
Robotics: Science and Systems 2021
Held Virtually, July 12–16, 2021

1

Fast and Memory Efficient Graph Optimization
via ICM for Visual Place Recognition

Stefan Schubert
stefan.schubert@etit.tu-chemnitz.de

Peer Neubert
peer.neubert@etit.tu-chemnitz.de

Chemnitz University of Technology

Peter Protzel
peter.protzel@etit.tu-chemnitz.de

Abstract—Visual place recognition is the task of finding same
places in a set of database images for a given set of query images.
This task becomes particularly challenging if the environmental
condition changes between database and query, for example
from day to night. In this paper, we build upon our recent
work on graph optimization for place recognition, where a
graph was used to model additional structural knowledge like
sequences. A subsequent non-linear least squares optimization
(NLSQ) improved the place recognition performance. While this
approach achieves very high performance, it is quite slow and
memory inefficient. This paper addresses the long runtime and
the high memory usage in order to obtain the same or better
place recognition performance faster on larger problems. We
propose a novel graph optimization procedure that is based on
Iterated Conditional Modes (ICM). In addition, we investigate
a new cost function for an edge in the graph. Our novel ICM-
based approach achieves 9.1msec maximum runtime per query,
which is 260× faster than the minimum runtime with NLSQ.
Moreover, with ICM we can optimize problems that are not
feasible with NLSQ on a full graph due to memory limitations.
To demonstrate the superior performance of our ICM-based
method, we provide extensive experimental evaluations with the
essence of 987 precision-recall curves: Our proposed ICM-based
method is compared to the NLSQ-based method as well as
to six sequence-based approaches from the literature on 21
sequence combinations from five datasets with four different
image descriptors. Our experiments show that our ICM-based
method with sequence-exploitation not only improves the NLSQ-
based performance by 10% on average while being 385× faster
and using more than 60× less memory. It also significantly
outperforms all six sequence-based methods from the literature
by at least 32% on average with the NetVLAD descriptor while
using comparable runtime and memory. Code is available online1.

I. INTRODUCTION

Visual place recognition is the task of finding same places in
a set DB of M database images for a set Q of N query images.
This becomes particularly challenging if the environmental
condition changes between both sets, for example from day
to night. Visual place recognition is required for tasks like
loop closure detection in SLAM and candidate selection
for global localization. It is subject of active research and
many approaches for performance improvements have been
proposed. These address different elements of the basic place
recognition pipeline as shown in Fig. 1.

This work was supported by the German Federal Ministry for Economic
Affairs and Energy.

1Source code: https://www.tu-chemnitz.de/etit/proaut/prstructure

Query
Q

Database
DB

Descriptors

Descriptors

Pairwise
Descriptor
Similarity

Matching
Decisions

Standardization Sequence
Processing

Graph-based
Processing

Additional knowledge
(intra-set similarities,

database poses,
sequences)

Basic
Pipeline

Extensions
Based on
Structural
Information
of the Task

Fig. 1. The basic place recognition pipeline (above the horizontal dashed
line) can be extended with additional information (below this line). Established
approaches are the standardization of descriptors [31] and sequence processing
(e.g., [22, 25]). We propose a novel optimization procedure for graph-based
place recognition that fuses various sources of additional information in a
single graph.

Many approaches exploit additional structural knowledge
like spatio-temporal sequences in DB and Q, intra-database
and intra-query similarities, or odometry. However, most meth-
ods focus on only one type of additional knowledge, even if
more information would be available or use them successively
rather than in combination. To address this problem, we
proposed in our recent work [32] a graph-based framework
for place recognition that fuses additional structural knowl-
edge from different sources in a single graph. A subsequent
optimization of the graph leads to significantly improved
place recognition results. The experimental evaluation in [32]
demonstrated a very good place recognition performance of
the graph-based approach, which significantly outperformed
multiple sequence-based methods from the literature.

A drawback of our graph-based method from [32] is the
relatively long runtime and memory inefficiency: In our ex-
periments, we measured a maximum runtime of 5.3 sec per
query image and had to use partial optimizations of the graph
as in [32] due to memory limitations. The reason for the long
runtime and memory inefficiency is the used non-linear least
squares optimization (NLSQ) of the graph. It has to operate
on a sparse but potentially huge Jacobian matrix J and on an
often very long vector of residuals r.

In this paper, we adopt our graph-based approach from [32]
with its superior place recognition performance. We contribute
• a novel graph optimization procedure based on Iterated

Conditional Modes (ICM) that significantly improves the
runtime and memory efficiency (Sec. VI)

 ���

https://www.tu-chemnitz.de/etit/proaut/prstructure

• a new cost function for an edge in the graph (Sec. IV)
• the sequence-based method SeqConv which is used dur-

ing optimization with ICM (Sec. VII)
• an extensive experimental evaluation of our approach

with comparisons to [32] and six sequence-based methods
from the literature on four different descriptors and 21
datasets (Sec. VIII)

Further, we provide a short introduction to the graph-based
approach from [32] (Sec. III), discuss why the NLSQ-based
optimization is slow and memory inefficient (Sec. V) and
conclude our work in Sec. IX.

II. RELATED WORK

Visual place recognition in changing environments is a
subject of active research. Challenges and properties of visual
place recognition are discussed in [30]. An overview of
existing methods is given in a survey from 2016 [19]. In this
paper, we extend our recent graph-based approach for place
recognition from [32]. Our method optimizes the pairwise
image similarities ŝij ∈ Ŝ from pairwise image descriptor
comparisons between the database and query set. There are
various image descriptors in the literature as discussed in
Sec. II-A. Before optimization the used graph models depen-
dencies between pairwise image similarities ŝij in Ŝ based
on structural knowledge from intra-database similarities ŜDB ,
intra-query similarities ŜQ (Sec. II-B) and spatio-temporal
sequences in the database and query set (Sec. II-C). In [32]
the graphical model is optimized via non-linear least squares
optimization. In this paper, we propose the usage of the
different optimization scheme ICM (Sec. II-D).

A. Image descriptors for visual place recognition in changing
environments

As hand-designed local image feature detectors like
SURF [5] fail under appearance changes [37, 10, 36], deep-
learned feature detectors and descriptors like DELF [28] and
D2-Net [9] have been proposed. While these local descriptors
achieve comparatively high performance, they are relatively
slow to compare. Therefore, holistic image descriptors have
been proposed that express each image in a single vector
and allow a fast descriptor comparison. Sünderhauf et al. [35]
demonstrated that flattened intermediate CNN-layers like the
conv3-layer from AlexNet [18] trained for image classification
can be used as holistic image descriptor to match places
despite appearance changes. HybridNet [7] uses a similar
architecture with a flattened intermediate layer-output, but was
additionally trained for place recognition to achieve higher
performance. NetVLAD [2] is a deep-learned architecture
that combines CNN-layer outputs with a trainable version of
VLAD (vector of locally aggregated descriptors) [16]. The
usage of VLAD [16] allows the computation of potentially
more viewpoint robust descriptors. DenseVLAD [36] extracts
hand-designed RootSIFT [1] features densely all over the
image to circumvent the feature detection and combines these
with VLAD. In [24], hyperdimensional computing was used
to convert a set of local image descriptors into a holistic

descriptor. The performance of holistic descriptors can be
further improved by descriptor standardization [31].

B. Intra-database and intra-query similarities for perfor-
mance improvements

The approach in this paper models dependencies between
image similarities ŝij ∈ Ŝ in a graph based on prior struc-
tural knowledge from intra-database similarities ŜDB , intra-
query similarities ŜQ, and spatio-temporal sequences. In [33]
intra-database similarities ŜDB were used for a selection of
matching candidates from the database to reduce the number
of required image comparisons for efficient place recognition.
Similarly, Vysotska et al. [40] exploited noisy GPS priors from
the database and query set to identify matching candidates for
a reduced number of image comparisons and for performance
improvements by avoiding image comparisons between similar
looking but distant places. In [26] intra-database similarities
ŜDB and intra-query similarities ŜQ were used to resolve
matching inconsistencies in Ŝ for performance improvements.

