. The results indicate more than 50% savings.



The paper is organized as follows. Sec. [I-A| introduces
relevant related work, and Sec. [[I| describes preliminary tools
needed for the remainder of the paper. The problem is formally
defined in Sec. which is followed by the proposed solution
and analysis in Sec. Lastly, a case study is presented in
Sec. [Vl with conclusions and future work in Sec.

A. Related Work

One of the first works to propose the use of a sampling-
based motion planning algorithm to find a trajectory that
satisfies a temporal logic specification is [9]]. In that work,
the authors propose the Rapidly-exploring Random Graph
(RRG) as an alternative to the Rapidly-exploring Random Tree
(RRT) to finding cyclic trajectories that satisfy a deterministic
p-calculus specification. Another approach is presented in
[4]], but this time for the syntactically co-safe fragment of
Linear Temporal Logic (scLTL). Following these, Vasile and
Belta [17] propose improvements to [9], more specifically for
dealing with full LTL and for improving scalability. None
of these works, however, deals with partially-known environ-
ments, nor do they attempt to speed up the search by learning
characteristics of the environment.

More recently, Kantaros and Zavlanos [6] described an
approach for multi-robot systems under global temporal tasks.
Instead of using an RRG, the authors propose a two-step
approach using RRT*. The first step constructs a tree until
an accepting state of the automaton capturing the evolution
of the LTL formula is reached. The second step then grows
another tree rooted at this accepting state, and attempts to find
a cyclic (infinite) path that satisfies the LTL specification. The
same authors then introduce in [7] sampling bias guided by
the automaton capturing the LTL, something that [13[] also
proposes in a similar fashion. Lastly, besides proposing a
heuristic to guide the search, [16] integrates feedback control
laws to guarantee feasibility of plans by robots with complex,
possibly non-holonomic, dynamics. Although these works
propose ways of improving the time taken to find a plan, they
all rely on having details of the environment a priori.

To the best of our knowledge, the two papers that are
mostly related to ours are [8] and [1]. The former proposes
a reactive sampling-based algorithm for path planning in
unknown environments under scLTL specifications. However,
differently from what we propose, only the obstacle space is
initially unknown to [8], i.e. the locations of the regions of
interest, therefore the labeling function, are known a priori. On
the other hand, Ayala et al. [1]] considers completely unknown
environments, including the labeling function. However, the
authors propose an approach over a discretized partitioning of
the environment, performing frontier exploration [18]] until a
path that satisfies the scLTL specification is found. We merge
benefits of both approaches by proposing a sampling-based
approach on completely unknown environments; furthermore,
we propose a way of learning relations between labels, to-
gether with exploiting them for guiding the path search.

When it comes to robotic deployment in unknown en-
vironments, a crucial initial step might be to efficiently

create a map in an exploratory manner. A seminal work
on exploration is by Yamauchi [18]], in which the author
proposes the method coined frontier exploration. Since then,
several other approaches have been proposed. Among them
is the Receding Horizon Next-Best-View Planner [5] and the
Autonomous Exploration Planner [[15f], both building upon
RRT*. These works, however, do not focus on capturing
various dependencies and relations in the environment. In
contrast, in a probabilistic approach proposed by Aydemir
et al. [2], a robot uses common-sense knowledge about the
relation between objects and semantic room categories. Here,
the focus is however on search for objects and not satisfaction
of complex LTL goals.

II. PRELIMINARIES

Let R denote the set of real numbers and R™ the n-
dimensional Euclidean space. We use X for the finite set of
atomic propositions. For a set X, 2% denotes its power set.
A word over an alphabet Y is a sequence of elements of Y.
The exclusive-or operation is denoted by &, and the disjoint
union of sets by W.

Consider a robot deployed in an environment X C R"
and let zy € X be its initial state. Let {O1,Os,... O} be
the set of obstacles such that O; C X for all i € [1,k],
and Xgee = X\ Ule O; denotes the obstacle-free space. A
trajectory in the environment X is defined by a continuous
function o : [0,1] — X. A trajectory is collision-free if
o(t) € Xiwee, Vt € [0,1]. Regions of the environment X are
labelled with atomic propositions 3 according to a labelling
function L : X — 2%, which maps each state in the state-space
to a set of atomic propositions that hold true there.

A map of the environment X is a partitioning into a finite
number of cells of equal size with a predefined precision,
which can be labeled as free, meaning that the cell lies in
Niree, occupied, if any point within the cell lies inside the
obstacle space (corresponding to an over-approximation of
the obstacle set), or unmapped, that highlights the cell has
not been seen by the robot so far. Every cell is initialised as
unmapped, and is updated whenever it lies in the line-of-sight
of the robot. A cell is called a frontier cell if it is marked
as free and has a neighbouring cell marked as unmapped. A
map frontier is a connected group of frontier cells, and its size
is its cardinality. This is a common approach among the 3D-
exploration community, so we refer to papers such as [18, |5]]
for more details.

A. RRG

The Rapidly-exploring Random Graph [10] is an anytime[]
sampling-based motion planning algorithm that builds a con-
nected roadmap. It incrementally builds a graph G = (V| E)
such that v € Afee, Vv € V, and an edge e € E connects two
nodes vy, vy € V' if there exists a collision-free trajectory o°
between them, with 07> (0) = v, and o}*(1) = v,. A path

'An anytime algorithm returns a valid solution even if it is interrupted
before termination; moreover, the longer it runs, the more its solution is
improved.



over GG is a sequence of nodes p = vg,v1,vs,... such that

v; € V and (v;,v;41) € E, for all i > 0.

B. Syntactically co-safe LTL and DFA

Definition 1 ((Syntactically co-safe) Linear Temporal Logic
[14] [11]). A formula of LTL is given by the syntax:

pi=al|-aler ANpa| o1V | Xp|p1Ups | Ge

where, a € X is an atomic proposition, —, \, V are the Boolean
operators ‘negation’, ‘conjunction’, and ‘disjunction’, respec-
tively. X, U, G denote the LTL operators ‘next’, ‘until’, and
‘globally’ respectively. The syntactically co-safe fragment of
LTL (scLTL) is given by the same syntax, but prohibiting the
operator G.

The semantics of LTL formulas is defined on words over 2%,
The Boolean operators have usual semantics. Intuitively, X¢
means that ¢ is true in the next time step and ¢; Uy, asserts
that ¢, will be true until ¢ becomes true. F is known as the
“finally’ or ‘eventually’ operator whose semantics asserts that
the property ¢ becomes true at some point in the future. As
such, it can be defined in terms of U as F ¢ = true U ¢
G is known as the ‘globally’ or ‘always’ operator with the
semantics that ¢ is always satisfied. Since the robot moves in
continuous time and X operator is usually defined for discrete
time steps, we consider for simplicity properties without X.
However, our approach is applicable for the whole of LTL.

Let L(p) denote the set of words that satisfies the LTL
formula .

Definition 2 (Deterministic Finite Automaton). A determinis-
tic finite automaton (DFA) is a tuple (2%, Q, qo, 6, F) where
2% is the alphabet, Q) is a finite set of states, qq is an initial
state, 6 : Q x 2% — Q is a transition function and F C Q is
the set of accepting states.

A run over a word wy,...,w, is a sequence of states
q0:q1,---,qn such that ¢; = 0(gi—1,w;) for all i. A word
is accepted by the automaton if the run over the word end
in F. We define the language accepted by an DFA A as
L(A) = {w e (2¥)“ | wis accepted by A}. It is a standard
result that for every scLTL formula ¢, there exists a DFA A
such that £L(p) = L(A) and it is effectively constructible.
Consequently, DFA can be used as a precise representation
of an scLTL property. (Our approach can be extended in a
straightforward way to so-called Biichi automata, which can
express the whole of LTL.)

Definition 3 (State-labelled transition system). A (state-
labelled) transition system (TS) is a tuple (S, so, A, L) where
S is a finite set of states, sq is an initial state, A\ : S — 2% isa
transition relation, and L : S — 2% is the labelling function.

A transition system (representing the real system or its
abstraction) can be combined with an automaton (representing
the property) into a product, see Fig.[I] Runs of the product are
thus runs of the transition system monitored by the automaton.
The automaton always reads the atomic propositions true in

the current state and, on the whole, determines whether the run
satisfies the property or not. This standard construction is often
used in model checking [3] and we use it to improve RRG by
mutual exchange of information between the two parts.