C. Sequence-based methods for place recognition

As explained in Sec. III-A, sequence information can be
used if both the database and the query set are recorded as
spatio-temporal sequences. There is a wide range of existing
sequence-based methods for place recognition in the literature
like our graph-based approach in this paper that exploit this
type of information. Most methods operate on the image
similarities ŝij ∈ Ŝ to refine their values. [23] uses a flow
network for sequence search. It models all pairwise similarities
in Ŝ that belong to the first and last query image as source and
sink, and tries to find an optimal flow between both. OPR [38]
and VPR [39] are methods that extend this approach for more
efficient descriptor comparisons and higher performance. An-
other graphical model is used in HMM [15], where the authors
define a hidden markov model with emission and transition
matrix for subsequent sequence search. SeqSLAM by Milford
and Wyeth [22] searches for piecewise linear segments of high
similarities in the similarity matrix Ŝ. Similarly, ABLE [3]
increases values in Ŝ that are part of a diagonal with high
similarities. SMART [29] is an extension of SeqSLAM that
additionally involves odometry for sequence search.

Different to the previously mentioned sequence-based ap-
proaches that operate on the similarity matrix Ŝ, a few methods
in the literature encode sequence information directly into
postprocessed holistic descriptors. MCN [25] uses a neuro-
logically inspired architecture to encode descriptor sequences
of consecutive images into a new descriptor for each image.
Garg et al. proposed Delta Descriptors [11] which uses a
single, feature-wise convolution over all descriptors to encode
sequence information in the output descriptors.

D. Optimization via Iterated Conditional Modes (ICM)

In our previous work [32], a modeled graph for place
recognition is optimized via non-linear least squares opti-
mization. While this approach outperforms state-of-the-art
sequence-based methods, its optimization is relatively slow

 ���

s11 s12 s13

s21

s31

s22

s32

s23

s33

fprior(sij)

Factors
unary:

fQloop(sij,skl) + fQexcl(sij,skl)
fDB

loop(sij,skl) + fDB
excl(sij,skl)

binary:

Q
D
B

s11 s12 s13

s21

s31 s32

s23

s33

Q

D
B s22

n-nary:
fseq(sij,si-L/2,j-L/2,...,si+L/2,j+L/2)

Fig. 2. Illustration of the graph structure with nodes sij ∈ S and factors f .
See Sec. III for a detailed introduction to our used graphs.

and memory inefficient because of its need for the formulation
and processing of a large Jacobian matrix J and a long vector
of residuals r (cf. Sec. V). In [27, p.255], a more memory
efficient non-linear least squares optimization is presented:
Instead of using J and r for optimization, Gauss-Newton steps
are performed on a matrix JTJ and a vector JT r. However,
this approach requires a successive calculation of JTJ and
JT r to be memory efficient which results in a potentially even
longer runtime.

As discussed in the conclusion of [32], earlier work on
graph optimization used hill-climbing techniques like ICM
[17, p.599]. ICM (Iterated Conditional Modes) [6] optimizes
each variable in a graph separately conditioned on the other
variable’s values. ICM has already been applied in robotics, for
example in [12] for SLAM where ICM was used to optimize
robot poses and landmark positions that were modeled in a
Markov random field (MRF).

III. THE GRAPHICAL MODEL AT A GLANCE

The graphical model proposed in [32] was designed as a
framework for place recognition. Different types of additional
structural knowledge can be modeled in the graph. This
combination of different knowledge allows the exploitation
of all information in a single method instead of leveraging
them in successive approaches. This joint exploitation of
knowledge allows the inhibition of contradictory cues and the
amplification of matching cues during graph optimization for
better place recognition performance.

A factor graph [8] is used as graphical model that consists
of nodes and factors (edges). For optimization, a quadratic
cost function for each factor type is formulated that involves
one or multiple nodes. The used factor types depend on the
available additional structural knowledge. Two examples of a
graph for place recognition are shown in Fig. 2.

A. Structural knowledge

Different types of additional structural knowledge can be
leveraged in the graph. If a new type shall be used, a new

D
B

QDB

Q

intra-database
similarity ŜDB

intra-query
similarity ŜQ

inter-set
similarity Ŝ

vvehicle=0
in DB

vvehicle=0
in Q

vvehicle=0
in DB/Q

sequence

No overlap
with Q

Fig. 3. An example with intra-database similarities ŜDB , intra-query
similarities ŜQ and inter-set similarities Ŝ. The shape of high similarities
in ŜDB and ŜQ affects the appearance of Ŝ. Since the database and query
images were recorded as spatio-temporal sequences, Ŝ contains a continuous
trajectory (termed sequence) of high similarities. See Sec. III-A for further
explanation.

factor with corresponding quadratic cost function has to be
formulated. In [32] and in this paper, we exploit three types
of additional structural knowledge:

1) Intra-database similarities ŝDB
ij ∈ ŜDB : ŜDB contains

pairwise descriptor similarities ŝDB
ij between the i-th and

j-th database image. Accordingly, ŜDB is a symmetric
matrix with maximum similarity along the main diag-
onal. Intra-database similarities are suited to find same
places in the database due to stops and loops (high ŝDB

ij),
but also to exclude them (low ŝDB

ij). This information is
valuable because intra-set similarities affect the inter-set
similarities ŝij ∈ Ŝ (see Fig. 3) and reveal structures in
Ŝ.

2) Intra-query similarities ŝQij ∈ ŜQ: The properties and
advantages of intra-database similarities also apply for
the pairwise intra-query similarities ŝQij (see Fig. 3).

3) Spatio-temporal sequences: If images in the database
and in the query were recorded as spatio-temporal se-
quences, i.e. consecutive images i and i+1 are adjacent
in the world, a trajectory of high similarities ŝij can
be observed in Ŝ as can be seen in Fig. 3. This type
of additional structural knowledge is widely used in the
literature on place recognition (cf. Sec. II-C).

B. Nodes

The nodes sij ∈ S model the similarities ŝij ∈ Ŝ with
Ŝ ∈ RM×N from the pairwise descriptor comparisons between
a set of M database images and a set of N query images. ŝij
expresses the pairwise similarity between the i-th database
image and the j-th query image. Each similarity ŝij is modeled
as a separate node sij in the graph (see Fig. 2). The value of
sij is modified during graph optimization.

 ���

C. Factors in the graph

Nodes in the graph are connected by different types of
factors as shown in Fig. 2. The used factors depend on the
available additional structural knowledge. Factors formulate
dependencies between different nodes in the graph from this
knowledge.

Factors and cost functions: In [32], we formulated the six
different factors fprior, fseq, fDB

loop , fQloop, fDB
excl and fQexcl:

• fprior prevents too large deviations of node sij from its
initial similarity ŝij . It is the only obligatory factor that
is used in every graph.

• fseq is used in case of spatio-temporal sequences in
database and query.

• fDB
loop and fDB

excl are used with intra-database similarities.
• fQloop and fQexcl are used with intra-query similarities.
For each factor a corresponding quadratic cost function was

formulated that involves one or more nodes and additional
data. For example, the unary factor fprior prevents too large
deviations of each node sij from the initial similarities ŝij by
ensuring

sij ≈ ŝij (1)

with a corresponding quadratic cost function

fprior(sij) = (sij − ŝij)2 (2)

The quadratic cost functions of factor fseq, fDB
loop and fQloop

express rules similar to Eq. (1) with cost functions similar to
Eq. (2). Please refer to [32] for details about the expressed
rules, corresponding cost functions, and their derivations. The
factors fDB

excl and fQexcl with their quadratic cost functions are
different and discussed in the following Sec. IV.

D. Graph optimization

After graph creation, the graph has to be optimized. The
optimization modifies the values of all nodes sij in order
to get a refined version of ŝij ∈ Ŝ. The optimal values s∗ij
potentially better conform the dependencies and constraints
that were introduced into the graph by the factors from
additional knowledge.