Definition 4 (Product). Given a TS T = (5, s0,A,L) and
DFA A = (2%.Q,qo,6, F), the product T x A is the tuple
(S x Q,sAo,A,F) where

e 50 = (50,9(q0,50)),
((5,9)) ={(s',6(q, ")) | ' € A(s)},
={(s;q) [q€ F}.

III. PROBLEM FORMULATION

ﬁj) D>

Consider a robot deployed in an a priori unknown en-
vironment. We assume that the set of atomic propositions
Y. (semantic labels, such as living_room or wastebin) is
known beforehand, but not where they hold. In other words,
the L function, as well as the obstacle-space, are unknown.
Furthermore, we also assume that the robot is equipped with
adequate sensors and perception modules that can identify
labels and obstacles within a sensing radius r, around its
current position.

Problem 1. Given an initial state vy € X in an a priori
unknown environment X, and an scLTL specification ® over
the set of atomic propositions Y., find a collision-free trajectory
0 in Xpree which satisfies ®.

Since neither obstacles nor the labeling function are known
a priori, one cannot use traditional offline approaches de-
scribed in Sec. [[ZAl to solve Problem[Il The solution must be an
online algorithm that learns the obstacle space and the labeling
function as it moves in the environment. A straightforward
way to solve this problem would be to explore the whole
environment and assign labels to features in the environment
first, and then use planning approaches. We propose to inte-
grate exploration and planning. As a result, the robot attempts
to make progress towards satisfying the specification while
exploring, resulting in a possibly shorter travelled distance.

IV. SOLUTION

Our solution to Problem |l| is an algorithm that learns
interesting semantic dependencies and relations in the form
of a semantic abstraction and utilizes this knowledge to bias
the growth of a motion graph towards faster satisfaction of the
desired LTL specification.

A. Semantic abstraction-guided RRG

The overall Semantic abstraction-guided RRG (SAG-RRG)
procedure is overviewed in Alg. Similarly to RRG, the
procedure builds a graph G = (V, E) whose vertices v € V
lay within the obstacle-free space A, and edges e € F
connect two vertices if a collision-free trajectory exists. An
iteration of the algorithm starts by updating the map of the
environment with information of what is within the sensing
radius rs of the robot (line E]) After that, it computes the
guidance according to the Bias function (line [6), which is
described in more detail in Alg. [3 and Sec. Then, each



iteration of the internal while loop (lines [8}{24) attempts to add
one new vertex to G, in a similar way to the RRG algorithm. It
samples a point from the known-space of the environment and
finds its closest neighbour in the current graph (line [9). If the
path connecting these two points is collision-free, the sample
is considered for being added to the graph. If the symbolic
counterpart of the sampled transition is in bias, the sampled
point is stored as a “bias frontier”; otherwise it rejects this
sample with some probability p (lines 11-14). This probability
depends on how much you want to bias the sampling. The
algorithm then follows the usual RRG procedure: it adds the
new vertex and edge to the graph (line [I3) and attempts to
connect such vertex to its closest neighbours (lines [I9{24),
with slight modifications for checking for bias frontiers, and
for keeping track of the symbolic transitions tsym1, (lines 16
and 22) and states seen seen_st (line 17). After sampling a
batch, it updates the semantic abstraction through the Learn
procedure (line [25)), which is detailed in Alg. ] and in Sec.
The algorithm then calls the Move procedure (Alg. [
and Sec. [[V-D), which finds the best frontier to move to, and
moves the robot to the point in G closest to it. Finally, the
procedure checks if a plan that satisfies the LTL formula has
been found.

Remark 1. In Alg. [[] an edge e € E is defined in a way to
ensure the labels along it change only once. Formally, given an
edge ¢ = (vq,vp) € E, there exists a state € o, such that
i) L(z') = L(va), V2’ € o} , and ii) L(z") = L(vy), V2" €
0% .» Where x + € represents a state in the neighbourhood of
x.

B. Learn

This section describes in detail the proposed approach to
learning the semantic abstraction of the environment. Intu-
itively, we try to find transitions that are similar to the sampled
ones and add them as special, potential transitions in the
abstraction. Next part describes how we can accommodate
these special transitions in the abstraction.