Different optimization techniques can be employed. In [32]
we used a non-linear least squares optimization (NLSQ).
While NLSQ in [32] achieved very good performance, it was
1) relatively slow with ∼5.7 sec maximum runtime per query
and 2) memory inefficient as it required a 500×500 patch-wise
optimization of S due to memory limitations. See Sec. V for
a more detailed discussion of runtime and memory limitations
with NLSQ. In Sec. VI we propose an alternative optimization
procedure based on Iterated Conditional Modes (ICM) that is
much faster, much more memory efficient and even achieves
better performance (cf. Sec. VIII-B).

IV. A NEW QUADRATIC COST FUNCTION FOR
FACTOR fDB

EXCL AND fQEXCL

The rules and cost functions of the factors fDB
excl and fQexcl

are very different to the rules and cost functions of fprior, fseq,

fDB
loop and fQloop that are all similar to Eq. (1) and (2) as already

mentioned in Sec. III-C.
The rules of fDB

excl and fQexcl that have to be expressed in a
quadratic cost function for optimization are

fDB
excl : ¬(sij↑ ∧ skj↑) iff ŝDB

ik ↓ (3)

fQexcl : ¬(sij↑ ∧ sil↑) iff ŝQjl↓ (4)

The rule of fDB
excl expresses that “if the intra-database similar-

ity ŝDB
ik between database image i and k is low (↓), not both

database images i and k can be similar to query image j at
once.” That means either sij or skj can be high (↑) or neither
if ŝDB

ik is low (↓). Please refer to [32] for a more detailed
description.

A. The multiplication-based cost function from [32]

There are several ways to formulate a corresponding
quadratic cost function for both rules in Eq. (3) and (4).
In [32], the following multiplication-based cost functions were
formulated:

fDB
excl = (1− ŝDB

ik) · (sij ·skj)2 (5)

fQexcl = (1− ŝQjl) · (sij ·sil)
2 (6)

In Eq. (5), as long as sij is low, skj can be low or high
without really increasing the cost, and vice versa. The factor
(1− ŝDB

ik) ensures that this rule only applies if ŝDB
ik is low (↓).

Same applies for fQexcl in Eq. (6).

B. The new minimum-based cost function

We propose alternative quadratic cost functions for the rules
in Eq. (3) and (4) that are based on a minimum:

fDB
excl = (1− ŝDB

ik) ·min(sij , skj)
2 (7)

fQexcl = (1− ŝQjl) ·min(sij , sil)
2 (8)

In Eq. (7), the factor (1 − ŝDB
ik) again ensures that this rule

only applies if ŝDB
ik is low (↓). As soon as sij is low, skj can

be arbitrarily higher without affecting the cost, and vice versa.
If both similarities sij and skj are high, the cost will be high
as well. An advantage of the minimum-based cost functions
could be the piecewise linearity, but a deeper analysis of this
property is beyond the scope of this paper.

V. WHY NON-LINEAR LEAST SQUARES
OPTIMIZATION OF THE GRAPH IS INEFFICIENT

After the formulation of a graph (Sec. III), the nodes sij
have to be optimized in order to get an improved similarity
matrix S out of Ŝ. In [32] a graph was optimized using a
non-linear least squares optimization procedure. It was im-
plemented in Python with scipy’s least squares-optimization
function and the Trust Region Reflective algorithm.

The used implementation requires the formulation of a
Jacobian matrix J and a vector of residuals r. The size of
J depends on the total number of factors #f and the number
of nodes #nodes with

J ∈ R#f×#nodes (9)

 ���

Note that J is sparse since only two nodes are involved in
most cost functions. The size of vector r solely depends on
#f with

r ∈ R#f (10)

The number of nodes (#nodes) in a graph depends on
the number of database images M and the number of query
images N with

#nodes = M ·N (11)

According to the way the different factor types are used [32],
the total number of factors #f can be quite high:

#f = 2 ·M ·N︸ ︷︷ ︸
#fprior+#fseq

+ 2 ·N ·
(
M

2

)
︸ ︷︷ ︸
#fDB

loop +#fDB
excl

+ 2 ·M ·
(
N

2

)
︸ ︷︷ ︸
#fQ

loop+#fQ
excl

(12)

Operations for optimization over the potentially extremely
high number of elements in J and r cause a high computa-
tional effort. Moreover, due to the nonlinearity of many factors,
J (like r) has to be updated after each optimization step. This
leads to long runtimes.

The cubically increasing number of factors leads to an
extremely high memory usage even for smaller datasets. For
a relatively small dataset with 1000 database and 1000 query
images, the Jacobian matrix J would have (2 · 109) × 106

elements. Even if J is represented as a sparse matrix with
approx. two entries per row and 4 Bytes per entry, the
memory usage would be >14.9 GB; the corresponding vector
of residuals r would require approx. 7.5 GB of memory.

There are optimization methods for non-linear least squares
optimization that reduce the memory requirements by oper-
ating on a matrix JTJ and a vector JT r ([27, p.255], cf.
Sec. II-D). But these would probably even increase the runtime
as a tradeoff, because the elements of JTJ and JT r have
to be computed successively in order to keep the memory
consumption low. A detailed investigation of this optimization
approach is beyond the scope of this paper and part of future
work. To partially circumvent the high memory usage of J
and r, we performed in [32] a partial optimization of S on
approx. (500×500)-sized patches.

In Sec. VI, we propose a much faster and memory efficient
optimization based on ICM. It fully avoids the allocation and
processing of huge matrices like J and r. And as we will
show in Sec. VIII-B, the ICM-based graph optimization for
place recognition even outperforms the already good results
from [32] as it can optimize the full S-matrix instead of
patches.

VI. GRAPH OPTIMIZATION WITH ICM

In the previous Sec. V, we gave an intuition why the
non-linear least squares optimization (NLSQ) used in [32] is
relatively slow and memory inefficient. We figured out two
main reasons: 1) the allocation and updating of the potentially
huge Jacobian matrix J and the vector of residuals r and 2) the
operation on J and r for optimization. For a much faster and
memory efficient graph optimization, we propose the usage of

the alternative optimization scheme ICM that fully avoids the
usage of huge matrices like J and r.

A. The basic idea of ICM

ICM (Iterated Conditional Modes) was proposed by Besag
for the optimization of Markov Random Fields for image
denoising [6]. The basic idea of ICM is as follows: Instead of
minimizing an error function E(∀sij ∈ S) (e.g., the sum over
all factor’s cost functions) to optimize all nodes at once, each
node is optimized separately conditioned on all other nodes
by using their values from the previous iteration. This tremen-
dously reduces the complexity of the error function E(·) and
simplifies its minimization. This procedure is repeated several
iterations until convergence or for a fixed number of iterations.
The application of ICM for the optimization of the graph for
place recognition in Sec. VI-B below will clarify this idea.

B. ICM-based graph optimization for place recognition

In order to optimize the graph with its nodes sij ∈ S, the
global error function E(·) has to be minimized with

s∗ij ∈ S∗ = arg min
sij∈S

E(∀sij ∈ S) (13)

E(·) is a function of the M · N nodes sij ∈ S. It is the
sum over all quadratic cost functions f(·) of all factors in the
graph:

E(∀sij ∈ S) =
∑

∀f∈Graph

f(·) (14)

With ICM, we define E(·) to be a set of error functions
Eij(sij | ·). Each Eij(sij | ·) is a function of a single node
sij conditioned on the other nodes. Eij(sij | ·) is the sum
over all quadratic cost functions f that depend on sij :

Eij(sij | ·) =
∑

∀f(sij |·)∈Graph

f(sij | ·) (15)

Accordingly, each error function Eij(sij | ·) is a quadratic
function of only a single node sij . This allows a conversion
into the standard form

E(sij | ·) = a · s2ij + b · sij + c (16)

with coefficients a, b and c. Given this standard form, the
optimal value s∗ij can be easily computed with

s∗ij = arg min
sij

(E(sij | ·)) = − b

2a
(17)

c can be neglected for computational efficiency. For fast
computation, all s∗ij should be computed synchronously based
on S from the previous iteration (St−1) as already proposed
in [6].

 ���

TABLE I
PARTIAL COEFFICIENTS af AND bf FOR EACH FACTOR WITH

CORRESPONDING COST FUNCTION.
f(sij) af bf

fprior = (sij − ŝij)2

fprior 1 −2 · ŝij
fDB

loop = ŝDB
ik (sij − skj)2; fQ

loop = ŝQjl(sij − sil)
2

fDB
loop

wDB
loop

M−1
·
∑
∀k\i ŝ

DB
ik −

2·wDB
loop

M−1
·
∑
∀k\i ŝ

DB
ik skj

fQ
loop

w
Q
loop

N−1
·
∑
∀l\j ŝ

Q
jl −

2·wQ
loop

N−1
·
∑
∀l\j ŝ

Q
jlsil

fDB
excl = (1− ŝDB

ik)(sij ·skj)2; fQ
excl = (1− ŝQjl)(sij ·sil)

2

fDB
excl

wDB
excl

M−1
·
∑
∀k\i(1− ŝDB

ik) · s2kj 0

fQ
excl

w
Q
excl

N−1
·
∑
∀l\j(1− ŝQjl) · s

2
il 0

fDB
excl =(1−ŝDB

ik) min(sij , skj)2, fQ
excl=(1−ŝQjl) min(sij , sil)

2

fDB
excl

wDB
excl

M−1
·
∑
∀k|sij<skj

(1− ŝDB
ik) 0

fQ
excl

w
Q
excl

N−1
·
∑
∀l|sij<sil

(1− ŝQjl) 0

fseq = (sij − s̄ij)2

fseq wseq −2 · wseq · s̄ij

C. The computation of a and b

a and b depend on the used factors and their quadratic cost
functions, and in turn on the used structural knowledge. They
can be easily computed with

a =
∑
∀f

af , b =
∑
∀f

bf (18)

af and bf are the partial coefficients of each factor type.
The coefficients for the factors used in this paper are listed
in Table I. They were derived from the factor’s quadratic
cost functions that were converted into the standard form
in Eq. (16). Note that a normalization term 1/(M−1) or
1/(N−1) was added for fDB

loop , fQloop, fDB
excl and fQexcl.

For example, if we want to use intra-database similarities
ŜDB together with the multiplicative cost function fDB

excl, we
simply have to sum up the coefficients af and bf for fprior,
fDB
loop and fDB

excl from Table I, and insert them into Eq. (17) to
obtain the equation for optimal values s∗ij :

s∗ij=
ŝij +

wDB
loop

M−1 ·
∑
∀k\i ŝ

DB
ik skj

1 +
wDB

loop

M−1 ·
∑
∀k\i ŝ

DB
ik +

wDB
excl

M−1 ·
∑
∀k\i(1− ŝDB

ik) · s2kj
(19)

D. The full ICM-based graph optimization procedure for place
recognition

The full algorithmic approach of the ICM-based graph
optimization for place recognition is shown in Algorithm 1. It
includes a matrix normalization (Line 1-3), node initialization
(Line 4), the application of a sequence-based method (see
Sec. VII) in case of sequence exploitation (Line 7), the
ICM-based optimization itself (Lines 8-11) and a check for
convergence (Lines 16-17).

During our experiments, we noticed a possible divergence
of sij in case of a too high weighting wseq of the sequence
information. Therefore, we added a simple strategy to our
ICM-based optimization procedure (Line 12-15): If any sij

Algorithm 1: ICM-based graph optimization proce-
dure

Data: ŝij ∈ Ŝ, ŝDB
ij ∈ ŜDB , ŝQij ∈ ŜQ

Input: parameters wDB
loop , wDB

excl , wQ
loop, wQ

excl, wseq

Result: sij ∈ S with S ∈ RM×N

// normalize all similarities to ŝij , ŝ
DB
ij , ŝQij ∈ [0, 1]

1 Ŝ := norm(Ŝ)

2 ŜDB := norm(ŜDB)

3 ŜQ := norm(ŜQ)

// initialize nodes sij ∈ S

4 S := Ŝ

5 St−1 := Ŝ

// optimize S with ICM
6 for iteration = 1, . . . ,#iterations do

// compute all s̄ij ∈ S̄ with seqConv (Sec. VII)
7 ∀i, j : s̄ij = SeqConv({ij}; skl ∈ St−1)

// optimize all variables sij ∈ S
8 for ∀i, j do
9 a :=

∑
∀f af ({i, j}|St−1, Ŝ, Ŝ

DB , ŜQ, S̄)

10 b :=
∑
∀f bf ({i, j}|St−1, Ŝ, Ŝ

DB , ŜQ, S̄)

11 sij := − b
2a

// check for divergence
12 if max |St−1 − S| > 2 and wseq > 0 then

// decrease sequence weight wseq
13 wseq = max(wseq − 0.1, 0)

// initialize nodes sij ∈ S

14 S := Ŝ

15 St−1 := Ŝ

// check for convergence
16 if max |St−1 − S| < 1e− 4 then

// stop optimization if converged
17 break

// store optimization result for next iteration
18 St−1 := S

// return optimized similarities sij ∈ S
19 return S

starts to diverge, wseq is simply reduced by 0.1 and the
optimization is repeated.

VII. THE SEQUENCE-BASED METHOD SEQCONV

The quadratic cost function of factor fseq(sij) (cf.
Sec. III-C) with

fseq(sij) = wseq · (sij − s̄ij)2 (20)

requires a sequence-based method, similar to those in
Sec. II-C, which computes the maximum average similarity
s̄ij of L similarities skl around sij . This method 1) has to be
fast to not slow down the graph optimization process, 2) must
be memory efficient to not increase the memory requirements
of the graph optimization and 3) should achieve as good
performance as possible to boost the performance of the graph-
based approach for place recognition.

 ���

For this purpose, we propose SeqConv, a simple and thus
fast and memory efficient sequence-based method. It can be
formulated in a single equation:

s̄ij = SeqConv({ij}, skl ∈ S)

= max
v∈{vmin..vmax}

1

L

j+bL/2c∑
l=j−bL/2c

si+round(v·l),l (21)

SeqConv tries to find a line segment with length L in S around
sij . At the borders of S, the line segment is truncated and L
is decreased. v defines the slope of the line in S; in our work,
v equals {vmin..vmax} = {0.8, 0.9, 1, 1.1, 1.2}.

SeqConv can be efficiently implemented using
|{vmin..vmax}| convolutions. Each slope v can be expressed
as a separate convolutional kernel. This formulation as
convolution allows the usage of highly optimized software
libraries or even GPU-based implementations like tensorflow.

In our experimental results in Sec. VIII, we will demonstrate
that SeqConv is fast, memory efficient, and achieves high
performance compared to sequence-based approaches from the
literature.

VIII. EXPERIMENTAL RESULTS

In the algorithmic design of our ICM-based graph opti-
mization for place recognition (short ICM), we were targeting
on the creation of an algorithm that 1) at least maintains
the performance of the non-linear least squares based graph
optimization for place recognition (short NLSQ) from [32]
while being 2) fast and 3) memory efficient.

In the following experiments, we will show that the per-
formance of NLSQ is not only maintained but partially
improved with ICM (Sec. VIII-B). The performance of the
new minimum-based cost function for fexcl is investigated in
Sec. VIII-C. Moreover, we will show that the full setup of
ICM with sequence exploitation significantly outperforms six
state-of-the-art sequence-based methods (Sec. VIII-D), present
corresponding runtimes and memory usages (Sec. VIII-E) and
demonstrate the versatility of ICM on four different holistic
image descriptors from the literature (Sec. VIII-F).