1) Semantic Abstraction: To formalize the semantic ab-
straction, we propose extending the state-labelled TS to a
“multi-modal” transition system, our extension of modal tran-
sition systems [12]:

Definition 5 (Multi-Modal Transition System). A tuple
(S, s0, A, L, M, M) is called a multi-modal transition system
(MM-TS), where (S,so,A,L) is a state-labelled transition
system (Def. [3), M is a finite ordered set of modes, and
M : A — M is a modal marking.

A semantic abstraction of an RRG graph is an MM-TS,
where a discrete state s € S represents a set of points x € X
with the same labeling. With a slight abuse of notation, we
use x € s to say that L(z) = L(s) and s(x) to denote s € S,
such that z € s.

Intuitively, M assigns to each transition in the abstraction
a “degree” of confidence that a corresponding transitions is
present in the corresponding concrete points. We use two

Algorithm 1: SAG-RRG

Input: X, zo, P
Output: A collision free trajectory in X’ which satisfies ®

1 Initialize semantic abstraction

2 Va9, E— 0

3 curr_pos < xo; seen_st < s(xzo)

4 while —~AcceptingPath () do

5 UpdateMap (curr_pos, rs)

6 bias < Bias (seen_st)

7 tsymb < 0; i+ 0

8 while ¢ < batch_size do

9 [s, Tnear] < SampleAndExtend (Xpee, V)
10 if CollisionFree (Zpear,Ts) then
11 if (s(@near), s(zs)) € bias then

12 | add z; to bias frontiers

13 else

14 L continue to next iteration with prob p
15 E + EU (Tpear,Zs); V < V Uz,
16 tsymb — tsymb U (5($near)7 S(xs))
17 seen_st <— seen_st U s(zs)

18 14— 1+ 1

19 for z € Near (zs) do

20 if CollisionFree (x,xs) then
21 E+ EU(z,zs); V< VUz
22 tsymb — tsymb U (S(LK), S(xs))
23 if (s(x), s(zs)) € bias then

24 | add z; to bias frontiers

25 Learn (tsymb)

26 curr_pos < Move ()

27 return accepting_path

mode in our MM-TS: must and may. The former is used
for transitions that are known to exist based on samples taken
from the environment while the graph is constructed; the latter
is an extrapolation to which transitions might exist based on
the must transitions. When a new edge (x, Zpey) is added to
the SAG-RRG graph G, a transition (s(z), $(Zpew)) is added
to the MM-TS as a must transition, and similar transitions (see
Def. [7) are added as may transitions. Let us now formalize
when we deem two transitions of a MM-TS similar.

Definition 6 (Domain of Change). The domain of change for
a transition (s,s") € A is DoC(s,s") = L(s) ® L(s').

The domain of change is essentially the set of all atomic
propositions which changed their valuation during the cor-
responding transition in the MM-TS. For example, given a
transition (s, s’) where L(s) = {a,b} and L(s") = {b, ¢}, its
DoC(s,s') is {a,c}.

Definition 7 (Similar Transitions). Two transitions
(s,8'),(5,8) € A are similar if and only if
DoC(s,s') = DoC(5,§), and Ya € DoC(s,s),

a€L(s) < a€L(3)andac L(s') < a € L(3).

2 Although we choose to use two modes in this paper for the sake of
simplicity of the exposition, the approach presented throughout the paper
is generic enough to use any number of modes. Besides must and may, one
could also use may not and must not, for instance.



Algorithm 2: Learn

Algorithm 3: Bias

1 Function Learn (tsymb) @

2 AddToProduct ({symb, must)
3

4

tsim < FindSimilar (fsymb)
AddToProduct (fsim, may)

Intuitively, similar transitions behave the same on their
domain of changes. For example, a transition (s, s’), where
L(s) = {a,b} and L(s") = {b,c}, is similar to (5, 5") where
L(5) = {a,d} and L(5") = {d,c}. The idea is that after
experiencing the transition (s, s’) which leaves b untouched,
we may hypothesize b is irrelevant and that the same behaviour
is present also in the situation when b does not hold and when
some other irrelevant proposition, e.g. d, holds. However, b still
may be a precondition for the transition, hence we introduce
the new transition (3, §") only with a low “confidence”.

The formal definition of similarity allows us to clearly
identify when transitions in the MM-TS, i.e. the semantic
abstraction of an RRG graph, should be marked as may.