A. Experimental Setup

1) Image descriptors: Like in [32], NetVLAD [2] is used as
CNN-image descriptor throughout all experiments including
runtime and memory measurements. For NetVLAD, we use
the author’s implementation trained on the Pitts30k dataset
with VGG-16 and whitening. In Sec. VIII-F, we evaluate
performances with three additional holistic image descriptors:
1) AlexNet [35]: the flattened conv3-layer trained on ImageNet
from Matlab is used, 2) DenseVLAD [36]: the author’s im-
plementation with provided weights is used and 3) HybridNet
[7]: the flattened conv5-layer from the author’s implementation
with provided weights is used.

2) Metric: The performance is measured with average
precision which is the area under the precision-recall curve.

3) Datasets: We use the same datasets as described in [32]:
All experiments are based on the five different datasets Nord-
land [34], StLucia (Various Times of the Day) [14], CMU
(Visual Localization) [4], GardensPoint (Walking) [13] and
Oxford (RobotCar) [20]. For Oxford, we sampled different
sequences with one frame per second and use the high
accuracy position data from [21] as ground truth.

4) Implementation: For the NLSQ-based graph optimiza-
tion, we use our Python implementation from [32]. Our ICM-
based graph optimization is implemented in Matlab.

5) Parameters: For the NLSQ-based graph optimization,
we use the same parameters as in [32] with wDB

loop =wDB
loop =1,

wDB
excl =wDB

excl =20 and wseq=10. With ICM, we only changed
wseq to 0.5 for ICMmul or 0.2 for ICMmin. ICMmul uses
the multiplicative (Sec. IV-A) and ICMmin the minimum-
based cost function fexcl (Sec. IV-B). At most 200 iterations
for optimization with ICM were performed. While NLSQ
optimizes at most (500×500)-patches of S at once (like in
[32]) due to memory limitations, ICM performs optimization
always on the full graph. For all sequence-based methods, we
set the sequence length L = 11; other parameters are set as
proposed in the corresponding papers.

B. Optimization with NLSQ vs ICMmul

In a first experiment, we compare the performance of the
NLSQ-based optimization with the ICMmul-based optimiza-
tion. The three used graphs are identical to the graphs in [32]
and model different amounts of additional knowledge. Results
are show in Table II.

Both graph optimizations outperform the raw NetVLAD
descriptor. In comparison, NLSQ and ICMmul perform sim-
ilarly with additional structural knowledge from ŜDB and
ŜDB+ŜQ. Given sequence information (+Seq), ICMmul out-
performs NLSQ by 10% on average, presumably because
ICMmul optimizes the full graph at once while a patch-wise
optimization has to be done with NLSQ and because of a better
control of the optimization procedure. The full optimization
allows a more widespread usage of structural knowledge even
between distant similarities in S. The results demonstrate the
superiority of ICMmul over NLSQ: ICMmul achieves better
performance and allows a full optimization of S due to its
memory efficiency.

C. Comparison of the multiplicative and the minimum-based
cost function fexcl (ICMmul vs ICMmin)

Table II compares the performances of the ICM-based graph
optimization with the multiplication-based (Sec. IV-A) and the
minimum-based (Sec. IV-B) cost functions fDB

excl and fQexcl.
ICMmin slightly outperforms ICMmul, particularly with addi-
tional information from ŜDB+ŜQ. The low performance gap
indicates that both cost functions can be used interchangeably.

D. Comparison of ICM with state-of-the-art sequence-based
methods

The full setup of ICM exploits the same sequence informa-
tion as sequence-based methods from the literature. To show

 ���

TABLE II
AVERAGE PRECISION WITH NETVLAD FOR DIFFERENT CONFIGURATIONS AND GRAPH OPTIMIZATION APPROACHES. COLORED ARROWS INDICATE

LARGE (≥25% BETTER/ WORSE) OR MEDIUM (≥10%) DEVIATION COMPARED TO THE RAW DESCRIPTOR PERFORMANCE. BOLD TEXT INDICATES THE
BEST PERFORMANCE PER ROW AND PER INTRA-DATABASE SOURCE.

Additional Structural Knowledge
ŜDB ŜDB + ŜQ ŜDB + ŜQ + Seq

Raw NLSQ ICMmul ICMmin NLSQ ICMmul ICMmin NLSQ ICMmul ICMmin

Dataset Database Query [2] [32] (ours) (ours) [32] (ours) (ours) [32] (ours) (ours)
Nordland fall spring 0.39 0.50 ↑ 0.50 ↑ 0.58 ↑ 0.52 ↑ 0.52 ↑ 0.63 ↑ 0.93 ↑ 0.98 ↑ 1.00 ↑

fall winter 0.06 0.09 ↑ 0.09 ↑ 0.14 ↑ 0.14 ↑ 0.14 ↑ 0.21 ↑ 0.42 ↑ 0.83 ↑ 0.98 ↑
spring winter 0.11 0.16 ↑ 0.16 ↑ 0.17 ↑ 0.24 ↑ 0.24 ↑ 0.30 ↑ 0.60 ↑ 0.92 ↑ 0.99 ↑
summer spring 0.32 0.45 ↑ 0.45 ↑ 0.54 ↑ 0.48 ↑ 0.48 ↑ 0.59 ↑ 0.92 ↑ 0.97 ↑ 1.00 ↑
summer fall 0.63 0.74↗ 0.75↗ 0.82 ↑ 0.77↗ 0.77↗ 0.87 ↑ 1.00 ↑ 0.88 ↑ 1.00 ↑

StLucia 100909-0845 190809-0845 0.41 0.46↗ 0.46↗ 0.51↗ 0.50↗ 0.50↗ 0.57 ↑ 0.74 ↑ 0.80 ↑ 0.87 ↑
100909-1000 210809-1000 0.47 0.52↗ 0.52↗ 0.56↗ 0.55↗ 0.55↗ 0.61 ↑ 0.80 ↑ 0.84 ↑ 0.88 ↑
100909-1210 210809-1210 0.51 0.56→ 0.56→ 0.58↗ 0.60↗ 0.59↗ 0.62↗ 0.86 ↑ 0.87 ↑ 0.89 ↑
100909-1410 190809-1410 0.38 0.46↗ 0.46↗ 0.49 ↑ 0.49 ↑ 0.49 ↑ 0.54 ↑ 0.79 ↑ 0.85 ↑ 0.90 ↑
110909-1545 180809-1545 0.27 0.33↗ 0.32↗ 0.42 ↑ 0.34 ↑ 0.35 ↑ 0.48 ↑ 0.49 ↑ 0.71 ↑ 0.90 ↑

CMU 20110421 20100901 0.73 0.74→ 0.74→ 0.72→ 0.75→ 0.73→ 0.74→ 0.81↗ 0.85↗ 0.83↗
20110421 20100915 0.77 0.78→ 0.78→ 0.76→ 0.77→ 0.77→ 0.77→ 0.85↗ 0.85↗ 0.84→
20110421 20101221 0.56 0.58→ 0.58→ 0.53→ 0.59→ 0.58→ 0.54→ 0.65↗ 0.64↗ 0.64↗
20110421 20110202 0.61 0.67→ 0.67→ 0.63→ 0.69↗ 0.67→ 0.66→ 0.83 ↑ 0.87 ↑ 0.80 ↑

GardensPoint day-right day-left 0.97 0.98→ 0.98→ 1.00→ 0.98→ 0.98→ 1.00→ 1.00→ 1.00→ 1.00→
day-right night-right 0.46 0.50→ 0.50→ 0.53↗ 0.56↗ 0.56↗ 0.74 ↑ 0.82 ↑ 0.98 ↑ 1.00 ↑
day-left night-right 0.34 0.38↗ 0.38↗ 0.34→ 0.43 ↑ 0.43 ↑ 0.46 ↑ 0.78 ↑ 0.95 ↑ 1.00 ↑

Oxford 2014-12-09-13-21-02 2015-05-19-14-06-38 0.78 0.92↗ 0.87↗ 0.85→ 0.89↗ 0.85→ 0.88↗ 0.92↗ 0.95↗ 0.91↗
2014-12-09-13-21-02 2015-08-28-09-50-22 0.60 0.69↗ 0.70↗ 0.66→ 0.71↗ 0.66→ 0.71↗ 0.68↗ 0.77 ↑ 0.73↗
2014-12-09-13-21-02 2014-11-25-09-18-32 0.87 0.89→ 0.90→ 0.90→ 0.90→ 0.90→ 0.89→ 0.88→ 0.87→ 0.85→
2014-12-09-13-21-02 2014-12-16-18-44-24 0.55 0.54→ 0.58→ 0.46↘ 0.65↗ 0.62↗ 0.54→ 0.77 ↑ 0.85 ↑ 0.70 ↑

worst 0.06 0.09 0.09 0.14 0.14 0.14 0.21 0.42 0.64 0.64
best 0.97 0.98 0.98 1.00 0.98 0.98 1.00 1.00 1.00 1.00
average 0.51 0.57 0.57 0.58 0.60 0.59 0.64 0.79 0.87 0.89

TABLE III
AVERAGE PRECISION WITH NETVLAD FOR THE COMPARISON OF OUR ICM-BASED METHODS WITH SEQUENCE-BASED METHODS FROM THE

LITERATURE.
Additional Structural Knowledge

ŜDB + ŜQ + Seq Seq
Raw ICMmul ICMmin SeqConv MCN ABLE VPR OPR SeqSLAM Delta

Dataset Database Query [2] (ours) (ours) (ours) [25] [3] [39] [38] [22] [11]
Nordland fall spring 0.39 0.98 ↑ 1.00 ↑ 0.95 ↑ 0.54 ↑ 0.95 ↑ 0.68 ↑ 0.90 ↑ 0.89 ↑ 0.39→

fall winter 0.06 0.83 ↑ 0.98 ↑ 0.63 ↑ 0.20 ↑ 0.44 ↑ 0.26 ↑ 0.19 ↑ 0.72 ↑ 0.16 ↑
spring winter 0.11 0.92 ↑ 0.99 ↑ 0.80 ↑ 0.26 ↑ 0.66 ↑ 0.39 ↑ 0.18 ↑ 0.83 ↑ 0.23 ↑
summer spring 0.32 0.97 ↑ 1.00 ↑ 0.95 ↑ 0.43 ↑ 0.94 ↑ 0.64 ↑ 0.73 ↑ 0.91 ↑ 0.41 ↑
summer fall 0.63 0.88 ↑ 1.00 ↑ 1.00 ↑ 0.47 ↓ 1.00 ↑ 0.89 ↑ 0.97 ↑ 0.95 ↑ 0.51↘

StLucia 100909-0845 190809-0845 0.41 0.80 ↑ 0.87 ↑ 0.76 ↑ 0.56 ↑ 0.51↗ 0.47↗ 0.54 ↑ 0.12 ↓ 0.73 ↑
100909-1000 210809-1000 0.47 0.84 ↑ 0.88 ↑ 0.84 ↑ 0.60 ↑ 0.60 ↑ 0.48→ 0.55↗ 0.12 ↓ 0.74 ↑
100909-1210 210809-1210 0.51 0.87 ↑ 0.89 ↑ 0.83 ↑ 0.65 ↑ 0.61↗ 0.47→ 0.55→ 0.14 ↓ 0.74 ↑
100909-1410 190809-1410 0.38 0.85 ↑ 0.90 ↑ 0.81 ↑ 0.51 ↑ 0.57 ↑ 0.42↗ 0.53 ↑ 0.14 ↓ 0.75 ↑
110909-1545 180809-1545 0.27 0.71 ↑ 0.90 ↑ 0.55 ↑ 0.39 ↑ 0.36 ↑ 0.41 ↑ 0.52 ↑ 0.13 ↓ 0.64 ↑

CMU 20110421 20100901 0.73 0.81↗ 0.83↗ 0.81↗ 0.81↗ 0.76→ 0.47 ↓ 0.49 ↓ 0.03 ↓ 0.36 ↓
20110421 20100915 0.77 0.85↗ 0.84→ 0.85↗ 0.79→ 0.77→ 0.47 ↓ 0.50 ↓ 0.07 ↓ 0.54 ↓
20110421 20101221 0.56 0.64↗ 0.64↗ 0.64↗ 0.61→ 0.59→ 0.43↘ 0.47↘ 0.05 ↓ 0.32 ↓
20110421 20110202 0.61 0.87 ↑ 0.80 ↑ 0.75↗ 0.80 ↑ 0.65→ 0.47↘ 0.45 ↓ 0.13 ↓ 0.51↘

GardensPoint day-right day-left 0.97 1.00→ 1.00→ 1.00→ 0.98→ 1.00→ 0.69 ↓ 0.69 ↓ 0.42 ↓ 1.00→
day-right night-right 0.46 0.98 ↑ 1.00 ↑ 0.74 ↑ 0.47→ 0.68 ↑ 0.52↗ 0.64 ↑ 0.34 ↓ 0.80 ↑
day-left night-right 0.34 0.95 ↑ 1.00 ↑ 0.74 ↑ 0.36→ 0.63 ↑ 0.35→ 0.49 ↑ 0.13 ↓ 0.64 ↑

Oxford 2014-12-09-13-21-02 2015-05-19-14-06-38 0.78 0.95↗ 0.91↗ 0.79→ 0.92↗ 0.64↘ 0.54 ↓ 0.01 ↓ 0.06 ↓ 0.37 ↓
2014-12-09-13-21-02 2015-08-28-09-50-22 0.60 0.77 ↑ 0.73↗ 0.56→ 0.49↘ 0.38 ↓ 0.37 ↓ 0.01 ↓ 0.05 ↓ 0.29 ↓
2014-12-09-13-21-02 2014-11-25-09-18-32 0.87 0.87→ 0.85→ 0.81→ 0.75↘ 0.65 ↓ 0.60 ↓ 0.02 ↓ 0.07 ↓ 0.44 ↓
2014-12-09-13-21-02 2014-12-16-18-44-24 0.55 0.85 ↑ 0.70 ↑ 0.68↗ 0.51→ 0.56→ 0.17 ↓ 0.09 ↓ 0.01 ↓ 0.24 ↓

worst 0.06 0.64 0.64 0.55 0.20 0.36 0.17 0.01 0.01 0.16
best 0.97 1.00 1.00 1.00 0.98 1.00 0.89 0.97 0.95 1.00
average 0.51 0.87 0.89 0.79 0.58 0.66 0.49 0.45 0.30 0.51

the superiority of ICM, we compared it with the six sequence-
based approaches MCN [25], ABLE [3], VPR [39], OPR [38],
SeqSLAM [22] and Delta (Descriptors) [11]. In addition, we
also evaluate our proposed method SeqConv (Sec. VII) which
is used in the factors fseq(·).

Table III shows the corresponding results. Both ICM-based
approaches achieve best performance on most datasets. Par-
ticularly on average, our ICM-methods perform 32% to 190%
better than the sequence-based approaches from the literature.
While VPR, OPR and SeqSLAM potentially fail by design in
case of loops and stops in the database but could benefit in the
absence of loops and stops, MCN, ABLE and Delta are able

to deal with loops and stops. Nevertheless, all methods from
the literature fail to beat the performance of both ICM-based
approaches on a single dataset, even on datasets without loops
and stops (Nordland, GardensPoint).

SeqConv as an algorithmic part of ICM contributes to ICM’s
performance. The results in Table III demonstrate that Seq-
Conv alone already outperforms on average all methods from
the literature. However, ICM even exceeds the performance
of SeqConv. This demonstrates the superiority of fusing and
exploiting all available structural knowledge at once in a single
graph with ICM.

 ���

E. Runtime and memory usage

For all evaluated methods in Table II and III, we measured
the maximum runtime per query and the maximum memory
usage. Results are shown in Table IV. Note that NLSQ could
not be applied to full graphs but only to subgraphs due to
memory limitations, while ICM optimized full graphs – the
memory usage of NLSQ on full graphs would be much higher.