2) Multi-modal product: The semantic abstraction captures
existing and possible dependencies and relationships between
labels in the environment regardless of the desired speci-
fication. We extend the definition of product (Def. to
incorporate the knowledge of the specification and thus enable
biasing of SAG-RRG sampling to achieve faster specification
satisfaction. In short, a multi-modal product (MM-P) is a
product as in Def. ] but with a MM-TS instead of a TS.

Definition 8 (Multi-modal Product). Given a MM-TS
(S, 50, A, L,M, M) and a DFA A = (2*,Q, qo,9, F), their
product (MM-P) is a tuple (S xQ, So, A, F, M, M) where the
first four components are defined as in Def. 4| and the remain-
ing two are the modes M and a model marking M:A S M,
such that M((s,q), (s',q')) = M(s, s).

Similarly to the multi-modal transition system, the product
can be constructed iteratively, along with the construction of
the SAG-RRG graph.

3) Learn procedure: The procedure Learn is summarized
in Alg. E} Given a set of transitions tgymp, this procedure
adds them to the MM-TS as must transitions, since we know
that these transitions are already there. After that, for each
t € tsymp, it computes the transitions similar to ¢ and add
them as may transitions in the MM-TS.

C. Bias

The bias procedure computes which transitions would more
quickly bring the system to an accepting state of the LDBA.
It returns a hierarchical list of transitions according to how
far they are from an accepting state in MM-P; the closer a
transition is to an accepting state, the better. These transitions
can then be used to bias the construction of the motion graph
for faster convergence.

The procedure, described in Alg. 3] starts by initializing
the variables bias and reached, which store transitions and

1 Function Bias (seen_st):

2 bias[0] < transitions ending in accepting states acc_st
3 reached[0] + acc_st

4 reached[1] < PreImg (acc_st)

5 all_reached < reached[0] U reached|[1]

6 141

7 while PreImg (reached[i]) € all_reached do

8 useful_pre « PreImg (reached[i]) Nseen_st

9 useful_post < Post Img (useful_pre) Nreached][i]
10 bias[i] < (useful_pre, useful_post)

u reached[i + 1] + PreImg (reached[i])

12 all_reached < all_reached U reached[i + 1]

13 14— 1+1

14 return bias

Algorithm 4: Move

1 Function Move:
2 L p1 < FindBestMapFrontier ()

3 p2 < FindBestBiasFrontier ()
4 return Best (p1,p2)

states, respectively. The first element of bias is the set of
all transitions ending in accepting states of the MM-P (line
2). As for reached, it keeps track of all backwards-reachable
states from the accepting states; hence its first element is
the set of accepting states (line 3), and the second element
is the pre-image of the accepting states (line 4). Then, until
all the backward-reachable sets have been considered, bias
is constructed iteratively based of the set of sampled states
seen_st (lines 7-13). In the end, ith element of bias will be
the set of states that can reach an accepting state after exactly
1 steps in the MM-P.

Learn and Bias functions work in unison and help each other
improve. The more may transitions are learned, the better is
the bias received. The better the bias, the more new transitions
are learned and the faster it converges.

D. Move procedure

The idea behind the Move procedure, described in Alg. 4] is
to decide where to move next: should we go towards a place
that will provide more information about the map, or should
we move according to the advice that has been given by Bias?
In order to compare both options, we employ the concept of
information gain (IG). Given a map frontier, its information
gain is defined as IGy,,, = size x f(d), where size is the
size of the frontier and f(d) is a strictly decreasing function
(for d > 0) of the distance from the robot to the center of the
frontier.

In a similar fashion, we define the information gain of a bias
frontier. Note that bias frontiers were introduced in Alg.
(lines and as a means to keep track of the vertices
in V' that correspond to advices given by Alg. 3] Since bias
is a list of transitions, we can associate a rank r with each
transition from bias equal to index + 1, where index is the



index of the sampled transition. We define IG of these frontiers
as IGyias = g(r, d), where g is some function such that both
g(r,-) and g(-, d) are strictly decreasing, where d is again the
distance from the robot to the frontier.

The intuition behind the IG of the map frontiers is to have a
larger value the larger the frontier is, but penalise it according
to its distance to the robot, so as to motivate exploration of
smaller frontiers that are nearby. Similarly, with the IG of the
bias frontiers, we want to motivate movement towards low-
rank frontiers, since these are closer to satisfying the formula.

E. Analysis

Theorem 1. The algorithm is sound, i.e. any trajectory
returned by SAG-RRG satisfies the given scLTL formula ®.

Proof: (Sketch) The proposed algorithm iteratively con-
structs a product MM-P (Def. [d) between a semantic ab-
straction of the RRG graph and the automaton .A, which
accepts exactly the language of the specification ®. Paths in
the product that visit accepting states project directly onto
accepting runs of the automaton and runs of MM-TS, which in
turn project directly onto paths in the RRG graph G and further
onto trajectories of the robot in the workspace. Altogether,
these trajectories necessarily satisfy . ]

Theorem 2. SAG-RRG is asymptotically complete.

Proof: (Sketch) Follows directly from the convergence
and completeness properties of the original RRG [[10] and the
fact that the biasing we introduced allows to eventually sample
the whole space. Regardless of the scenario, including the one
with no regularity in the environment that can be learned and
exploited for guiding the search, the worse-case scenario will
see the proposed approach perform an exhaustive search of
the environment. ]

V. IMPLEMENTATION AND EXPERIMENTS

The proposed approach was implemented in Java and run
on a consumer grade hardware (2.60GHz Intel i17-9750H CPU,
32 GB RAM). Binary Decision Diagrams (BDDs), which are
very efficient for manipulating sets of Boolean variables, are
used for storing and manipulating the product automaton, the
labels of each node in the RRG, and the bias. We encode
the RRG as an undirected graph whose nodes also store the
labels that hold true at that state. JavaBDD and JGraphT
are the libraries used for encoding the BDDs and the graph,
respectively. We use the Java Spatial Index RTree library for
spatial indexing and faster querying of nearest neighbours.
We also use owl library for converting an LTL formula
to an equivalent automaton and parse that automaton file
using jhoafparser. The implementation currently takes
three files as input describing environment, labelling and the
property. There is also a command line interface with which
you can configure the settings like using the bias or changing
some parameters.

An example of the office-like environment used for the case
study is presented in Fig. [2] In order to draw statistically-
meaningful results, 100 different instantiations of the environ-

Figure 2. Example of an office-like environment used in the case study. Black
solid lines represent walls. There are six rooms, each labeled with one atomic
proposition 7;, for ¢ € [1,6], and a hallway labeled h. Each room contains
a table (red) and a bin (green), labeled ¢ and b, respectively. The labels of
tables and bins hold true within the corresponding dashed and shaded areas
surrounding it. The initial position of the robot is marked with a black dot on
the left side of the hallway.

ment were randomly generated, in which the footprint (i.e.
walls and doors) of the office space remains unchanged, but
desks and wastebins are randomly positioned within the rooms
(without blocking the door).

The scLTL specification is inspired by a realistic scenario,
common in every office environment: reach a wastebin in the
office rooms. We translate such a specification to the following
scLTL formula:

o =F(ri1 AD)AF(ra Ab) A ... F(rg A D) (1)

Note that such a specification does not impose any ordering
of events.

For information gain, we use the following functions in our
simulations

sizen,

IGmap(m7p) = d (2)
m,p
a
[Gpias (s, p) = o4 3)
Ts " Ts,P

where size,, is the size of frontier m, d,,, and d,_, are
the length of the shortest path between p and m and =z,
respectively, a,b > 0 are user-defined parameters, and 7,
is the rank of xs. Adjusting a,b is intuitive: i) suppose m
and z, are equidistant from p; ii) fix r,, to 1 and choose a to
reflect how a bias frontier compares to a map frontier; iii) now
Suppose Ts1,Ts2 equidistant from p, such that r,, , = 1
and 7, , = 2; iv) choose b as to reflect how the importance
of bias frontier decays with its rank (e.g. linearly, quadratic).
For our case study, we chose ¢ = 100 and b = 2.

The results are presented in Table [I] for 100 randomly-
generated environments. The solution presented in this paper
can be seen as an approach that performs exploration of
the environment and planning to satisfy the scLTL mission
concurrently, without or with bias in building the RRG tree
(‘Simultaneous’ and ‘Simult. biased’ columns in Table [I).
We compare this integrated solution to the trivial sequential



Table T
MEAN AND STANDARD DEVIATION OF THE TOTAL TRAJECTORY LENGTH TO SATISFY THE SCLTL MISSION (]D ALONG WITH TOTAL RUNTIME AND RRG
SIZE. THE RESULTS WERE DRAWN FROM SIMULATING EACH APPROACH 3 TIMES IN EACH OF THE 100 RANDOMLY-GENERATED ENVIRONMENTS.