A target of this paper is the design of a fast and memory
efficient graph optimization for place recognition. The run-
times and memory usages of NLSQ, ICMmul and ICMmin

in Table IV demonstrate that we could actually tremendously
speed up the graph optimization and clearly reduce the re-
quired memory. With ŜDB , ICMmul was almost 2800× faster
than NLSQ and required approx. 280× less memory. In case
of the full setup with sequence exploitation (+Seq), ICMmul

was approx. 385× faster than NLSQ and required more than
60× less memory. The current implementation of ICMmin is
much slower than ICMmul, but still 2.5× to 10× faster than
NLSQ and 60× to 235× more memory efficient.

Compared to the sequence-based methods, ICMmul

achieves a comparable runtime and memory usage. In sum-
mary, a maximum runtime of 9.1 msec and memory usage of
490MB with ICMmul is perfectly suited for many real-time
applications.

The results in Table IV also show that SeqConv as an
algorithmic part of ICM is extremely fast and very memory
efficient. It required only 95µsec per query, which is faster
than most of the evaluated approaches. Its 170MB memory
usage is comparable to the other sequence-based methods from
the literature.

F. Performance with three additional descriptors

In a final experiment, we want to show the versatility of our
ICM-based graph optimization approach for place recognition.
Therefore, we repeated the experiments from Sec. VIII-D on
the 21 datasets with three additional image descriptors. The
same parameters as before were used. Table V shows the
obtained performances.

Both ICM-based methods again clearly outperform on av-
erage all other approaches over all descriptors. The results
show that our proposed methods perform well no matter which
descriptor is used, because the optimization operates only on
the descriptor similarities but not directly on the descriptors.

IX. CONCLUSION

In this paper, we presented a novel approach for fast and
memory efficient place recognition that achieves superior per-
formance compared to [32] and six state-of-the-art sequence-
based methods from the literature.

Our graph optimization with ICM could increase the max-
imum performance of [32] with NLSQ on average by 10%
while being 385× faster and 60× more memory efficient.
Specifically, the maximum runtime with ICM on our largest
dataset was 9.1msec per query which is totally suited for
real-time applications. Further, we could show that ICM with

sequence exploitation achieves superior performance com-
pared to six state-of-the-art sequence-based methods from the
literature: It outperformed them on NetVLAD by at least
32% on average over 21 datasets with comparable runtime
and memory consumption. No sequence-based method could
outperform both ICM-based methods on a single dataset.

ICM was also applied on three additional image descriptors
without parameter adjustment and significantly outperformed
all other methods. Adapted parameters that better fit the
statistics of each descriptor would presumably further improve
the performance.

An interesting question for future work is the application
of the graph optimization with ICM for place recognition on
sparse similarity matrices Ŝ that are returned by methods like
[33, 38] for efficient place recognition on large datasets. An-
other interesting direction is the extension of the graph-based
framework for additional structural knowledge like odometry.
Odometry for example could be modeled either directly with
additional factors or indirectly by replacing SeqConv with an
alternative like SMART [29] that leverages odometry during
sequence search.

REFERENCES

[1] R. Arandjelović and A. Zisserman. Three things everyone
should know to improve object retrieval. In Conference
on Computer Vision and Pattern Recognition (CVPR),
2012.

[2] Relja Arandjelović, Petr Gronat, Akihiko Torii, Tomas
Pajdla, and Josef Sivic. NetVLAD: CNN architecture for
weakly supervised place recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 40(6):
1437–1451, 2018.

[3] R. Arroyo, P. F. Alcantarilla, L. M. Bergasa, and
E. Romera. Towards life-long visual localization using
an efficient matching of binary sequences from images.
In International Conference on Robotics and Automation
(ICRA), 2015.

[4] H. Badino, D. Huber, and T. Kanade. Visual topometric
localization. In Intelligent Vehicles Symposium (IV),
2011.

[5] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool.
SURF: Speeded Up Robust Features. In European
Conference on Computer Vision (ECCV), 2006.

[6] Julian Besag. On the statistical analysis of dirty pic-
tures. Journal of the Royal Statistical Society. Series B
(Methodological), 48(3):259–302, 1986.

[7] Z. Chen, A. Jacobson, N. Sünderhauf, B. Upcroft, L. Liu,
C. Shen, I. Reid, and M. Milford. Deep learning features
at scale for visual place recognition. In International
Conference on Robotics and Automation (ICRA), 2017.

[8] Frank Dellaert and Michael Kaess. Factor graphs for
robot perception. Foundations and Trends in Robotics, 6
(1-2):1–139, 2017.

[9] M. Dusmanu, I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic,
A. Torii, and T. Sattler. D2-Net: A trainable CNN for
joint description and detection of local features. In

 ���

TABLE IV
RUNTIMES AND MEMORY USAGES WITH NETVLAD FOR ALL GRAPH-BASED METHODS COMPARED TO THE SEQUENCE-BASED METHODS FROM THE

LITERATURE. THE MAXIMUM RUNTIME PER QUERY ON THE BIGGEST DATASET IS SHOWN (DATASET OXFORD 2014-12-09-13-21-02 –
2014-11-25-09-18-32 WITH M = 2133 DATABASE IMAGES AND N = 2253 QUERY IMAGES). ALL RUNTIMES WERE MEASURED WITH AN INTEL

I7-7700K CPU WITH 64GB RAM. (∗MEMORY USAGE FOR THE OPTIMIZATION OF A SUBGRAPH ACCORDING TO SEC. VIII-A5)
Graph-based methods

ŜDB ŜDB + ŜQ ŜDB + ŜQ + Seq
Method NLSQ ICMmul ICMmin NLSQ ICMmul ICMmin NLSQ ICMmul ICMmin

[32] (ours) (ours) [32] (ours) (ours) [32] (ours) (ours)
max runtime per
query 5.3sec 1.9msec 521msec 2.4sec 1.5msec 1sec 3.5sec 9.1msec 1.1sec

max memory
usage 60.5GB∗ 220MB 262MB 30.4GB∗ 292MB 300MB 30.5GB∗ 490MB 512MB

Sequence-based methods
Method SeqConv MCN ABLE VPR OPR SeqSLAM Delta

(ours) [25] [3] [39] [38] [22] [11]
max runtime per
query 95µsec 247msec 43µsec 3.8msec 3.4msec 6.3msec 431µsec

max memory
usage 170MB 586MB 114MB 162MB 125MB 234MB 140MB

TABLE V
AVERAGE PRECISION WITH FOUR DIFFERENT DESCRIPTORS. THE RESULTS SHOW THE CONCLUSION OF EXPERIMENTS OVER THE 21 DATASETS THAT

WERE ALSO USED IN TABLE II AND III.
Additional Structural Knowledge

ŜDB + ŜQ + Seq Seq
Raw ICMmul ICMmin SeqConv MCN ABLE VPR OPR SeqSLAM Delta

Descriptor Case (ours) (ours) (ours) [25] [3] [39] [38] [22] [11]
worst 0.06 0.64 0.64 0.55 0.20 0.36 0.17 0.01 0.01 0.16

NetVLAD [2] best 0.97 1.00 1.00 1.00 0.98 1.00 0.89 0.97 0.95 1.00
average 0.51 0.87 0.89 0.79 0.58 0.66 0.49 0.45 0.30 0.51
worst 0.07 0.12 0.19 0.06 0.21 0.05 0.17 0.01 0.03 0.02

AlexNet [35] best 0.94 1.00 1.00 1.00 0.98 1.00 0.99 1.00 0.97 0.82
average 0.50 0.72 0.72 0.63 0.66 0.54 0.55 0.53 0.31 0.48
worst 0.09 0.64 0.33 0.16 0.14 0.12 0.15 0.01 0.03 0.12

DenseVLAD [36] best 0.96 1.00 1.00 1.00 0.91 1.00 0.95 0.98 0.95 1.00
average 0.57 0.87 0.88 0.76 0.62 0.66 0.49 0.34 0.31 0.53
worst 0.08 0.15 0.17 0.09 0.22 0.05 0.19 0.01 0.03 0.07

HybridNet [7] best 0.94 1.00 1.00 1.00 0.98 1.00 0.98 1.00 0.97 0.90
average 0.54 0.76 0.79 0.68 0.69 0.59 0.56 0.56 0.31 0.56

Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[10] Paul Furgale and Timothy D. Barfoot. Visual teach and
repeat for long-range rover autonomy. Journal of Field
Robotics, 27(5):534–560, 2010.