See-through Desks

Opaque Desks

Explore, then plan Simultaneous Simult. biased \ Explore, then plan Simultaneous Simult. biased

Total length 773 (1.5) 56.6 (8.0) 29.4 (5.0) 79.1 (7.1) 629 (16.5) 323 (11.8)
Exploration length 57.1 3.2) 37.5 (7.1) 28.0 (4.9) 57.8 (4.9) 444 (16.6) 313 (12.1)
Remaining plan 1. 20.2 (7.0) 19.1 (3.6) 1.3 (1.8) 213 (5.1) 18.5 (3.4) 1.1 (1.8)
Total Time 7.8 (2.0) 6.4 (2.3) 73 (1.9) 9.6 (2.5) 8.3 (3.2) 9.1 (2.4)
RRG size 1931.2 (460.9)  1938.6 (559.5) 1793.6 (312.1) | 2313.8 (550.9)  1868.7 (498.2) 1901.4 (301.2)

Figure 3. Snapshots of the robot navigating the office environment in the attempt to satisfy the scLTL mission (I} with two different approaches. The yellow
semi-circle in (a) corresponds to the robot’s sensing radius. The top-row figures (a-c) display the trajectory (green) when using the approach proposed by us
(SAG-RRG), where exploration and planning are done together; the bottom-row figures (d-f) show the case where the robot first explores the environment,
and only then it plans a path that satisfies the mission. The RRG graph at the time of the snapshot is shown in blue, and the path that leads to satisfaction

of the mission is in red (c,f).

approach (‘Explore, then plan’ column in Table [[), which
consists of first exploring the whole environment, and then
planning a trajectory that satisfies the mission. Lastly, in a
more technical variant regarding the sensing capabilities of
the robot, we analyse two cases, one where the robot can “see
through” the desks (e.g., a flying robot), and another where
they are considered to be Opaque. A few snapshots of the
robot trajectory are shown in Fig. 3] Each approach is run
three times in each of the 100 environments, totalling 1800
runs of the experiment.

The rows in Table [I] display the length (‘Total length’) of
the trajectory traversed by the robot, from its initial state
(common to all cases) until mission satisfaction, as well as
the total computation time (“Total time’) and number of nodes
in the RRG graph (‘RRG size’). Additionally, we also display
the ‘Exploration length’ which, for the sequential approach,
represents the length of the trajectory traversed only during
the exploration phase, while for our approach it represents the
length traversed until the system realises that a trajectory that
satisfies the mission already exists. ‘Remaining plan 1. is the

length of the remaining trajectory that needs to be followed in
order to satisfy the desired specification at the moment when
exploration phase ends in the ‘Explore, then plan’ case, or the
moment when the trajectory is found in the ‘Simultaneous’
and Simult. biased’ cases. In Table[] we see that having “see-
through” desks makes the performance (both total length and
time) slightly better in all the cases, which is to be expected as
there are not as many occlusions in the map as with “opaque”
desks. We also see that exploration and planning together
performs better in general and including the bias makes it
more than 2.5 times better than the naive approach in terms
of the path length.

In the ‘Explore, then plan’ case, the robot’s visits to
wastebins during the exploration do not count towards the
mission satisfaction, in contrast to the ‘simultaneous unbiased’
case. This is one of the reasons the latter performs better, as
expected. The ‘simultaneous biased’ version performs a lot
better because it was able to visit a lot of wastebins (with the
help of biasing) already during the exploration.



VI. CONCLUSIONS AND FUTURE WORK

We presented an online sampling-based algorithm capable
of finding a trajectory in an a priori unknown environment that
satisfies an scLTL specification. We enrich the RRG algorithm
with functions that attempt to learn possible relations between
labels of the environment and use such relations for biasing
the search for a satisfying trajectory. The resulting paths
are significantly shorter than in straightforward sequential
exploration followed by planning in a known space.

A few topics to be considered for future work include
extending the approach to consider probabilistic relationships
in the semantic abstraction of the system, as well as the
extension to multi-agent systems.
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