[11] S. Garg, B. Harwood, G. Anand, and M. Milford. Delta
Descriptors: Change-based place representation for ro-
bust visual localization. IEEE Robotics and Automation
Letters (RA-L), 5(4):5120–5127, 2020.

[12] Javier Gimenez, Adriana Amicarelli, Juan Toibero, Fer-
nando Sciascio, and Ricardo Carelli. Continuous prob-
abilistic SLAM solved via iterated conditional modes.
International Journal of Automation and Computing, 16
(6):838–850, 2019.

[13] Arren Glover. Day and night with lateral pose change
datasets, 2014.

[14] Arren Glover, Will Maddern, Michael Milford, and Gor-
don Wyeth. FAB-MAP + RatSLAM: Appearance-based
SLAM for Multiple Times of Day. In International
Conference on Robotics and Automation (ICRA), 2010.

[15] P. Hansen and B. Browning. Visual place recognition

using HMM sequence matching. In Int. Conf. on Intel.
Robots and Systems, 2014.

[16] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggre-
gating local descriptors into a compact image represen-
tation. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2010.

[17] Daphne Koller and Nir Friedman. Probabilistic Graphi-
cal Models: Principles and Techniques. The MIT Press,
2009.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing
Systems (NIPS). 2012.

[19] Stephanie Lowry, Niko Sünderhauf, Paul Newman,
John J. Leonard, David Cox, Peter Corke, and Michael J.
Milford. Visual place recognition: A survey. IEEE
Transactions on Robotics (T-RO), 32(1):1–19, 2016.

[20] Will Maddern, Geoffrey Pascoe, Chris Linegar, and Paul
Newman. 1 year, 1000 km: The Oxford RobotCar
dataset. The International Journal of Robotics Research
(IJRR), 36(1):3–15, 2017.

 ���

[21] Will Maddern, Geoffrey Pascoe, Matthew Gadd, Dan
Barnes, Brian Yeomans, and Paul Newman. Real-
time Kinematic Ground Truth for the Oxford RobotCar
Dataset. arXiv preprint: 2002.10152, 2020.

[22] Michael Milford and Gordon Fraser Wyeth. SeqSLAM:
Visual route-based navigation for sunny summer days
and stormy winter nights. In International Conference
on Robotics and Automation (ICRA), 2012.

[23] Tayyab Naseer, Luciano Spinello, Wolfram Burgard, and
Cyrill Stachniss. Robust visual robot localization across
seasons using network flows. In Conference on Artificial
Intelligence, 2014.

[24] Peer Neubert and Stefan Schubert. Hyperdimensional
computing as a framework for systematic aggregation of
image descriptors. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2021.

[25] Peer Neubert, Stefan Schubert, and Peter Protzel. A
neurologically inspired sequence processing model for
mobile robot place recognition. IEEE Robotics and
Automation Letters (RA-L), 4(4), 2019.

[26] Peer Neubert, Stefan Schubert, and Peter Protzel. Re-
solving place recognition inconsistencies using intra-set
similarities. IEEE Robotics and Automation Letters (RA-
L), 6(2):2084–2090, 2021.

[27] Jorge Nocedal and Stephen J. Wright. Numerical Op-
timization, chapter Least-Squares Problems, pages 245–
269. Springer New York, 2006.

[28] H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han.
Large-scale image retrieval with attentive deep local
features. In International Conference on Computer Vision
(ICCV), 2017.

[29] E. Pepperell, P. I. Corke, and M. J. Milford. All-
environment visual place recognition with SMART. In
International Conference on Robotics and Automation
(ICRA), 2014.

[30] Stefan Schubert and Peer Neubert. What makes visual
place recognition easy or hard? CoRR, abs/2106.12671,
2021.

[31] Stefan Schubert, Peer Neubert, and Peter Protzel. Un-
supervised learning methods for visual place recognition
in discretely and continuously changing environments.
In International Conference on Robotics and Automation
(ICRA), 2020.

[32] Stefan Schubert, Peer Neubert, and Peter Protzel. Graph-
based non-linear least squares optimization for visual
place recognition in changing environments. IEEE
Robotics and Automation Letters (RA-L), 6(2):811–818,
2021.

[33] Stefan Schubert, Peer Neubert, and Peter Protzel. Beyond
ANN: Exploiting structural knowledge for efficient place
recognition. In International Conference on Robotics and
Automation (ICRA), 2021.

[34] Niko Sünderhauf, Peer Neubert, and Peter Protzel. Are
we there yet? Challenging SeqSLAM on a 3000 km
journey across all four seasons. International Conference
on Robotics and Automation (ICRA) Workshop on Long-

Term Autonomy, 2013.
[35] Niko Sünderhauf, Sareh Shirazi, Feras Dayoub, Ben

Upcroft, and Michael Milford. On the performance of
convnet features for place recognition. In International
Conference on Intelligent Robots and Systems (IROS),
2015.

[36] A. Torii, R. Arandjelović, J. Sivic, M. Okutomi, and
T. Pajdla. 24/7 place recognition by view synthesis. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[37] C. Valgren and A. J. Lilienthal. SIFT, SURF and seasons:
Long-term outdoor localization using local features. In
European Conference on Mobile Robots (ECMR), 2007.

[38] O. Vysotska and C. Stachniss. Lazy data association for
image sequences matching under substantial appearance
changes. IEEE Robotics and Automation Letters (RA-L),
1(1):213–220, 2016.

[39] O. Vysotska and C. Stachniss. Relocalization under sub-
stantial appearance changes using hashing. International
Conference on Intelligent Robots and Systems (IROS)
Workshop PPNIV’17, 2017.

[40] O. Vysotska, T. Naseer, L. Spinello, W. Burgard, and
C. Stachniss. Efficient and effective matching of image
sequences under substantial appearance changes exploit-
ing gps priors. In International Conference on Robotics
and Automation (ICRA), 2015. ���

	INTRODUCTION
	RELATED WORK
	Image descriptors for visual place recognition in changing environments
	Intra-database and intra-query similarities for performance improvements
	Sequence-based methods for place recognition
	Optimization via Iterated Conditional Modes (ICM)

	THE GRAPHICAL MODEL AT A GLANCE
	Structural knowledge
	Nodes
	Factors in the graph
	Graph optimization

	A NEW QUADRATIC COST FUNCTION FOR FACTOR fDBexcl AND fQexcl
	The multiplication-based cost function from Schubert2021
	The new minimum-based cost function

	WHY NON-LINEAR LEAST SQUARES OPTIMIZATION OF THE GRAPH IS INEFFICIENT
	GRAPH OPTIMIZATION WITH ICM
	The basic idea of ICM
	ICM-based graph optimization for place recognition
	The computation of a and b
	The full ICM-based graph optimization procedure for place recognition

	THE SEQUENCE-BASED METHOD SeqConv
	EXPERIMENTAL RESULTS
	Experimental Setup
	Image descriptors
	Metric
	Datasets
	Implementation
	Parameters

	Optimization with NLSQ vs ICMmul
	Comparison of the multiplicative and the minimum-based cost function fexcl (ICMmul vs ICMmin)
	Comparison of ICM with state-of-the-art sequence-based methods
	Runtime and memory usage
	Performance with three additional descriptors

	Conclusion

